CN110794013A - 一种检测黄曲霉毒素的电化学传感器 - Google Patents

一种检测黄曲霉毒素的电化学传感器 Download PDF

Info

Publication number
CN110794013A
CN110794013A CN201911119742.5A CN201911119742A CN110794013A CN 110794013 A CN110794013 A CN 110794013A CN 201911119742 A CN201911119742 A CN 201911119742A CN 110794013 A CN110794013 A CN 110794013A
Authority
CN
China
Prior art keywords
solution
electrode
screen printing
prussian blue
aflatoxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911119742.5A
Other languages
English (en)
Inventor
董燕婕
王怡然
赵善仓
范丽霞
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Quality Standards and Testing Technology of Shandong Academy of Agricultural Sciences
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology of Shandong Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology of Shandong Academy of Agricultural Sciences filed Critical Institute of Agricultural Quality Standards and Testing Technology of Shandong Academy of Agricultural Sciences
Priority to CN201911119742.5A priority Critical patent/CN110794013A/zh
Publication of CN110794013A publication Critical patent/CN110794013A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种检测黄曲霉毒素的电化学传感器,该传感器是基于黄曲霉毒素可与乙酰胆碱酯酶活性位点发生非共价键结合可以抑制该酶的活性的原理,在丝网印刷电极表面修饰上普鲁士蓝‑石墨烯复合物和纳米金‑壳聚糖的复合物,然后在修饰好的电极上滴加乙酰胆碱酯酶,从而得到可以检测黄曲霉毒素的电化学传感器。该传感器操作简单、成本低廉、检测灵敏度高,且相对于传统检测方法而言,其反应时间短,样品和试剂消耗量少,稳定性高,便于携带可用于实际样品的现场检测,符合我国黄曲霉毒素快速检测技术发展和国际化要求。

