CN111071998A - 一种GaN多孔微米方块/碳复合材料的制备方法 - Google Patents

一种GaN多孔微米方块/碳复合材料的制备方法 Download PDF

Info

Publication number
CN111071998A
CN111071998A CN201911414300.3A CN201911414300A CN111071998A CN 111071998 A CN111071998 A CN 111071998A CN 201911414300 A CN201911414300 A CN 201911414300A CN 111071998 A CN111071998 A CN 111071998A
Authority
CN
China
Prior art keywords
composite material
carbon composite
gan
porous micron
micron square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911414300.3A
Other languages
English (en)
Inventor
倪世兵
杨淑越
陆俊霖
杨学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201911414300.3A priority Critical patent/CN111071998A/zh
Publication of CN111071998A publication Critical patent/CN111071998A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0632Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种GaN多孔微米方块/碳复合材料的制备方法。其具体操作如下:称取一定量Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯以质量比为100‑150:150‑200:0‑7:2‑4添加去离子水搅拌20‑40min至其均匀分散;将悬浮液转移到水热反应釜内衬中,在鼓风烘箱中120‑180℃反应12‑36h后,自然冷却至室温;将产物冷冻干燥后直接在氨气下退火(温度为650‑850℃,时间为5‑10h)得到GaN多孔微米方块/碳复合材料。本发明将GaN多孔微米方块/碳复合材料用作锂离子电池负极,显示了良好电化学性能。

