CN110797457A - 一种多层存储结构透射电子显微镜原位电学测试单元制备方法 - Google Patents

一种多层存储结构透射电子显微镜原位电学测试单元制备方法 Download PDF

Info

Publication number
CN110797457A
CN110797457A CN201911006116.5A CN201911006116A CN110797457A CN 110797457 A CN110797457 A CN 110797457A CN 201911006116 A CN201911006116 A CN 201911006116A CN 110797457 A CN110797457 A CN 110797457A
Authority
CN
China
Prior art keywords
layer
metal electrode
multilayer
material layer
test unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911006116.5A
Other languages
English (en)
Other versions
CN110797457B (zh
Inventor
成岩
郑勇辉
齐瑞娟
黄荣
张媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201911006116.5A priority Critical patent/CN110797457B/zh
Publication of CN110797457A publication Critical patent/CN110797457A/zh
Application granted granted Critical
Publication of CN110797457B publication Critical patent/CN110797457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种多层存储结构透射电子显微镜原位电学测试单元制备方法,所涉及加工的多层存储结构测试单元用于TEM原位电学测试,包括相变存储单元或阻变存储单元,依次由金属电极A层、存储材料层、金属电极B层、选通管材料层和金属电极C层构成。本发明首先将上述多层结构依次沉积到平面衬底上,形成多层膜结构,再利用聚焦离子束(FIB)提取技术,将多层膜截面提出,转移到通电芯片上,经过聚焦离子束刻蚀技术的进一步减薄加工最终制作出多层存储结构、尺寸可控的TEM原位电学测试单元。该结构制备简单,可一次制备完成,保证层与层之间的欧姆接触,且各层厚度精确可控。