Description

一种检测黄曲霉毒素的电化学传感器
技术领域
本发明涉及一种检测黄曲霉毒素的电化学传感器,属于生物传感器领域。
背景技术
黄曲霉毒素(AFs)是一种毒性极强的霉菌毒素且具有高致畸性和高致突变性,其在谷 物,花生,玉米,棉籽粕、豆粕等中普遍存在,在田间和仓储过程中均能生成黄曲霉毒素。 黄曲霉毒素被国际癌症研究机构划定为I类致癌物,对人和家禽家畜危害极大,其中黄曲霉 毒素B1(AFB1)毒性最强,其毒性是砒霜的67倍。
目前针对黄曲霉毒素的检测技术包括酶联免疫法、气相色谱-质谱联用法、液相色谱法、 薄层色谱法、液相色谱-质谱联用法等。其中酶联免疫法特异性好,但是需要制备特异性抗体, 假阳性较高;大型仪器法往往需要繁琐的前处理步骤和昂贵的仪器,不适用于田间的快速检 测;薄层色谱法的灵敏度和重复性较差,定量不准确。
发明内容
本发明克服了上述现有技术的不足,提供一种检测黄曲霉毒素的电化学传感器,该传感 器是基于黄曲霉毒素可与乙酰胆碱酯酶活性位点发生非共价键结合可以抑制该酶的活性的原 理,在丝网印刷电极表面修饰上普鲁士蓝-石墨烯复合物和纳米金-壳聚糖的复合物,然后在 修饰好的电极上滴加乙酰胆碱酯酶,从而得到可以检测黄曲霉毒素的电化学传感器。
一种检测黄曲霉毒素的电化学传感器,包括乙酰胆碱酯酶修饰电极,所述乙酰胆碱酯酶 修饰电极包括由丝网印刷电极和沉积在丝网印刷电极表面的普鲁士蓝-石墨烯复合物、纳米金 -壳聚糖的复合物构成的复合电极,以及附着在上述复合电极表面的乙酰胆碱酯酶;
所述丝网印刷电极包括一印制电极的基片、基片上印制的外部绝缘层和三根电极引线;
所述的基片上印制有三个电极,一个工作电极:碳电极;一个对电极:碳电极,直径3mm;和一个参比电极:Ag/AgCl电极,各电极对应连接有一电极引线。
制备上述检测黄曲霉毒素的电化学传感器的制备方法,包括如下步骤:
(1)制备普鲁士蓝-石墨烯复合物溶液和纳米金-壳聚糖的复合物溶液;
(2)清洗活化丝网印刷电极,得到预处理的丝网印刷电极;
(3)取10μL步骤(1)制备得到的普鲁士蓝-石墨烯复合物溶液滴加到步骤(2)预处理的丝网印刷电极上,晾干,另取10μL步骤(1)制备得到的纳米金-壳聚糖的复合物溶液 滴加到步骤(2)预处理的丝网印刷电极上,晾干,得到纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极(AuNps/CS/PB/GR/SPCE);
(4)取3-5μL浓度为0.02U/μL乙酰胆碱酯酶溶液滴加到步骤(3)所得的纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极上,4℃干燥,得到检测黄曲霉毒素的电化学传感器。
进一步的,上述步骤(1)中所述普鲁士蓝-石墨烯复合物溶液的制备方法,包括如下步 骤:
S1将2-3ml浓度为4mg/ml石墨烯分散液在室温搅拌条件下加到4-5ml的含6mgFeCl3· 6H2O、8mg K3Fe(CN)6、37mg KCl的水溶液中,用HCl调节其pH为1.5,获得混合液;
S2磁力搅拌混合液24h,将混合液离心清洗几次后,40℃真空干燥12h,得到普鲁士蓝- 石墨烯复合物;
S3称取步骤S2获得的普鲁士蓝-石墨烯复合物10mg溶于0.5ml的蒸馏水中,获得普鲁 士蓝-石墨烯复合物溶液。
进一步的,上述步骤(1)中所述的纳米金-壳聚糖的复合物溶液的制备方法,包括如下 步骤:
SS1二次蒸馏水与1-1.2%氯金酸溶液按照25:2的体积比混合、煮沸;
SS2去2-2.5ml 1%柠檬酸钠快速加入回流的步骤SS1中制备的氯金酸溶液中,溶液的颜 色由浅黄变为深红时,获得含有零价纳米金粒子的溶液;
SS3步骤SS2中获得的含有零价纳米金粒子溶液通过醋酸纤维素膜过滤,获得纳米金溶 液,储藏在4℃冰箱中备用;
SS4将0.5%wt的壳聚糖溶液与步骤SS3制成的纳米金溶液混合,搅拌1h,获得纳米金- 壳聚糖复合物溶液。
进一步的,上述步骤(2)中所述清洗活化丝网印刷电极的方法,包括如下步骤:
SSS1将丝网印刷碳电极放入盛有1mM NaOH溶液的小烧杯中超声清洗5分钟,超纯水 清洗,氮气吹干;
