CN110957148A - 一种掺氮碳纳米管超级电容器的制备方法 - Google Patents

一种掺氮碳纳米管超级电容器的制备方法 Download PDF

Info

Publication number
CN110957148A
CN110957148A CN201911011045.8A CN201911011045A CN110957148A CN 110957148 A CN110957148 A CN 110957148A CN 201911011045 A CN201911011045 A CN 201911011045A CN 110957148 A CN110957148 A CN 110957148A
Authority
CN
China
Prior art keywords
nitrogen
stainless steel
preparing
carbon nanotube
doped carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911011045.8A
Other languages
English (en)
Inventor
张华�
吕尧吒
张耀华
余丽
雷锐
倪红卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201911011045.8A priority Critical patent/CN110957148A/zh
Publication of CN110957148A publication Critical patent/CN110957148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种掺氮碳纳米管超级电容器的制备方法,包括以下步骤:(1)制备不锈钢基底;(2)在不锈钢基底上气相沉积一维碳纳米管;(3)空气退火;(4)制备掺氮碳纳米管。本发明采用不锈钢作为基底直接用于制备碳纳米管,利用其中分布均一的Fe、Ni作为催化剂,无需再引入其他催化剂,降低原料成本,基于不锈钢的Fe、Ni分布均一和耐腐性好,所制备的碳纳米管结构均一、稳定;利用空气退火处理提高其比表面积及电化学活性;掺氮处理能改善碳纳米管的亲水性,并使得电极同时具备双电层电容和法拉第电容,从而提高其电容性能。本发明提供的方法设备要求低、成本可控,制备时间短,具有较大的应用前景。