Description

一种多层存储结构透射电子显微镜原位电学测试单元制备 方法
技术领域
本发明属于半导体加工领域,涉及一种多层存储结构透射电子显微镜原位电学测试单元制备方法。
背景技术
功能材料具有优良的物理、化学和生物学性能,在电、热、声、光等外场诱导下可以完成信息的传导、储存或记录、能量的转换或变换。从微观尺度直观记录功能材料在外场作用下发生的物理或者化学变化,澄清微观尺度的变化过程与机理,将有助于进一步改进优化相应功能材料的性能。随着透射电子显微镜(Transmission Electron Microscope,TEM)技术的发展,新兴的原位透射电子显微技术(in-situ TEM)在研究材料的微观结构演化的过程中展现出巨大的技术优势,具有空间分辨率高(纳米尺度),实时记录、可引入外场信号(电/热/力/气)的独有优势,逐渐成为研究功能材料工作机制的重要手段。大部分器件是在外加电场信号的作用下实现相应功能的,尤其是各种存储器件,因此需要在TEM中设计出一种合理的电学测试单元来研究存储器件中关键功能材料(存储材料和选通管材料)的微观结构转变。目前国内外电镜厂商推出了商业化的原位通电样品杆,与通电样品杆配套的是通过MEMS加工的商业化或者经过标准半导体工艺实验室自制的通电芯片,这种通电能够在TEM中建立一个原位通电样品室,从而研究电场下材料的结构转变过程。通电芯片中原位通电样品室区域非常脆弱,无法再经受若干道半导体工艺流程,集成测试单元的制备工序到芯片原位通电样品室区域。此外由于采用紫外曝光时光学特征尺寸的限制,不管是商业化还是经过标准半导体工艺实验室自制的通电芯片,其正负电极的间距一般都在3 um以上,远远大于所需要研究材料和器件尺寸,不能直接将器件中的关键器件单元直接集成在原位通电样品室区域。因此如何在通电芯片中设计出一种合理的存储器件测试单元的制备方法,将可以有效的利用现有的原位TEM通电系统,研究关键的器件单元在外加电场作用下发生的微观结构转变过程,从而在微观尺度为存储器的性能和结构优化提供指导。
发明内容
本发明的目的是提供一种多层存储结构TEM原位电学测试单元制备方法,该方法制作出纳米尺寸精确可控的单层/多层材料测试单元,模拟纳米尺度下功能材料在通电时的微观结构变化行为,从而在微观角度为功能器件的性能优化提供指导方案。
实现本发明目的的具体技术方案是:
一种多层存储结构TEM原位电学测试单元的制备方法,该方法包括以下具体步骤:
步骤1:选用平面衬底,将平面衬底表面清洗干净;其中,平面衬底为硅、氧化硅、或金属;
步骤2:采用电子束蒸发、化学气相沉积、脉冲激光沉积、原子层沉积或溅射工艺,在清洗干净的衬底上依次沉积金属电极A层、存储材料层、金属电极B层、选通管材料层和金属电极C层;或者,
在清洗干净的衬底上依次沉积金属电极A层、存储材料层、金属电极B层和金属电极C层;或者,
在清洗干净的衬底上依次沉积金属电极A层、金属电极B层、选通管材料层和金属电极C层;
步骤3:采用聚焦离子束提取技术,将步骤2所得多层膜衬底的截面以薄片的形式提出,转移到通电芯片上,将金属电极A层和金属电极C层用聚焦离子束焊接Pt或W的方式与通电芯片上的两个金属电极相连接;其中,薄片长1-10 um,厚0.1-2 um,高1-10 um;
步骤4:利用聚焦离子束刻蚀工艺,将步骤3得到的薄片进一步刻蚀到薄片厚度为10-100 nm;得到所述电学测试单元;其中:
所述金属电极为Cu、W、Al、Pt或Au;金属电极A层、金属电极B层及金属电极C层相同或不同;厚度为1-1000 nm;
所述存储材料层为ZrO2、HfO2、TiO2、SiO2、Ta2O5、Ge2Sb2Te5、GeTe、Sb2Te3及Sb2Te中的一种或至少两种混合或叠加,厚度为1-1000 nm;
所述选通管材料层为Ge2Se3、SiGeTe、AsTeGeSiN、SiTe及ZnTe中的一种或至少两种混合或叠加,厚度为1-1000 nm。
本发明存储材料层(R)和选通管材料层(S)可选择其中一种或两种并存,即1S、1R或1S1R结构。
本发明所述一种多层存储结构TEM原位电学测试单元制备方法,制作出纳米尺寸精确可控的单层/多层材料测试单元,模拟纳米尺度下功能材料在通电时的微观结构变化行为,从而在微观角度为功能器件的性能优化提供指导方案,具有高度的产业利用价值。
附图说明
图1为本发明实施例1多层膜结构示意图;
图2为本发明实施例1多层膜截面薄片结构示意图;
图3为本发明实施例1多层膜截面薄片与通电芯片电极连接示意图;
图4为本发明实施例1制得的原位电学测试单元示意图;
图5为本发明实施例2制得的原位电学测试单元示意图;
图6为本发明实施例3制得的原位电学测试单元TEM照片图。
具体实施方式
下面通过具体实施例,进一步阐述本发明的实质特点及进步,所用实施例只限于解释本发明,但本发明并非仅限于所述的实施例。
实施例1
本实施例提供一种多层存储结构TEM原位电学测试单元制备方法,具体步骤如下:
步骤1)选用一块2英寸的厚度为500 um的Al金属衬底,将所述Al金属衬底做抛光、清洗处理,以便在后续的步骤中制备出平整度高的多层结构,在本实施例中,将所述Al金属衬底做抛光、清洗处理的过程包括:
1-1) 选用2000#的水磨砂纸粘贴至于金相抛光机的转盘上,在转盘的侧面将砂纸固定,对一块2英寸的厚度为500 um的Al片衬底进行打磨,至平面度误差小于10 um;
1-2)将步骤1-1)打磨过的Al片衬底表面用带有海绵盘的抛光机在1500~2500 r/min的速度下进行打磨抛光处理至呈现异常光亮效果,粗糙度Ra小于10 nm,抛光膏的粒度为W0.5~W5.0的研磨膏,上述打磨抛光处理过程中保持清水流过以冷却及浸润所处理的表面;
1-3)采用中性清洗剂清洗Al片表面,随后用离子水冲洗3 min,之后用氮气吹干,去除Al片表面油污;
步骤2)利用磁控溅射工艺,在步骤1)抛光后的Al金属衬底上依次沉积金属电极Al层50nm、存储材料Ge2Sb2Te5层100 nm、金属电极Al层50 nm、选通管材料Ge2Se3层100 nm和金属电极Al层500 nm,沉积后多层膜结构如图1所示;
步骤3) 用聚焦离子束提取技术将多层膜截面以薄片的形式提出,薄片长2 um,厚1um,高4 um,如图2所示。将提出的薄片转移到通电芯片上电极间距为3 um的两个电极之间,并用Pt将薄片上的金属电极与通电芯片上的电极相连接,如图3所示;
步骤4)用聚焦离子束刻蚀工艺,将薄片中间区域刻蚀到厚度50nm,如图4所示;制得1S1R测试单元。
实施例2
实施例2与实施例1的不同之处在于存储材料层为多层膜结构,其中GeTe层10 nm和Sb2Te3层10 nm用溅射方法交替生长,共计5个周期,存储材料层总厚度为100 nm;其他步骤相同,在此不再赘述,制得所述原位1S1R测试单元,如图5所示。
实施例3
实施例3与实施例1和实施例2的不同之处在于步骤2)利用溅射工艺在Al金属衬底上依次沉积金属电极Al层50 nm、金属电极Cu层50 nm、存储材料Ge2Sb2Te5层300 nm和金属电极Al层100 nm,随后用聚焦离子束沉积W的方式将顶层金属电极加厚至1 um,形成1R结构测试单元;其他步骤相同,在此不再赘述,制备完成的测试单元TEM照片如图6所示。
上述实施例仅用以说明而非限制本发明的技术方案。这里所披露的实施例的变形及改变均是可能的,对于本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明精神或本质特征的情况下,本发明可以以其他形式、结构、布置、比例,以及用于其他衬底、材料和部件来实现。任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的申请范围当中。