SSS2将上述经过步骤SSS1处理过的电极放入盛有1mM HCl溶液的小烧杯中超声清洗 5分钟,超纯水清洗,氮气吹干;
SSS3用无水乙醇清洗上述经过步骤SSS2处理的电极,氮气吹干;
SSS4将经过步骤SSS3处理的电极放入pH=5的磷酸盐缓冲液中进行电流-时间曲线扫描 300s,之后,进行循环伏安曲线扫描,直至性能稳定,即可完成对丝网印刷电极的清洗活化。
进一步的,上述检测黄曲霉毒素的电化学传感器检测黄曲霉毒素的方法,包括如下步骤:
①筛选最佳测定条件:分别向纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极上负载0.1 U、0.15U、0.20U、0.25U、0.0.3U、0.35U、0.40U的乙酰胆碱酯酶的酶量,对其电流值进 行检测,筛选出最佳酶负载量;
利用不同pH值的磷酸盐缓冲液配置pH值分别为6.0、6.5、7.0、7.5、8.0、8.5、9.0的1.0mmol/L硫代乙酰胆碱(ATC1)底液,将上述检测黄曲霉毒素的电化学传感器没入配置的硫代乙酰胆碱(ATC1)底液中,测定电流值,筛选出最佳pH值;
使用同一种农药孵育上述检测黄曲霉毒素的电化学传感器,分别控制孵育时间为2min、 4min、6min、8min、10min、12min、14min、16min、18min、20min,测定电流值,筛选最佳孵育时间;
②在步骤①筛选的最优条件下,对不同浓度的黄曲霉毒毒素进行电流检测,并分别建立 了黄曲霉毒素浓度与抑制率之间的线性关系,得不同浓度的黄曲霉毒素与农药的抑制率之间 的线性回归方程;
③称取1-5g待测样品,使用1-5ml 80%甲醇溶液振荡萃取40-45min,离心保留上清液, 上清液和PBS缓冲液按照1:5的体积比混合稀释,获得待测溶液;
④使用上述的检测黄曲霉毒素的电化学传感器测定步骤③获得的待测溶液,依据步骤② 获得的线性方程,即可获得样品中黄曲霉毒素的含量。
有益效果:
(1)本发明利用石墨烯材料容易分散、比表面积大,对电活性物质及生物分子的高负载 量,提供更均匀、更大的电活性位点分布等优点,与纳米金粒子的生物相容性好和加速电子 传输速率等优点相结合,制备复合纳米材料修饰在丝网印刷电极表面,有效提高所制备传感 器的灵敏度。
(2)利用乙酰胆碱酯酶与黄曲霉毒素的抑制作用,易于实现检测仪器的便携和在线检测, 且操作简单分析速度快。
(3)丝网印刷电极轻巧,可一次性使用,将丝网印刷电极用于乙酰胆碱酯酶生物传感器, 更加适合于黄曲霉毒素的快速检测。
(4)本发明制备的检测黄曲霉毒素的电化学传感器操作简单、成本低廉、检测灵敏度高, 且相对于传统检测方法而言,其反应时间短,样品和试剂消耗量少,稳定性高,便于携带可 用于实际样品的现场检测,符合我国黄曲霉毒素快速检测技术发展和国际化要求。
附图说明
图1纳米金-壳聚糖-普鲁士蓝-石墨烯复合物的500nm的SEM图片。
图2纳米金-壳聚糖-普鲁士蓝-石墨烯复合物的2μm的SEM图片。
图3裸电极(a);普鲁士蓝/石墨烯复合物修饰电极(b);纳米金/壳聚糖/普鲁士蓝/石墨 烯复合物修饰电极(c);乙酰胆碱酯酶/纳米金/壳聚糖/普鲁士蓝/石墨烯复合物修饰电极(d) 的循环伏安特征曲线。
图4裸电极(a);普鲁士蓝/石墨烯复合物修饰电极(b);纳米金/壳聚糖/普鲁士蓝/石墨 烯复合物修饰电极(c);乙酰胆碱酯酶/纳米金/壳聚糖/普鲁士蓝/石墨烯复合物修饰电极(d) 的循环伏安特征曲线;乙酰胆碱酯酶/纳米金/壳聚糖/普鲁士蓝/石墨烯复合物修饰电极在1μ g/L AFB1 15min(e)的循环伏安特征曲线。
图5不同pH的PBS缓冲液对传感器的电流响应图。
图6不同酶量对传感器的电流响应图。
图7反应时间对传感器的电流响应图。
图8利用传感器检测AFB1标准溶液(1μg/ml;2.0μg/ml;4.0μg/ml;8.0μg/ml;16 μg/ml;32μg/ml;64μg/ml;100μg/ml;200μg/ml)循环伏安图。
具体实施方式
为了使本技术领域人员更好地理解本申请中的技术方案,下面结合实施例对本发明作进 一步说明,所描述的实施例仅是本申请一部分实施例,而不是全部,本发明不受下述实施例 的限制。