Description

一种GaN多孔微米方块/碳复合材料的制备方法
技术领域
本发明涉及GaN作为锂离子电池负极材料的制备方法和电化学性能,属于电化学电源领域。
背景技术
现今地球上的传统化石能源如煤、石油和天然气在生产生活中仍然占据主体,导致的一系列的全球环境、气候和生态问题正在一点点的侵蚀我们的家园。解决能源危机和环境恶化已经成为人类所面临的首要问题。而目前人们所想到的方法一是寻找可再生的清洁环保能源(风能、势能、太阳能和潮汐能等)去替代传统的化石能源,二是开发高性能的储能装置以提升能源的存储和利用率。
锂离子电池因为其高容量高循环的优点已被广泛应用于小型便携式电子设备,也被视为未来电动交通工具和大型储能设备的理想电源。然而,传统锂离子电池的能量密度及循环寿命仍然难以满足人们日益增长的储能需求。开发新型、高性能锂离子电池一直都是研究的热点,这依赖于高容量锂离子电池电极材料的研发。目前,商用石墨类碳材料理论容量较低(372 mAh g-1),这显著抑制了锂离子电池的整体能量密度,研发新型替代负极材料对于开发高性能锂离子电池而言显得尤为迫切。
发明内容
针对上述技术问题,本发明提供了一种GaN多孔微米方块/碳复合材料作为锂离子电池负极。一方面,多孔结构不仅增大了与电解液的接触面积,而且缩短离子扩散路径;另一方面,氮化镓的储锂机理为氧化/还原和合金/去合金化过程。氧化/还原过程为:GaN +3Li+ + 3e- → Ga + Li3N;合金去合金化过程为:Ga + 2Li+ + 2e- → Li2Ga;镓在28℃以上会呈现液态,当测试时温度设定在35℃以上让镓呈液态,能与电解液更加均匀接触,增强材料的反应动力学。本专利首次将GaN多孔微米方块/碳复合材料作为高温(>28℃)锂离子电池负极,并显示了优异电化学性能。
一种GaN多孔微米方块/碳复合锂离子电池负极材料及制备方法,其特征在于,具体制备工艺如下:
(1)称取一定量Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯(Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯的质量比为100-150:150-200:0-7:2-4),添加去离子水搅拌20-40min至其均匀分散;
(2)将悬浮液转移到水热反应釜内衬中,在鼓风烘箱中120-180℃反应12-36h后,自然冷却至室温;
(3)将得到的产物冷冻干燥,经氨气退火(温度为650-850℃,时间为5-10h)后得到GaN多孔微米方块/碳复合材料。
本专利通过两步法得到GaN多孔微米方块/碳复合材料。其原理在于:1)首先,通过水热法,C6H12N4缓慢分解产生OH-,诱导硝酸镓在水热过程中发生水解得到GaOOH前驱体,同时,溶液中的C6H12O6对GO进行还原并增强rGO与GaOOH的接触。2)在氨气烧结过程中,GaOOH转化为GaN的同时,残留的C6H12N4将原位碳化(无定形碳)并同时实现氮掺杂,并作为导电增强相和结构稳定相进一步增强GaN与还原氧化石墨烯的结合;3)GaOOH在转化为GaN时,释放水分子,在结构中产生多孔结构。4)在把所得的GaN多孔微米方块/碳复合材料制成电极片组装电池,在高温下进行电化学性能测试。高温(>28℃)电化学性能原理在于:高温会使电化学反应生成的Ga呈液态,这有利于电极材料与电解液均匀接触,增强材料的反应动力学。
本发明所涉及一种GaN多孔微米方块/碳复合锂离子电池负极材料及制备方法,具有以下几个显著的特点:
(1)所制备的GaN多孔微米方块/碳复合材料,其长度约1-10μm,宽度和高度为200-500nm的方块形,由大量超小纳米颗粒组成。
(2)所制备的GaN多孔微米方块/碳复合材料中,氮均匀掺杂。
(3)所制备的GaN多孔微米方块/碳复合材料作为锂离子电池负极具有明显的充、放电平台且循环性能优异。
(4)所制备的GaN多孔微米方块/碳复合材料作为锂离子电池负极能够在较高温度下使用。
附图说明
图1实施例1中(a)水热反应,(b)氨气退火所得样品的XRD图。
图2实施例1中(a)水热反应,(b)氨气退火所制备样品的SEM图。
图3实施例1所制备样品的(a)前三次充、放电曲线图和(b)循环性能图。
图4实施例2所制备样品的(a)前三次充、放电曲线图和(b)循环性能图。
图5实施例3所制备样品的(a)前三次充、放电曲线图和(b)循环性能图。
具体实施方式
实施例 1
称取0.51g Ga(NO3)3、0.70g C6H12N4、0.02g C6H12O6和0.018gGO,添加去离子水搅拌30min至均匀分散;将溶液转移到水热反应釜内衬中,在鼓风烘箱中140℃反应12h后,将产物冷冻干燥并在氨气气氛下,以10℃ min-1的升温速率升温,在750℃下烧结5h,得到灰色GaN多孔微米方块/碳复合材料。所制备的样品经XRD图谱分析。如图1所示,水热反应完所得样品为GaOOH(JCPDS, no.54-0910),氨气烧结后所得样品为GaN(JCPDS,no.50-0792)。碳峰不明显,表明其为无定型态。样品SEM如图2所示,水热反应得到的GaOOH样品为实心微米方块,氨气烧结制备的GaN为长度约1-10μm,宽度和高度为200-500nm的多孔微米方块,由大量超小纳米颗粒组成。
如下方法制成电池:将制得的样品与乙炔黑及聚偏氟乙烯(PVDF)按8:1:1的比例混合制成浆料,涂覆在10 μm厚度的铜箔上,在60℃烤灯下干燥10h后,裁剪成直径14 mm的圆片,在120℃下真空干燥12h。以金属锂片为对电极,Celgard2400膜为隔膜,1 M LiPF6/DMC: EC=1: 1溶液为电解液,在氩气保护的手套箱中组装成CR2025型电池。电池组装完后静置8小时,再用CT2001电池测试系统进行恒流充放电测试,测试时温度在40℃,测试电压为0.02-3 V,电流密度为100 mA g-1。如图3为所制备的锂离子电池负极的首次充、放电曲线和循环性能图。如图所示:(a)其首次充放电容量为242 mAh g-1和767.9 mAh g-1,第二次充放电容量为231.9 mAh g-1和281.9 mAh g-1,第三次充放电容量为227.8mAh g-1和258.3mAh g-1。(b)容量随着循环次数的增加有小幅度的提升,第400圈后具有316.0mAh g-1的放电容量和321.3 mAh g-1的充电容量。
实施例2
称取0.51g Ga(NO3)3、0.70g C6H12N4、0.02g C6H12O6和0.012g GO,添加去离子水搅拌30min至均匀分散;将溶液转移到水热反应釜内衬中,在鼓风烘箱中140℃反应12h后,将产物冷冻干燥并在氨气气氛下,以10℃ min-1的升温速率升温,在800℃下烧结5h,得到GaN多孔微米方块/碳复合材料。将实施例2中制备的材料按照实施例1的方式装电池和进行测试。如图4为所制备的GaN锂离子电池负极的首次充、放电曲线和循环性能图。如图所示:(a)其首次充放电容量为157.5 mAh g-1和681.0 mAh g-1,第二次充放电容量为142.7 mAh g-1和191.2 mAh g-1,第三次充放电容量为132.3 mAh g-1和167.1 mAh g-1。(b)容量随着循环次数的增加而下降,第400圈后只保留144.1 mAh g-1的放电容量和146.0 mAh g-1的充电容量。
实施例 3
称取0.51g Ga(NO3)3、0.70g C6H12N4、0.02g C6H12O6和0.009g GO,添加去离子水搅拌30min至均匀分散;将溶液转移到水热反应釜内衬中,在鼓风烘箱中140℃反应12h后,将产物冷冻干燥并在氨气气氛下,以10℃ min-1的升温速率升温,在700℃下烧结5h,得到GaN多孔微米方块/碳复合材料。将实施例3中制备的材料按照实施例1的方式装电池和进行测试。如图5为所制备的GaN锂离子电池负极的首次充、放电曲线和循环性能图。如图所示:(a)其首次充放电容量为165.8 mAh g-1和607.5 mAh g-1,第二次充放电容量为1654.2 mAh g-1和200.4 mAh g-1,第三次充放电容量为149.3 mAh g-1和187.4 mAh g-1。(b)容量随着循环次数的增加而下降,第400圈后只保留207.2 mAh g-1的放电容量和212.4 mAh g-1的充电容量。