Claims (1)

1.一种多层存储结构透射电子显微镜原位电学测试单元的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:选用平面衬底,将平面衬底表面清洗干净;其中,平面衬底为硅、氧化硅、或金属;
步骤2:采用电子束蒸发、化学气相沉积、脉冲激光沉积、原子层沉积或溅射工艺,在清洗干净的衬底上依次沉积金属电极A层、存储材料层、金属电极B层、选通管材料层和金属电极C层;或者,
在清洗干净的衬底上依次沉积金属电极A层、存储材料层、金属电极B层和金属电极C层;或者,
在清洗干净的衬底上依次沉积金属电极A层、金属电极B层、选通管材料层和金属电极C层;
步骤3:采用聚焦离子束提取技术,将步骤2所得多层膜衬底的截面以薄片的形式提出,转移到通电芯片上,将金属电极A层和金属电极C层用聚焦离子束焊接Pt或W的方式与通电芯片上的两个金属电极相连接;其中,薄片长1-10 um,厚0.1-2 um,高1-10 um;
步骤4:利用聚焦离子束刻蚀工艺,将步骤3得到的薄片进一步刻蚀到薄片厚度为10-100 nm;得到所述电学测试单元;其中:
所述金属电极为Cu、W、Al、Pt或Au;金属电极A层、金属电极B层及金属电极C层相同或不同;厚度为1-1000 nm;
所述存储材料层为ZrO2、HfO2、TiO2、SiO2、Ta2O5、Ge2Sb2Te5、GeTe、Sb2Te3及Sb2Te中的一种或至少两种混合或叠加,厚度为1-1000 nm;
所述选通管材料层为Ge2Se3、SiGeTe、AsTeGeSiN、SiTe及ZnTe中的一种或至少两种混合或叠加,厚度为1-1000 nm。
CN201911006116.5A 2019-10-22 2019-10-22 一种多层存储结构透射电子显微镜原位电学测试单元制备方法 Active CN110797457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911006116.5A CN110797457B (zh) 2019-10-22 2019-10-22 一种多层存储结构透射电子显微镜原位电学测试单元制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911006116.5A CN110797457B (zh) 2019-10-22 2019-10-22 一种多层存储结构透射电子显微镜原位电学测试单元制备方法