实施例1制备一种基于乙酰胆碱酯酶检测黄曲霉毒素的电化学传感器
一、制备电化学传感器工艺步骤
1)普鲁士蓝-石墨烯复合物的制备:将2ml浓度为4mg/ml石墨烯分散液在室温搅拌条 件下加到5ml的含6mg FeCl3·6H2O,8mg K3Fe(CN)6、37mg KCl的水溶液中,用HCl调节其pH为1.5。磁力搅拌24h。将混合液离心清洗几次后,40℃真空干燥12h,得到普鲁士蓝- 石墨烯复合物。称取复合物10mg溶于0.5ml的蒸馏水中。普鲁士蓝-石墨烯复合物制备完成。
2)纳米金-壳聚糖复合物的制备:首先,利用柠檬酸钠还原氯金酸合成纳米金粒子,合 成方法如下:(1)100ml二次蒸馏水与8ml浓度为1%氯金酸溶液混合煮沸;(2)2.5ml1%柠 檬酸钠快速加入回流的氯金酸溶液中,当零价纳米金粒子形成时,溶液的颜色由浅黄变为深 红;(3)溶液通过醋酸纤维素膜过滤,储藏在4℃冰箱中备用。将0.5%wt的壳聚糖溶液与制 成的纳米金溶液混合,搅拌1h,储藏在4℃冰箱中备用。纳米金-壳聚糖复合物制备完成。
3)电极预处理:将丝网印刷碳电极放入盛有1mmol NaOH溶液的小烧杯中超声清洗5 分钟,超纯水清洗,氮气吹干,然后,将电极放入盛有1mmol HCl溶液的小烧杯中超声清洗5分钟,超纯水清洗,氮气吹干,之后,用无水乙醇清洗电极,氮气吹干,最后,在pH=5 的磷酸盐缓冲液中进行电流-时间曲线扫描300s,之后,进行循环伏安曲线扫描,直至性能稳定。
4)电极修饰:10μL普鲁士蓝-石墨烯复合物滴加到预处理的丝网印刷电极上,室温下 晾干后,10μL纳米金/壳聚糖复合物滴加到普鲁士蓝/石墨烯/丝网印刷电极(PB/GR/SPCE), 室温下晾干,得到纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极(AuNps/CS/PB/GR/SPCE)。
5)乙酰胆碱酯酶的固定
将5μL 0.02U/μL的乙酰胆碱酯酶滴加到纳米金-壳聚糖-普鲁士蓝-石墨烯复合物修饰好 的丝网印刷电极上,在4℃条件下干燥,得到乙酰胆碱酯酶生物传感器 (AChE/AuNps/CS/PB/GR/SPCE)。
二、乙酰胆碱酯酶生物传感器组装过程中的电化学表征
1)运用扫描电子显微镜(SEM)对修饰有纳米金/壳聚糖/普鲁士蓝/石墨烯复合物的丝网 印刷电极的微观结构图进行表征,如图1和图2所示,可以看到纳米金/壳聚糖/普鲁士蓝/石 墨烯复合物成功修饰到电极表面;
2)组装过程中不同电极在含2.0mmol/l K3[Fe(CN)6]/K4[Fe(CN)6](1:1)混合溶液中的循 环伏安曲线,如图3所示,图中曲线(a)是空丝网印刷电极的表征图,我们可以看出明显的 氧化还原峰;如图中曲线(b)所示,当丝网印刷电极上修饰上普鲁士蓝/石墨烯复合物后, 由于石墨烯具有导电性,因此电流比空丝网印刷电极有所增大;如曲线(c)所示,在此基础 上又修饰了纳米金-壳聚糖材料后,因为纳米金也具有良好导电性,所以电流明显增大;当固 定0.25U的乙酰胆碱酯酶5μL后,由于酶是大分子蛋白质,它不但不导电,而且还会阻碍 界面的电子传递,所以电流峰值变小,如曲线(d)所示,这也证明了乙酰胆碱酯酶已经成功 的固定到电极表面;
3)空丝网印刷电极和修饰了不同材料的电极在含1.5mmol/L氯化硫代乙酰胆碱(ATCl) 的pH 7.5PBS中的循环伏安图如图4所示,扫描速率为50mV/s。与图3作对比可以看出, 当底液中含有ATCl时,AChE/OMC-CS/Fe3O4-CS/SPCE电极的循环伏安曲线的电流峰有了 明显的增大,如曲线(d)所示,说明电流的产生是在乙酰胆碱酯酶的催化作用下,ATCl的水解产生电活性物质硫代胆碱的氧化而形成的。
实施例2检测黄曲霉毒素的试验条件的优化
一、实验步骤
1)pH值得优化
测试底液pH值得不同,对乙酰胆碱酯酶的活性有不同的影响,进而会影响 AuNps/CS/PB/GR/SPCE传感器的灵敏度,所以,本实验制备了一系列pH值的磷酸盐缓冲液,pH值分别为6.0、6.5、7.0、7.5、8.0、8.5、9.0,并分别配成了一系列的1.5mmol/L ATC1底 液。
2)酶固定量的优化