Description

一种掺氮碳纳米管超级电容器的制备方法
技术领域
本发明属于电化学和材料技术领域,具体涉及一种掺氮碳纳米管超级电容器的制备方法。
背景技术
超级电容器,又名电化学电容器,是一种介于物理电容器与化学电池之间的新型储能器件。其相比于传统电容器具有更大的能量密度,相比于电池具有更大的功率密度,且具有无污染、循环寿命长、安全性高等优点。
碳纳米管(CNTs)是由一层或多层石墨片绕中心轴按一定螺旋角卷积而成的无缝中孔管状结构,是一种特殊的一维量子材。其特殊的结构特性使其具有其他碳材料所没有或更优的物理化学性能,其特点有:比表面积大、耐蚀性能优异、导热导电性能良好、微孔大小适宜、频率响应特性良好等。
CNTs被认为是一种理想的超级电容器电极材料,但单纯的CNTs电容性能有限,空气退火和掺氮处理能有效改善其性能。空气退火使CNTs的石墨片边平面暴露更多的活性位点,从而提高其比表面积及电化学活性。掺氮处理能改善CNTs的亲水性,同时使电极同时具备双电层电容和法拉第电容,从而提高其电容性能。
CVD法制备CNTs需要预先铺设Fe、Ni等催化剂,而纳米尺寸催化剂的均匀分布难以控制,且催化剂容易团聚,从而对CNTs的制备及性能造成不利影响,不锈钢中Fe、Ni等粒子大量存在且均匀分布,能较好克服这一困难,即无需外源催化剂,直接在不锈钢表面制备分布均匀、结构均一稳定的CNTs。选择316L不锈钢作为基底,不仅因其含有大量均匀分布的Fe、Ni催化剂,还因其耐蚀性比一般不锈钢要好,在提供良好导电连接的同时保证电极材料的稳定,从而增强所制备电极材料的适用性。
发明内容
为了解决上述技术问题,本发明提供一种掺氮碳纳米管超级电容器的制备方法。该方法使用不锈钢作为基底,利用其中均匀分布的Fe、Ni作为催化剂,无需单独再引入催化剂,以制备碳纳米管。
本发明提供的技术方案如下:
一种掺氮碳纳米管超级电容器的制备方法,包括以下步骤:
(1)制备不锈钢基底;
(2)在不锈钢基底上气相沉积一维碳纳米管;
(3)空气退火;
(4)制备掺氮碳纳米管。
具体的,所述步骤(1)中不锈钢为316L不锈钢,其粗糙度粗糙小于Ra 10μm。
具体的,所述制备不锈钢基底的步骤包括:对不锈钢基底打磨、清洗和电解抛光处理。
进一步地,电解抛光处理的电压为20V,电解抛光的温度为2℃左右,电解抛光的时间为20min。
具体的,所述步骤(2)气相沉积一维碳纳米管的方法如下:将不锈钢基底放入瓷舟中,通入氢氩混合气,升温至900℃并保温10min,然后继续通入混合气降温,降温至800℃时通入C2H2气体以进行碳纳米管的生长,生长完毕后停止C2H2的供应,混合气体继续通入,降温冷却后即得。
进一步地,所述氢氩混合气体的体积比为5:95,流量500sccm;所述C2H2气体的流量为20sccm,通入时间为1h。
具体的,所述步骤(3)中退火温度为500℃,退火时间为2h,管式升温速率为5℃/min,加热完毕后样品随炉冷却到室温。
具体的,所述步骤(4)掺氮碳纳米管的制备方法如下:将步骤(3)所制备的碳纳米管浸没于尿素溶液中,置于水热釜中保温即得。
具体的,所述尿素浓度为0.1~0.5mol/L,优选为0.3mol/L;与尿素溶液的反应温度为200℃,反应时间为12h。
本发明的另一目的在于利用上述方法制备的掺氮碳纳米管超级电容器。
本发明的有益效果:
(1)采用不锈钢作为基底进行碳纳米管的制备,利用其均匀分布的Fe、Ni作为反应催化剂,无需再单独引入催化剂,一方面减少催化剂的使用,降低原料和操作成本,另一方面由于不锈钢的Fe、Ni分布均一和耐腐性好,所制备的碳纳米管结构均一、稳定;
(2)采用阳极氧化的方法对不锈钢基底进行抛光处理,操作简单、效果良好,同时也避免了因机械抛光引入的杂质和表面瑕疵对碳纳米管的生长造成不利影响;
(3)采用CVD法制备碳纳米管,工艺简单、成本较低,适合大规模生产;另外,由于制备过程残余反应物是气体,其会随着气流离开反应体系,从而得到纯度较高的碳纳米管;与此同时,反应参数严格可控,保证了制备得到的碳纳米管质量的稳定性;
(4)空气退火能使得碳纳米管的石墨片边平面暴露更多的活性位点,从而提高其比表面积及电化学活性;
(5)掺氮处理能改善碳纳米管的亲水性,同时氮掺杂原子能够改变碳纳米管局部电荷密度,从而提高其电子传递性,并且还能降低电阻系数,使电极同时具备双电层电容和法拉第电容,从而提高其电容性能;
(6)本发明提供的方法设备要求低、成本可控、制备时间短,具有较大的应用前景。
附图说明
图1为实施例2所制备的掺氮纳米管的SEM图;
图2为实施例2所制备的掺氮纳米管的TEM图;
图3为实施例2所制备的掺氮纳米管在不同电流密度下的GCD曲线图;
图4为实施例1~3及对比实施例1所制备的掺氮纳米管在1A/g电流密度下的GCD曲线图。
具体实施方式
下面结合具体实施例对本发明进一步说明,本发明的内容完全不限于此。
实施例1
制备掺氮碳纳米管超级电容器:
(1)CVD制备碳纳米管(CNTs)
将316L不锈钢片线切割尺寸均为10×10×0.5mm3。利用1000#、2000#砂纸在金相试样抛磨机上打磨(粗糙度<Ra 10μm),之后分别用无水乙醇、蒸馏水超声清洗10min;用吹风机吹干后进行电解抛光处理(电解液体积比,高氯酸:乙二醇=5:95),采用工作电压20V,控制反应电流为0.02A,反应时间20min,反应温度通过冰水混合物控制在2℃左右。
(2)在不锈钢基底上气相沉积一维碳纳米管
试样处理完毕后再分别用无水乙醇、蒸馏水超声清洗10min并用吹风机吹干,放入瓷舟中,再移入管式电阻炉加热区内,通入流速为120sccm的氢氩混合气(体积比:5:95),升温至900℃时,将混合气流速调为500sccm,同时保温大约为10min。继续通入混合气并保持流速,炉体缓慢降温,当温度降至800℃时通入流速20sccm的C2H2气体,C2H2高温下裂解进行碳纳米管的生长,60min后停止C2H2的供应,混合气继续保持通入,流速不变,管式炉以5℃/min缓慢降温,约为145min后取出样品。所制备的碳纳米管管径约120nm,长度约40-250μm。
(3)空气退火
取样后,在500℃下对试样进行2h空气退火处理。
(4)制备掺氮纳米管
用电子天平称取适量尿素粉末分别配制成0.1mol/L的尿素水溶液30ml;将退火后的样品分别置入50ml聚四氟乙烯内胆,并加入30ml不同浓度的尿素溶液,放入恒温箱中200℃下保温12h,待水热釜冷却到室温取出样品,蒸馏水冲洗、吹干备用。
实施例2
制备方法同实施例1。区别在于尿素溶液浓度为0.3mol/L。
实施例3
制备方法同实施例1。区别在于尿素溶液浓度为0.5mol/L。
对比实施例1
制备方法同实施例1。区别在于没有进行掺氮处理,即无第(4)步。
实施例4
结构表征及性能测试
1、结构表征
图1、图2分别为实施例2所制备的掺氮碳纳米管的SEM和TEM图,从图中可以看出,在不锈钢表面制备得到的碳纳米管不定向生长,且相互缠绕,其直径约为120nm。交错生长的方式不仅暴露了更多的边平面,使得碳管拥有更多的活性位点,并且碳管之间接触紧密,不易被破坏。另外,由于碳管在不锈钢上生长,并未借助外来催化剂,使得碳材料与基底不锈钢之间、碳材料与碳材料之间都互相直接接触,连接牢固可靠。同时,碳管表面略微粗糙,这可以归结于空气退火使得碳管表面出现结构上的缺陷,这些结构缺陷将促进材料与溶液离子的接触,从而提高了碳纳米管的亲水性。
2、储容性能
测试方法:用导电银胶粘接试样背面和铜棒,并用绝缘硅胶对其背面和侧面封装,保留正面10×10mm2有效工作面积。本实验在电化学工作站CHI660E上进行电化学性能测试表证,采用三电极体系,工作电极为封装试样,参比电极为饱和甘汞电极(SCE),对电极为铂片(35×35mm2)电极,电解质溶液是1mol/L的Na2SO4水溶液。
测试结果如图3所示。实施例2所制备的掺氮碳纳米管电极在0.5A/g、1A/g、2A/g、3A/g、5A/g、10A/g电流密度下的比电容值分别为132.6F/g、125F/g、115.5F/g、108.7F/g、98.1F/g、78.3F/g。图3中的恒流充放电曲线均为对称的三角形,证明其储容性能良好。
3、电容值测试
在1A/g电流密度下,实施例1~3及对比实施例1所制备的样品比电容值分别为:95.2F/g、125F/g、92.6F/g、11.4F/g。从图4可以看出,掺氮的碳纳米管的比电容值大幅度高于未掺氮的碳纳米管,在尿素浓度为0.3mol/L时样品比电容值最大。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (10)

