CN110942922A - 一步法合成多孔MnO/C微球用于超级电容器电极材料 - Google Patents

一步法合成多孔MnO/C微球用于超级电容器电极材料 Download PDF

Info

Publication number
CN110942922A
CN110942922A CN201911209852.0A CN201911209852A CN110942922A CN 110942922 A CN110942922 A CN 110942922A CN 201911209852 A CN201911209852 A CN 201911209852A CN 110942922 A CN110942922 A CN 110942922A
Authority
CN
China
Prior art keywords
mno
solution
electrode material
distilled water
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911209852.0A
Other languages
English (en)
Other versions
CN110942922B (zh
Inventor
韩丹丹
申烨
赵远
潘怡帆
魏金鹤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN201911209852.0A priority Critical patent/CN110942922B/zh
Publication of CN110942922A publication Critical patent/CN110942922A/zh
Application granted granted Critical
Publication of CN110942922B publication Critical patent/CN110942922B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本专利涉及一种用于超级电容器电极材料的碳负载氧化锰的制备方法,针对实施例1附图2中的产物形貌,所得的MnO/C电极材料是具有许多纳米颗粒包覆构成的多孔微球结构,构成多孔微球结构的纳米微球直径约为2.5μm,电化学测试结果表明,在电流密度为0.1 A·g‑1时,单电极的比容量达到104.9 mAh·g‑1,当电流密度为1 A·g‑1时,经过500次循环充放电,电极比容量的保持率为96.4%。

Description

一步法合成多孔MnO/C微球用于超级电容器电极材料
技术领域
本发明属于超级电容器器件技术领域,具体涉及一步法合成多孔MnO微球用于超级电容器电极材料。
背景技术
随着人类对能源的需求,科学家开发了各种先进的能量转换和存储装置,如锂离子电池、燃料电池和超级电容器。在各种类型的储能设备中,电化学超级电容器,引起了广泛的关注。超级电容器具有寿命长、充放电速度快、功率密度高等优点具有许多潜在的应用前景,其中电极材料是影响性能的关键,具有赝电容特性的金属氧化物已其价格低廉、自然丰度高、环境友好、理论比容量高等优点成为最近研究的热点,其中RuO2电极材料的比电容可达788 F/g。但是由于材料价格过高,应用受到严重限制。
Mn系氧化物具有自然含量丰富及价格较低、环保友好等优点,有望替代RuO2成为新型赝电容电极材料。其中二价锰系氧化物的开发在国内刚刚起步,Wang 等人采用一种简单的凝胶状薄膜辅助法,在碳布上制备了平均粒径为80、41、20、15和9 nm的均匀可调的MnO颗粒并探索出中等粒径的纳米粒子(20 nm)表现出最好的性能,而且优化后的MnO/碳布电极具有良好的柔韧性和较高的导电性与稳定性,在功率密度可达到450 W/kg。尽管如此,锰氧化物材料存在利用率低,离子/电子导电性差,小颗粒的团聚易造成低比表面积等缺陷。为解决上述问题,一种有效的策略是利用碳质基体构建纳米复合材料,可以大大改善材料的导电特性,降低内阻,从而提高电容性能。
申请公开号为CN201610470858.3的发明专利公开一种利用激光一步原位还原氧化石墨烯、分解锰化合物制备石墨烯/氧化锰柔性电极的方法,具体公开了将氧化石墨烯的水溶液与锰的氧化物均匀混合,涂布在柔性基底上,在惰性气氛保护下利用激光照射,使氧化石墨烯被激光还原成石墨烯的同时,锰化合物受热分解得到氧化锰材料。上述专利的目的都在于提高锰氧化物材料的比容量,但制备的方法复杂,所得产物比表面积受限等缺陷仍是限制高性能电极材料进一步应用的关键。本发明以多巴胺为碳源,一步实现锰前驱体碳酸锰和聚多巴胺的合成,并经过惰性气体N2保护下,煅烧实现碳掺杂的MnO的制备。
发明内容
本发明以MnSO4为锰源,以NaHCO3为沉淀剂,室温下快速合成MnCO3,通过多巴胺的修饰高温煅烧碳化得到MnO/C多孔分级结构微球,制备的MnO/C应用于超级电容器电极材料,为二价锰材料应用于超级电容器电极提供数据和制备方法。
为解决上述技术问题,本发明采取如下技术方案:本发明的基于一种用于超级电容器电极材料的碳负载氧化锰的制备方法,具体包括如下步骤:(1)将0.75 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.03 g多巴胺(DA)溶解,将10 mmol/L三羟甲基氨基甲烷(Tris-buffer)逐滴加入上述混合溶液中,磁力搅拌均匀后,将7.8 mmolNaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应3 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA。
(2)将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。
所得的MnO/C多孔微球粒径为0.8-1 µm,由50-70 nm的纳米颗粒构成,表面粗糙,且颗粒间有明显的空隙和孔道,有利于电解液的渗透和内部材料的充分利用,电化学测试结果表明,在电流密度为0.1 A·g-1时,单电极比容量达到104.9 mAh·g-1,当电流密度为1A·g-1时,经过500次循环充放电,电极比容量的保持率为96.4 %。
附图说明
图1是实施例1中所制备的MnO/C材料XRD曲线。
图2是实施例1中所制备的MnO/C材料扫描电镜照片。
图3是实施例1中所制备的MnO/C材料扫描电镜的放大照片。
图4是实施例1中所制备的MnO/C材料不同扫描速率的循环伏安曲线。
图5是实施例1中所制备的MnO/C材料不同电流密度的充放电曲线。
具体实施方式
下面结合实施例对本发明的技术方案及效果作进一步描述。但是,所使用的具体方法、配方和说明并不是对本发明的限制。
实施例1:将0.75 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.03 g多巴胺溶解,将10 mmol/L Tris-buffer逐滴加入上述混合溶液中,磁力搅拌均匀后,将7.8 mmol NaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应3 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA;将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行600 ℃高温煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。
实施例2:将0.75 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.03 g多巴胺溶解,将10 mmol/L Tris-buffer逐滴加入上述混合溶液中,磁力搅拌均匀后,将7.8 mmol NaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应3 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA;将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行800 ℃高温煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。
实施例3:将0.75 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.04 g多巴胺溶解,将10 mmol/L Tris-buffer逐滴加入上述混合溶液中,磁力搅拌均匀后,将7.8 mmol NaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应3 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA;将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行600 ℃高温煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。
实施例4:将0.75 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.03 g多巴胺溶解,将10 mmol/L Tris-buffer逐滴加入上述混合溶液中,磁力搅拌均匀后,将7.8 mmol NaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应2 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA;将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行600 ℃高温煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。
实施例5:将0.65 mmol MnSO4溶于70 mL 蒸馏水和7 mL 无水乙醇混合溶液中,加入0.03 g多巴胺溶解,将10 mmol/L Tris-buffer逐滴加入上述混合溶液中,磁力搅拌均匀后,将6.8 mmol NaHCO3溶于70 mL 蒸馏水后缓慢加入到上述溶液中反应3 h。得到溶液离心分离后用蒸馏水、乙醇洗涤,干燥后得MnCO3/PDA;将MnCO3/PDA粉末转移至高温管式炉内,在氮气保护下,进行600 ℃高温煅烧碳化,升温速率为5 ℃/min下煅烧2 h,得到MnO/C多孔微球复合材料。

Claims (2)

1.一种用于超级电容器电极材料的碳负载氧化锰材料,其特征在于,所述电极材料以多巴胺为碳源,一步实现锰前驱体碳酸锰和聚多巴胺的合成,并经过惰性气体N2保护下,煅烧实现碳掺杂的MnO的制备,所得的MnO/C多孔微球粒径为0.8-1 µm,由50-70 nm的纳米颗粒构成,表面粗糙,且颗粒间有明显的空隙和孔道。
2.一种用于超级电容器电极材料的碳负载氧化锰的制备方法,其特征在于,包括如下步骤:将0.169 g的MnSO4溶于70 mL蒸馏水与7 mL乙醇的混合溶液中,充分溶解后加入15-30 mg DA,再加入Tris溶液(0.093 g,500μL蒸馏水),搅拌30 min,将0.84 g NaHCO3加入70mL 蒸馏水,待充分溶解后,缓慢加入至上述溶液中,50℃下磁力搅拌3 h(300r),用蒸馏水和乙醇分别洗涤3次,60℃干燥,得到MnO粉末,在管式炉内600-800℃氮气保护下退火2h,得到MnO/C电极材料,利用MnO/C微球型多孔结构,提升离子传输速率,来实现电极材料的高电化学性能。
CN201911209852.0A 2019-12-02 2019-12-02 一步法合成多孔MnO/C微球用于超级电容器电极材料 Expired - Fee Related CN110942922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911209852.0A CN110942922B (zh) 2019-12-02 2019-12-02 一步法合成多孔MnO/C微球用于超级电容器电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911209852.0A CN110942922B (zh) 2019-12-02 2019-12-02 一步法合成多孔MnO/C微球用于超级电容器电极材料

Publications (2)

Publication Number Publication Date
CN110942922A true CN110942922A (zh) 2020-03-31
CN110942922B CN110942922B (zh) 2021-06-22

Family

ID=69908679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911209852.0A Expired - Fee Related CN110942922B (zh) 2019-12-02 2019-12-02 一步法合成多孔MnO/C微球用于超级电容器电极材料

Country Status (1)

Country Link
CN (1) CN110942922B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838198A (zh) * 2020-12-28 2021-05-25 瑞海泊有限公司 水系锌离子电池正极材料及其制备方法和水系锌离子电池
CN113086967A (zh) * 2021-04-12 2021-07-09 北京化工大学 一种均匀的炭-氧化锰复合气凝胶电极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130321983A1 (en) * 2011-01-06 2013-12-05 Sungkyunkwan University Foundation For Corporate Collaboration Nano-porous electrode for super capacitor and manufacturing method thereof
CN107369825A (zh) * 2017-07-26 2017-11-21 华南理工大学 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN108899218A (zh) * 2018-07-19 2018-11-27 山东大学 一种超级电容器电极复合材料及其制备方法
CN109148859A (zh) * 2018-08-29 2019-01-04 中南大学 一种双碳层包覆氧化锰复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130321983A1 (en) * 2011-01-06 2013-12-05 Sungkyunkwan University Foundation For Corporate Collaboration Nano-porous electrode for super capacitor and manufacturing method thereof
CN107369825A (zh) * 2017-07-26 2017-11-21 华南理工大学 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN108899218A (zh) * 2018-07-19 2018-11-27 山东大学 一种超级电容器电极复合材料及其制备方法
CN109148859A (zh) * 2018-08-29 2019-01-04 中南大学 一种双碳层包覆氧化锰复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANMIN QIN: "High performance of yolk-shell structured MnO@nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study", 《ELECTROCHIMICA ACTA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838198A (zh) * 2020-12-28 2021-05-25 瑞海泊有限公司 水系锌离子电池正极材料及其制备方法和水系锌离子电池
CN113086967A (zh) * 2021-04-12 2021-07-09 北京化工大学 一种均匀的炭-氧化锰复合气凝胶电极材料的制备方法

Also Published As

Publication number Publication date
CN110942922B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN108767260B (zh) 一种碳包覆FeP中空纳米电极材料及其制备方法和应用
CN107919472B (zh) 一种耐高温性能的负极材料、其制备方法及在锂离子电池的用途
CN101632913B (zh) 一种硅/多孔碳纳米复合微球的制备方法
CN111725504B (zh) 一种锂离子电池用硅碳负极材料及其制备方法
CN108658119B (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN109767928B (zh) 氟掺杂碳包覆氧化硅纳米颗粒@碳纳米管复合材料的合成方法及其应用
CN108417800B (zh) 一种石墨烯包覆石墨/金属复合粉体负极材料及制备方法
CN113659125B (zh) 一种硅碳复合材料及其制备方法
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN102290253B (zh) 一种碳包覆纳米过渡金属氧化物及其制备方法
CN106876682A (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
CN110942922B (zh) 一步法合成多孔MnO/C微球用于超级电容器电极材料
CN108878774A (zh) 一种复合碳材料及其制备方法和应用
CN108963237B (zh) 一种钠离子电池负极材料的制备方法
CN111403699A (zh) 一种含碳纳米管碳壳包覆的硅负极材料及其制备方法
CN108962617B (zh) 一种自组装四氧化三钴分级微球的制备方法及其应用
CN111584855B (zh) 一种一氧化硅@树脂碳/cvd碳复合负极材料的制备方法
CN111986931B (zh) 一种锰氧化物纳米结构电极材料及其制备方法与应用
CN111063549B (zh) 二维MOFs纳米片衍生的混合电容器全电极材料
CN108288705B (zh) 一种锂离子电池用硅碳负极材料及其制备方法
CN114864294A (zh) 一种3d打印的金属有机框架衍生碳材料、其制备方法及应用
CN112310386B (zh) 一种具有空心结构的硅氧化物/碳锂离子电池负极材料及制备方法和应用
CN112125339B (zh) 单一晶面的氧化钨与碳纳米片复合储钠材料的形成方法
CN111725507B (zh) 一种锂离子电池用高压实硅碳负极材料及其制备方法
CN109437160B (zh) 一种超级电容器用石墨烯/碳复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210622

Termination date: 20211202

CF01 Termination of patent right due to non-payment of annual fee