AChE固定在电极表面的量也是影响生物传感器电流响应的重要因素之一。图6显示的 是AuNps/CS/PB/GR/SPCE传感器滴加不同量的乙酰胆碱酯酶后,与未滴加乙酰胆碱酯酶的 电极在1.5mmol/L ATCl(pH 7.5)底液中进行循环伏安测试产生的电流的变化大小。本试验 分别向不同的电极负载酶的量分别是0.1U、0.15U、0.20U、0.25U、0.30U、0.35U、0.40U。
3)孵化时间的优化
黄曲霉毒素与传感器的接触时间(孵化时间)也影响电流的响应,黄曲霉毒素抑制酶活 性,致使酶催化底物产生的电活性物质变少,因此电流值明显变小,所以本次试验分别对不 同孵化时间的电极进行了检测,将AuNps/CS/PB/GR/SPCE于同一浓度的黄曲霉毒素孵化时 间分别控制为2min、4min、6min、8min、10min、12min、14min、16min、18min、20min,二、结果分析
1)pH值得优化
图5显示的是AuNps/CS/PB/GR/SPCE传感器在不同pH值底液中滴加乙酰胆碱酯酶前后 进行的循环伏安法测定的电流差值的大小(滴加0.25U的乙酰胆碱酯酶5μL)。从图中可以 看出,当pH值为7.5时,差值最大,这表明,pH为7.5是该传感器的最优pH值,此时,酶能够更好地催化底物产生电活性物质。
2)酶固定量的优化
如图所示,在一定范围内电流的变化随酶负载量的增大而增大,当酶负载量为0.25U时, 电流的变化最大,之后随着负载量的增大而基本保持不变,说明电极表面固定的酶量已经达 到饱和。因此,在今后的试验中,选择乙酰胆碱酯酶的负载量为0.25U。
3)孵化时间的优化
如图7所示,随着孵化时间的增加,电流的变化量随之增加,但当孵化时间超过14min 时,电流变化量基本不变,这可能是农药与酶的活性位点结合已达到饱和,所以,最优孵化 时间选择14min。
综上所述,对不同浓度的黄曲霉毒毒素进行电流检测的最优条件为:pH 7.5,酶负载量 0.25U,孵育时间14min。
实施例3利用所制备的电流型乙酰胆碱酯酶传感器的应用
1)传感器稳定性的检验
传感器的稳定性通过组间偏差试验进行研究,用相同的方法在5根丝网印刷电极上制作 了AuNps/CS/PB/GR/SPCE传感器,测定了16μg/mL的黄曲霉毒素,其相对偏差分别为3.8%, 说明AuNps/CS/PB/GR/SPCE传感器具有良好的稳定再现性;
2)黄曲霉毒素浓度与抑制率间的线性关系
配置了一系列浓度的黄曲霉毒素标准溶液,将上述乙酰胆碱酯酶传感器浸入到不同浓度 的黄曲霉毒素标准溶液中14min,然后在反应池中加入含有1.5mM氯化硫代乙酰胆碱(ATCl) 的磷酸盐缓冲溶液,进行循环伏安扫描,图8所示为AuNps/CS/PB/GR/SPCE传感器被不同 浓度甲胺磷农药抑制后在含有1.5mmol/LATC1的pH为7.5的磷酸盐缓冲液中循环伏安曲线, 黄曲霉毒素浓度:1μg/L、4μg/L、8μg/L、16μg/L、32μg/L、64μg/L、100μg/L、 200μg/L。图8所示为不同浓度的黄曲霉毒素与黄曲霉毒素的抑制率呈现一定的线性关系, 归纳线性回归方程为y=28.707x+27.814,R2=0.9948;检出限为0.05μg/ml。
3)检测花生实际样品
从农户购买花生样品,去壳,称取5g花生粉,加入不同浓度的AFB1,于5mL 80%的甲 醇溶液中振荡萃取45min,5000r/min离心10min,上清用PBS按1∶5(V/V)稀释,在最优条件下对样品进行检测,样品中黄曲霉毒毒素的浓度根据校正曲线算出,其回收率可以达到82.5%-114.1%,如表1所示
表1电化学传感器检测花生中AFB1的回收率
Table1 Recoveries of AFB1 from peanut samples determined byelectrochemical immunosensor
Figure BDA0002275119630000071
4)与常规检测方法的比较
黄曲霉毒素检测通常使用HPLC检测方法,本申请的检测方法检出限为0.05μg/ml,低 于HPLC检测方法的检出限0.5μg/ml,降低了检测成本80%,减少检测时间50%。