1.一种掺氮碳纳米管超级电容器的制备方法,其特征在于,包括以下步骤:
(1)不锈钢基底预处理;
(2)在不锈钢基底上气相沉积一维碳纳米管;
(3)空气退火;
(4)制备掺氮碳纳米管。
2.根据权利要求1所述的掺氮碳纳米管超级电容器的制备方法,其特征在于:所述步骤(1)中不锈钢为316L不锈钢,其粗糙度粗糙小于Ra 10μm。
3.根据权利要求1所述的掺氮碳纳米管超级电容器的制备方法,其特征在于,所述不锈钢基底预处理的步骤包括:对不锈钢基底打磨、清洗和电解抛光处理。
4.根据权利要求3所述的掺氮碳纳米管超级电容器的制备方法,其特征在于:电解抛光处理的电压为20V,电解抛光的温度为2℃左右,电解抛光的时间为20min。
5.根据权利要求1所述的掺氮碳纳米管超级电容器的制备方法,其特征在于,所述步骤(2)气相沉积一维碳纳米管的方法如下:将不锈钢基底放入瓷舟中,通入氢氩混合气,升温至900℃并保温10min,然后继续通入混合气降温,降温至800℃时通入C2H2气体以进行碳纳米管的生长,生长完毕后停止C2H2的供应,混合气体继续通入,降温冷却后即得。
6.根据权利要求5所述的掺氮碳纳米管超级电容器的制备方法,其特征在于:所述氢氩混合气体的体积比为5:95,流量500sccm;所述C2H2气体的流量为20sccm,通入时间为1h。
7.根据权利要求1所述的掺氮碳纳米管超级电容器的制备方法,其特征在于:所述步骤(3)中退火温度为500℃,退火时间为2h,管式升温速率为5℃/min,加热完毕后样品随炉冷却到室温。
8.根据权利要求1所述的掺氮碳纳米管超级电容器的制备方法,其特征在于,所述步骤(4)掺氮碳纳米管的制备方法如下:将步骤(3)所制备的碳纳米管浸没于尿素溶液中,置于水热釜中保温即得。
9.根据权利要求8所述的掺氮碳纳米管超级电容器的制备方法,其特征在于:所述尿素浓度为0.1~0.5mol/L;水热反应的温度为200℃,反应时间为12h。
10.一种掺氮碳纳米管超级电容器,其特征在于:采用权利要求1~9任一项所述的方法制备。
CN201911011045.8A 2019-10-23 2019-10-23 一种掺氮碳纳米管超级电容器的制备方法 Pending CN110957148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911011045.8A CN110957148A (zh) 2019-10-23 2019-10-23 一种掺氮碳纳米管超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011045.8A CN110957148A (zh) 2019-10-23 2019-10-23 一种掺氮碳纳米管超级电容器的制备方法