Claims (3)

1.一种GaN多孔微米方块/碳复合材料的制备方法,其特征在于,具体制备工艺如下:
(1)称取一定量Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯添加去离子水搅拌至其均匀分散得到悬浮液;
(2)将悬浮液转移到水热反应釜内衬中,120-180℃下水热反应12-36h,自然冷却至室温;
(3)将得到的产物冷冻干燥,在氨气气氛下退火得到GaN多孔微米方块/碳复合材料。
2.根据权利要求1所述的GaN多孔微米方块/碳复合材料的制备方法,其特征在于,步骤(1)中Ga(NO3)3、C6H12N4、C6H12O6和氧化石墨烯的质量比为100-150:150-200:0-7:2-4。
3.根据权利要求1所述的GaN多孔微米方块/碳复合材料的制备方法,其特征在于,步骤(3)中氨气气氛下以5-10℃min-1的升温速率升温至650-850℃,保温时间为5-10h。
CN201911414300.3A 2019-12-31 2019-12-31 一种GaN多孔微米方块/碳复合材料的制备方法 Pending CN111071998A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911414300.3A CN111071998A (zh) 2019-12-31 2019-12-31 一种GaN多孔微米方块/碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911414300.3A CN111071998A (zh) 2019-12-31 2019-12-31 一种GaN多孔微米方块/碳复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN111071998A true CN111071998A (zh) 2020-04-28