Claims (7)

1.一种检测黄曲霉毒素的电化学传感器,其特征在于,包括乙酰胆碱酯酶修饰电极,所述乙酰胆碱酯酶修饰电极包括由丝网印刷电极和沉积在丝网印刷电极表面的普鲁士蓝-石墨烯复合物、纳米金-壳聚糖的复合物构成的复合电极,以及附着在上述复合电极表面的乙酰胆碱酯酶。
2.制备如权利要求1所述的检测黄曲霉毒素的电化学传感器的制备方法,其特征在于,包括如下步骤:
(1)制备普鲁士蓝-石墨烯复合物溶液和纳米金-壳聚糖的复合物溶液;
(2)清洗活化丝网印刷电极,得到预处理的丝网印刷电极;
(3)取步骤(1)制备得到的普鲁士蓝-石墨烯复合物溶液滴加到步骤(2)预处理的丝网印刷电极上,晾干,另取步骤(1)制备得到的纳米金-壳聚糖的复合物溶液滴加到步骤(2)预处理的丝网印刷电极上,晾干,得到纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极;
(4)取乙酰胆碱酯酶溶液滴加到步骤(3)所得的纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极上,4℃干燥,得到检测黄曲霉毒素的电化学传感器。
3.如权利要求2所述的制备方法,其特征在于,步骤(1)中所述普鲁士蓝-石墨烯复合物溶液的制备方法,包括如下步骤:
S1将2-3ml浓度为4mg/ml石墨烯分散液在室温搅拌条件下加到4-5ml的含5-6mgFeCl3·6H2O、6-8mg K3Fe(CN)6、35-37mg KCl的水溶液中,用HCl调节其pH为1.5,获得混合液;
S2搅拌混合液,将混合液离心清洗几次后,干燥,得到普鲁士蓝-石墨烯复合物;
S3称取步骤S2获得的普鲁士蓝-石墨烯复合物8-10mg溶于0.4-0.5ml的蒸馏水中,获得普鲁士蓝-石墨烯复合物溶液。
4.如权利要求2所述的制备方法,其特征在于,步骤(1)中所述的纳米金-壳聚糖的复合物溶液的制备方法,包括如下步骤:
SS1二次蒸馏水与1-1.2%氯金酸溶液按照25:2的体积比混合、煮沸;
SS2取2-2.5ml 1%柠檬酸钠快速加入回流的步骤SS1中制备的氯金酸溶液中,溶液的颜色由浅黄变为深红时,获得含有零价纳米金粒子的溶液;
SS3步骤SS2中获得的含有零价纳米金粒子溶液过滤,获得纳米金溶液,储藏在4℃冰箱中备用;
SS4将0.5%wt的壳聚糖溶液与步骤SS3制成的纳米金溶液混合,搅拌,获得纳米金-壳聚糖复合物溶液。
5.如权利要求2所述的制备方法,其特征在于,步骤(2)中所述清洗活化丝网印刷电极的方法,包括如下步骤:
SSS1将丝网印刷碳电极放入盛有1mM NaOH溶液的小烧杯中清洗,再经超纯水清洗,氮气吹干;
SSS2将上述经过步骤SSS1处理过的电极放入盛有1mM HCl溶液的小烧杯中清洗,再经超纯水清洗,氮气吹干;
SSS3用无水乙醇清洗上述经过步骤SSS2处理的电极,氮气吹干;
SSS4将经过步骤SSS3处理的电极放入pH=5的磷酸盐缓冲液中进行电流-时间曲线扫描300s,之后,进行循环伏安曲线扫描,直至性能稳定,即可完成对丝网印刷电极的清洗活化。
6.如权利要求1所述的检测黄曲霉毒素的电化学传感器检测黄曲霉毒素的方法,其特征在于,包括如下步骤:
①筛选最佳测定条件:分别向纳米金/壳聚糖/普鲁士蓝/石墨烯/丝网印刷电极上负载不同酶量的乙酰胆碱酯酶,对其电流值进行检测,筛选出最佳酶负载量;
利用不同pH值的磷酸盐缓冲液配置不同pH值的1.0mmol/L硫代乙酰胆碱底液,将上述检测黄曲霉毒素的电化学传感器没入配置的硫代乙酰胆碱底液中,测定电流值,筛选出最佳pH值;
使用同一种农药孵育上述检测黄曲霉毒素的电化学传感器,分别控制孵育不同时间,测定电流值,筛选最佳孵育时间;
②在步骤①筛选的最优条件下,对不同浓度的黄曲霉毒毒素进行电流检测,并分别建立了黄曲霉毒素浓度与抑制率之间的线性关系,得不同浓度的黄曲霉毒素与农药的抑制率之间的线性回归方程;
③称取1-5g待测样品,使用1-5ml 80%甲醇溶液振荡萃取40-45min,离心保留上清液,上清液和PBS缓冲液按照1:5的体积比混合稀释,获得待测溶液;
④使用上述的检测黄曲霉毒素的电化学传感器测定步骤③获得的待测溶液,依据步骤②获得的线性方程,即可获得样品中黄曲霉毒素的含量。
7.如权利要求6所述的方法,其特征在于,所述的乙酰胆碱酯酶的最佳酶负载量指0.1U、0.15U、0.20U、0.25U、0.0.3U、0.35U、0.40U中的一种;所述的最佳pH值指pH为6.0、6.5、7.0、7.5、8.0、8.5、9.0的1.0mmol/L硫代乙酰胆碱底液中的一种;所述最佳孵育时间指2min、4min、6min、8min、10min、12min、14min、16min、18min、20min中的一种。
CN201911119742.5A 2019-11-15 2019-11-15 一种检测黄曲霉毒素的电化学传感器 Pending CN110794013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911119742.5A CN110794013A (zh) 2019-11-15 2019-11-15 一种检测黄曲霉毒素的电化学传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911119742.5A CN110794013A (zh) 2019-11-15 2019-11-15 一种检测黄曲霉毒素的电化学传感器