Publications (1)

Publication Number Publication Date
CN110957148A true CN110957148A (zh) 2020-04-03

Family

ID=69975670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011045.8A Pending CN110957148A (zh) 2019-10-23 2019-10-23 一种掺氮碳纳米管超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN110957148A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514764A (zh) * 2020-04-09 2020-08-11 大连理工大学 超疏水不锈钢-碳纳米管复合膜的制备及水处理应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030263A (zh) * 2013-03-04 2014-09-10 海洋王照明科技股份有限公司 氮掺杂碳纳米管及其制备方法
CN104064367A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 氮掺杂碳纳米管/离子液体复合薄膜及其制备方法与电容器
CN104659338A (zh) * 2015-03-17 2015-05-27 东莞市迈科科技有限公司 锂硫电池正极材料的制备方法
KR20170093418A (ko) * 2016-02-05 2017-08-16 서강대학교산학협력단 질소-도핑된 탄소나노튜브 입자, 이의 제조 방법, 및 이를 포함하는 수퍼캐패시터 전극
CN107275115A (zh) * 2017-06-13 2017-10-20 武汉科技大学 一种超级电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030263A (zh) * 2013-03-04 2014-09-10 海洋王照明科技股份有限公司 氮掺杂碳纳米管及其制备方法
CN104064367A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 氮掺杂碳纳米管/离子液体复合薄膜及其制备方法与电容器
CN104659338A (zh) * 2015-03-17 2015-05-27 东莞市迈科科技有限公司 锂硫电池正极材料的制备方法
KR20170093418A (ko) * 2016-02-05 2017-08-16 서강대학교산학협력단 질소-도핑된 탄소나노튜브 입자, 이의 제조 방법, 및 이를 포함하는 수퍼캐패시터 전극
CN107275115A (zh) * 2017-06-13 2017-10-20 武汉科技大学 一种超级电容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514764A (zh) * 2020-04-09 2020-08-11 大连理工大学 超疏水不锈钢-碳纳米管复合膜的制备及水处理应用
CN111514764B (zh) * 2020-04-09 2022-05-27 大连理工大学 超疏水不锈钢-碳纳米管复合膜的制备及水处理应用

Similar Documents

Publication Publication Date Title
Li et al. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction
Guo et al. A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS 2 nanoparticles on carbon nanofiber foam
CN111199835B (zh) 分级结构镍钴硒/镍钴双氢氧化物复合电极材料制备方法
US20050220988A1 (en) Depositing metal particles on carbon nanotubes
CN113430553B (zh) 基于过渡金属异质层状结构双功能催化电极及制备方法
CN108597892B (zh) 一种纳米多孔铜负载形貌可控铜基氧化物复合材料及其制备方法及应用
CN106532074B (zh) 一种纳米钴/石墨烯核壳结构电催化剂的制备方法
CN106367794B (zh) 一种快速制备有序阳极氧化钛纳米管阵列膜的方法
CN105845918A (zh) 一种高容量的多孔硅材料及其制备方法和应用
CN107904570B (zh) 一种制备镍纳米粒子-石墨烯-泡沫镍材料的方法
CN113279005A (zh) 钴掺杂MoS2/NiS2多孔异质结构材料制备方法及其应用于电催化析氢
CN113077990A (zh) 一种双电位区间活化提高Co(OH)2超级电容器性能的方法
CN109709187A (zh) 一种碳纤维及其制备方法与应用
CN103259023A (zh) 一种氢燃料电池电极材料制备方法
CN110512232B (zh) 一种自支撑过渡金属硫化物薄膜电催化电极及其制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN110957148A (zh) 一种掺氮碳纳米管超级电容器的制备方法
CN105355839B (zh) 一种石墨烯‑金复合电极及其制备方法和应用
CN110306199B (zh) 一种二氧化碳电催化还原薄膜及其制备方法与应用
CN115440510B (zh) 一种提升含嵌入阴离子的钴基氢氧化物容量的方法
CN114481196B (zh) 一种负载型铱基催化剂薄层及其制备方法
CN111809199B (zh) 一种NiCuSSe/NF电极及其制备方法与应用
CN110510663B (zh) 氮掺杂碳部分覆盖的氧化锡纳米片材料及制备方法与应用
CN113410062A (zh) 碳纳米线圈堆集体/镍钴化合物超级电容器复合电极材料及制备方法
CN113380551A (zh) 一种提高Mo-Co-S超级电容器容量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200403

RJ01 Rejection of invention patent application after publication