Publications (2)

Publication Number Publication Date
CN110797457A true CN110797457A (zh) 2020-02-14
CN110797457B CN110797457B (zh) 2021-10-12

Family

ID=69440633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911006116.5A Active CN110797457B (zh) 2019-10-22 2019-10-22 一种多层存储结构透射电子显微镜原位电学测试单元制备方法

Country Status (1)

Country Link
CN (1) CN110797457B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537300A (zh) * 2020-04-29 2020-08-14 华东师范大学 用于透射电镜原位电学测试的限制型存储单元制备方法
CN112054121A (zh) * 2020-09-14 2020-12-08 清华大学 阻变存储器、阻变存储器芯片及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545871A (zh) * 2009-05-15 2009-09-30 北京工业大学 纳米线的显微结构与电学性能测试装置
CN103531710A (zh) * 2013-10-22 2014-01-22 中国科学院上海微系统与信息技术研究所 一种高速低功耗相变存储器单元及其制备方法
CN103743608A (zh) * 2014-01-21 2014-04-23 东南大学 用于原位透射电子显微镜的深亚微米器件样品及制备方法
US9068914B2 (en) * 2012-04-05 2015-06-30 Samsung Electronics Co., Ltd. Nanogap sensor and method of manufacturing the same
CN105140307A (zh) * 2015-08-06 2015-12-09 南京大学 一种纳米材料透射电镜原位光电测试芯片、芯片制备方法及其应用
CN103954636B (zh) * 2014-04-10 2016-10-26 北京工业大学 一种原位高分辨观察相变材料电致相变过程的透射电镜薄膜窗口
US20170331034A1 (en) * 2014-12-26 2017-11-16 Institute of Microelectronics, Chinese Academy of Sciences Self-gated rram cell and method for manufacturing the same
CN108470777A (zh) * 2018-03-13 2018-08-31 华东师范大学 用于透射电镜原位通电芯片的拥有纳米级间距小电极的材料测试单元制备方法
CN108630810A (zh) * 2018-05-14 2018-10-09 中国科学院微电子研究所 1s1r存储器集成结构及其制备方法
CN108922960A (zh) * 2018-06-27 2018-11-30 中国科学院上海微系统与信息技术研究所 Ge-Se-Sb复合材料、1S1R相变存储器单元及制备方法
CN108982559A (zh) * 2018-07-13 2018-12-11 中国科学院合肥物质科学研究院 使用聚焦离子束扫描电镜双束系统制备微、纳米结构样品的方法
CN109270100A (zh) * 2018-11-30 2019-01-25 复旦大学 用于聚焦离子束制样工艺的透射电镜原位电学测试芯片
CN109638153A (zh) * 2018-12-06 2019-04-16 华中科技大学 一种选通管材料、选通管器件及其制备方法
CN107167485B (zh) * 2017-04-14 2019-09-17 广西大学 一种异质结薄膜的原位加电透射电镜截面样品的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545871A (zh) * 2009-05-15 2009-09-30 北京工业大学 纳米线的显微结构与电学性能测试装置
US9068914B2 (en) * 2012-04-05 2015-06-30 Samsung Electronics Co., Ltd. Nanogap sensor and method of manufacturing the same
CN103531710A (zh) * 2013-10-22 2014-01-22 中国科学院上海微系统与信息技术研究所 一种高速低功耗相变存储器单元及其制备方法
CN103743608A (zh) * 2014-01-21 2014-04-23 东南大学 用于原位透射电子显微镜的深亚微米器件样品及制备方法
CN103954636B (zh) * 2014-04-10 2016-10-26 北京工业大学 一种原位高分辨观察相变材料电致相变过程的透射电镜薄膜窗口
US20170331034A1 (en) * 2014-12-26 2017-11-16 Institute of Microelectronics, Chinese Academy of Sciences Self-gated rram cell and method for manufacturing the same
CN105140307A (zh) * 2015-08-06 2015-12-09 南京大学 一种纳米材料透射电镜原位光电测试芯片、芯片制备方法及其应用
CN107167485B (zh) * 2017-04-14 2019-09-17 广西大学 一种异质结薄膜的原位加电透射电镜截面样品的制备方法
CN108470777A (zh) * 2018-03-13 2018-08-31 华东师范大学 用于透射电镜原位通电芯片的拥有纳米级间距小电极的材料测试单元制备方法
CN108630810A (zh) * 2018-05-14 2018-10-09 中国科学院微电子研究所 1s1r存储器集成结构及其制备方法
CN108922960A (zh) * 2018-06-27 2018-11-30 中国科学院上海微系统与信息技术研究所 Ge-Se-Sb复合材料、1S1R相变存储器单元及制备方法
CN108982559A (zh) * 2018-07-13 2018-12-11 中国科学院合肥物质科学研究院 使用聚焦离子束扫描电镜双束系统制备微、纳米结构样品的方法
CN109270100A (zh) * 2018-11-30 2019-01-25 复旦大学 用于聚焦离子束制样工艺的透射电镜原位电学测试芯片
CN109638153A (zh) * 2018-12-06 2019-04-16 华中科技大学 一种选通管材料、选通管器件及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537300A (zh) * 2020-04-29 2020-08-14 华东师范大学 用于透射电镜原位电学测试的限制型存储单元制备方法
CN112054121A (zh) * 2020-09-14 2020-12-08 清华大学 阻变存储器、阻变存储器芯片及其制备方法
CN112054121B (zh) * 2020-09-14 2023-04-07 清华大学 阻变存储器、阻变存储器芯片及其制备方法