Family

ID=70320747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911414300.3A Pending CN111071998A (zh) 2019-12-31 2019-12-31 一种GaN多孔微米方块/碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111071998A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591719A (zh) * 2020-12-29 2021-04-02 东莞理工学院 一种氮化锗纳米材料、其制备方法及锂离子电池负极材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134484A (zh) * 2010-11-22 2011-07-27 鲍克燕 GaN@SiO2微米材料的制备方法
CN102904158A (zh) * 2012-10-19 2013-01-30 东南大学 一种构筑电泵浦回音壁模ZnO紫外微激光器的制备方法
CN108511732A (zh) * 2018-05-10 2018-09-07 三峡大学 一种羟基氧化铝-石墨烯锂离子电池复合负极材料的制备方法
CN108767214A (zh) * 2018-05-10 2018-11-06 三峡大学 一种氧化铝-石墨烯复合锂离子电池负极材料的制备方法
CN110571419A (zh) * 2019-09-10 2019-12-13 东莞理工学院 一种rGO膜/GaN纳米线复合电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134484A (zh) * 2010-11-22 2011-07-27 鲍克燕 GaN@SiO2微米材料的制备方法
CN102904158A (zh) * 2012-10-19 2013-01-30 东南大学 一种构筑电泵浦回音壁模ZnO紫外微激光器的制备方法
CN108511732A (zh) * 2018-05-10 2018-09-07 三峡大学 一种羟基氧化铝-石墨烯锂离子电池复合负极材料的制备方法
CN108767214A (zh) * 2018-05-10 2018-11-06 三峡大学 一种氧化铝-石墨烯复合锂离子电池负极材料的制备方法
CN110571419A (zh) * 2019-09-10 2019-12-13 东莞理工学院 一种rGO膜/GaN纳米线复合电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙长龙: "GaN基纳米材料的制备及其储锂性能研究", 《国博士学位论文全文数据库 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591719A (zh) * 2020-12-29 2021-04-02 东莞理工学院 一种氮化锗纳米材料、其制备方法及锂离子电池负极材料

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN108321369B (zh) 一种可用于锂硫电池的大孔碳/氧化锌/硫复合材料及其制备方法与应用
CN108539141B (zh) 一种钠离子电池用三元层状正极材料的制备方法
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
CN103904321B (zh) 锂离子电池负极材料锰酸锂的高温固相制备方法
CN107749467B (zh) 一种梭形结构碳包覆磷化铁电极材料及其制备方法
CN112599770B (zh) 一种锂/钠离子电池负极材料及其制备方法
CN109659511B (zh) 一种SiO2包覆三元正极材料及其制备方法
CN110611099A (zh) 一种用于锂硫电池正极材料的3D-ZIF8@zif67制备方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN111592045A (zh) 锰酸钾钾离子电池正极材料
CN113241431A (zh) 一种ZnS纳米花@NC的锂离子电池负极材料的制法和应用
CN112614979A (zh) 一种二次碳包覆的磷酸铁锂及其制备方法
CN107425181B (zh) 一种氧化锰/淀粉基硬碳复合负极材料的制备方法
CN108134075B (zh) 一种钛酸钠微球及其在钠离子电池中的应用
CN111071998A (zh) 一种GaN多孔微米方块/碳复合材料的制备方法
CN111082027A (zh) 一种生物质碳锂离子电池负极材料的制备方法
CN115148946A (zh) 锂硫电池正极极片的制备方法以及锂硫电池
CN111086981B (zh) 一种生物质碳纳米片锂离子电池负极材料及制备方法
CN109286007B (zh) 石墨烯复合碳包覆Ga2O3锂离子电池负极的制备方法
CN109378470B (zh) 一种钒掺杂二硫化钨负极材料的制备方法
CN110752368B (zh) 钠离子电池炭负极材料及其制备方法、应用和用途
CN108584889B (zh) 一种低温加热多元醇合成的锂离子电池负极材料及其应用
CN113363464A (zh) 一种镓硅磷复合负极活性材料、锂离子电池及其制备方法和应用
CN113526486A (zh) 一种超高硫含量硬碳材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200428

RJ01 Rejection of invention patent application after publication