Publications (1)

Publication Number Publication Date
CN110794013A true CN110794013A (zh) 2020-02-14

Family

ID=69445056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911119742.5A Pending CN110794013A (zh) 2019-11-15 2019-11-15 一种检测黄曲霉毒素的电化学传感器

Country Status (1)

Country Link
CN (1) CN110794013A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389584A (zh) * 2022-08-01 2022-11-25 中国人民解放军国防科技大学 面向有机磷现场检测的便携式电化学乙酰胆碱酯酶传感器及其应用
CN115722210A (zh) * 2022-11-21 2023-03-03 广西大学 一种递推式纳米纤维基检测材料及其制备方法和应用
CN116380886A (zh) * 2023-06-05 2023-07-04 中国农业大学 一种双信号智能化检测有机磷农药的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608190A (zh) * 2012-03-30 2012-07-25 山东理工大学 一种检测农药残留的乙酰胆碱酯酶传感器的制备方法
CN102608187A (zh) * 2012-03-30 2012-07-25 山东理工大学 空壳纳米金修饰的乙酰胆碱酯酶生物传感器的制备方法
CN102788827A (zh) * 2012-09-10 2012-11-21 山东理工大学 一种一步电沉积乙酰胆碱酯酶生物传感器的制备方法
CN103499619A (zh) * 2013-10-18 2014-01-08 山东理工大学 一种检测有机磷农药的乙酰胆碱酯酶传感器制备方法
CN105223251A (zh) * 2015-10-19 2016-01-06 山东理工大学 一种基于丝网印刷电极检测有机磷农药的传感器的制备方法及应用
CN106442676A (zh) * 2016-12-22 2017-02-22 山东理工大学 一种基于纳米氧化铈/介孔碳检测农药的传感器的制备及应用
CN106896148A (zh) * 2017-03-06 2017-06-27 许昌学院 一种普鲁士蓝/石墨烯纳米复合材料的制备方法
CN108195912A (zh) * 2017-11-23 2018-06-22 广东海洋大学 一种电化学生物传感器及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608190A (zh) * 2012-03-30 2012-07-25 山东理工大学 一种检测农药残留的乙酰胆碱酯酶传感器的制备方法
CN102608187A (zh) * 2012-03-30 2012-07-25 山东理工大学 空壳纳米金修饰的乙酰胆碱酯酶生物传感器的制备方法
CN102788827A (zh) * 2012-09-10 2012-11-21 山东理工大学 一种一步电沉积乙酰胆碱酯酶生物传感器的制备方法
CN103499619A (zh) * 2013-10-18 2014-01-08 山东理工大学 一种检测有机磷农药的乙酰胆碱酯酶传感器制备方法
CN105223251A (zh) * 2015-10-19 2016-01-06 山东理工大学 一种基于丝网印刷电极检测有机磷农药的传感器的制备方法及应用
CN106442676A (zh) * 2016-12-22 2017-02-22 山东理工大学 一种基于纳米氧化铈/介孔碳检测农药的传感器的制备及应用
CN106896148A (zh) * 2017-03-06 2017-06-27 许昌学院 一种普鲁士蓝/石墨烯纳米复合材料的制备方法
CN108195912A (zh) * 2017-11-23 2018-06-22 广东海洋大学 一种电化学生物传感器及其制备方法和用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389584A (zh) * 2022-08-01 2022-11-25 中国人民解放军国防科技大学 面向有机磷现场检测的便携式电化学乙酰胆碱酯酶传感器及其应用
CN115722210A (zh) * 2022-11-21 2023-03-03 广西大学 一种递推式纳米纤维基检测材料及其制备方法和应用
CN115722210B (zh) * 2022-11-21 2024-02-20 广西大学 一种递推式纳米纤维基检测材料及其制备方法和应用
CN116380886A (zh) * 2023-06-05 2023-07-04 中国农业大学 一种双信号智能化检测有机磷农药的方法
CN116380886B (zh) * 2023-06-05 2023-08-15 中国农业大学 一种双信号智能化检测有机磷农药的方法

Similar Documents

Publication Publication Date Title
Jin et al. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors
CN110794013A (zh) 一种检测黄曲霉毒素的电化学传感器
CN109612977B (zh) 基于表面增强拉曼光谱的无酶信号放大生物标志物检测方法
Yüce et al. A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu (II) determination
Xia et al. Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples
CN111551608A (zh) 一种同时检测啶虫脒和马拉硫磷的方法
CN110146580A (zh) 一种基于柿单宁复合纳米材料检测l,5-脱水葡萄糖醇的方法
Ji et al. Progress in rapid detection techniques using paper-based platforms for food safety
CN112964763B (zh) 电活性物质修饰mof复合材料的电化学免疫传感器及其制备与应用
Zou et al. Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes
Dou et al. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples
Xiu et al. Construction of Co@ C hybrid nanostructure: electrochemical biosensor for detection of penicillin sodium in milk
Liu et al. A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode
Teng et al. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system
CN110441535B (zh) 一种基于Pd NCs功能化CuInOS检测降钙素原的电化学免疫传感器的制备方法
Shi et al. Supersensitive electrochemiluminescence aptasensor for malathion residues based on ATO@ TiO2 and AgNPs
Hou et al. A ratiometric electrochemical biosensor via alkaline phosphatase mediated dissolution of nano-MnO2 and Ru (III) redox recycling for the determination of dimethoate
Li et al. High sensitivity and rapid detection of hepatitis B virus DNA using lateral flow biosensors based on Au@ Pt nanorods in the absence of hydrogen peroxide
CN112525971B (zh) 一种基于钨酸铋的光电化学检测氯霉素的方法
CN113588752A (zh) 一种电致化学发光适配体传感器的制备方法及应用
CN106124588A (zh) 一种基于掺杂二氧化钛/二硫化钼复合材料的电化学壬基酚传感器的制备方法
CN111398394B (zh) 一种用于氯霉素含量检测的电化学传感器制备方法
CN113588745A (zh) 一种灵敏度可控的Pb2+诱导的双放大电化学发光检测方法
Premlatha et al. Facile Electrodeposition of Hierarchical Co‐Gd2O3 Nanocomposites for Highly Selective and Sensitive Electrochemical Sensing of L–Cysteine
Wang et al. Three-dimensional macroporous gold electrodes superior to conventional gold disk electrodes in the construction of an electrochemical immunobiosensor for Staphylococcus aureus detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200214

RJ01 Rejection of invention patent application after publication