Also Published As

Publication number Publication date
CN110797457B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
CN110797457B (zh) 一种多层存储结构透射电子显微镜原位电学测试单元制备方法
CN107416762B (zh) 一种硅纳米孔结构及其制作方法
CN103641059B (zh) 硅柱支撑的金属膜纳米结构阵列及其制备方法
CN105136822A (zh) 一种纳米材料透射电镜原位测试芯片、芯片制备方法及其应用
TW200914367A (en) Method and system for printing aligned nanowires and other electrical devices
CN107424682B (zh) 一种具有分形结构的多孔金属薄膜透明导电电极的制备方法
CN103293142A (zh) 一种柔性的表面增强拉曼光谱基底及其制备方法
CN109865541A (zh) 一种扫描电镜原位电化学检测芯片及其制作方法
CN103991837A (zh) 一种基于压电基底薄片的微纳米有序通孔阵列金属薄膜传感器及其制造方法
CN105789432A (zh) 一种基于铁电薄膜和自组装磁性纳米颗粒结构的微纳米磁电耦合器件
CN109972087B (zh) 一种微电极沉积掩膜的制备方法
CN107857236A (zh) 一种高深宽比高保形纳米级负型结构的制备方法
CN108470777B (zh) 用于透射电镜原位通电芯片的拥有纳米级间距小电极的材料测试单元制备方法
CN106953006A (zh) 一种SiO2 掺杂Sb纳米相变薄膜材料及其制备方法与用途
CN111017868A (zh) 一种阵列结构硅基点阵的制备方法及其应用
CN110205587A (zh) 一种模板退火制备大面积规则排布金纳米颗粒阵列的方法
CN111879796A (zh) 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
CN106971952B (zh) 半导体器件失效分析样品及其制备方法、失效分析方法
CN104555902B (zh) 自支撑介质薄膜及其制备方法
Boughey et al. Coaxial nickel–poly (vinylidene fluoride trifluoroethylene) nanowires for magnetoelectric applications
CN104464870A (zh) 一种高高宽比x射线透镜的制备的方法
CN103954636A (zh) 一种原位高分辨观察相变材料电致相变过程的透射电镜薄膜窗口
CN108470765B (zh) 石墨烯垂直异质结器件及其制备方法
CN109626321A (zh) 透射电镜和压电力显微镜通用的氮化硅薄膜窗口制备方法
CN109809360A (zh) 一种刻蚀方向可控的硅纳米孔结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant