CN110767668A - 含纳米级表面的clcc封装体盖板、封装体和摄像模组 - Google Patents

含纳米级表面的clcc封装体盖板、封装体和摄像模组 Download PDF

Info

Publication number
CN110767668A
CN110767668A CN201911387147.XA CN201911387147A CN110767668A CN 110767668 A CN110767668 A CN 110767668A CN 201911387147 A CN201911387147 A CN 201911387147A CN 110767668 A CN110767668 A CN 110767668A
Authority
CN
China
Prior art keywords
layer
refractive index
cover plate
substrate
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911387147.XA
Other languages
English (en)
Other versions
CN110767668B (zh
Inventor
葛文志
王懿伟
王刚
翁钦盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Meidikai Photoelectric Technology Co Ltd
Original Assignee
Hangzhou Meidikai Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Meidikai Photoelectric Technology Co Ltd filed Critical Hangzhou Meidikai Photoelectric Technology Co Ltd
Priority to CN201911387147.XA priority Critical patent/CN110767668B/zh
Publication of CN110767668A publication Critical patent/CN110767668A/zh
Application granted granted Critical
Publication of CN110767668B publication Critical patent/CN110767668B/zh
Priority to US16/969,572 priority patent/US20220302193A1/en
Priority to KR1020207025627A priority patent/KR102627747B1/ko
Priority to JP2020537720A priority patent/JP7086198B2/ja
Priority to PCT/CN2020/090570 priority patent/WO2021082400A1/zh
Priority to JP2020538658A priority patent/JP7390296B2/ja
Priority to KR1020207020909A priority patent/KR102456684B1/ko
Priority to US16/969,573 priority patent/US11804501B2/en
Priority to PCT/CN2020/090839 priority patent/WO2021082402A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明提供一种含纳米级表面的CLCC封装体盖板、CLCC封装体和摄像模组,盖板的表面颗粒尺寸≤1μm,所述盖板包括衬底与覆盖于衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过CVD过程或者ALD过程实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。本发明通过表面的精细控制,实现了盖板表面的颗粒尺寸在纳米级别,远远低于现有技术的5μm要求,保证表面不出现大尺寸的颗粒,克服了CVD与ALD无法沉积多层膜的问题,消除了限制摄像模组像素性能的不利因素,满足摄像模组向更高像素发展的需求。

Description

含纳米级表面的CLCC封装体盖板、封装体和摄像模组
技术领域
本发明涉及半导体封装或者摄像模组技术领域,尤其涉及一种含纳米级表面的CLCC封装体盖板、封装体和摄像模组。
背景技术
随着智能终端、车载、扫描仪、智能手机、投影仪、安防监控等产业对高清摄像要求的不断提高,以及增强现实、3D技术和手势识别技术在人工智能领域的广泛应用,摄像模组产业在高速发展的同时也不断进行技术的创新迭代,以满足新的应用要求。
摄像模组主要由玻璃盖板(Cover Glass)、镜头(Lens)、红外截止滤光片(IRCF)、图像传感器(Sensor)、软板(FPC)部分组成。摄像头的成像过程就是将光信号数字化的过程。光线首先通过镜头,到达传感器的感光元件(CCD或者CMOS),将光线转换为数字信号,然后数字信号被传送到处理器(DSP),进行图像信号增强以及压缩优化后再传输到手机或者其它存储设备上。
CCD与CMOS是被普遍采用的两种图像传感器,两者都是利用感光二极管(Photodiode)进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。CCD每一行中每一个象素的电荷数据都会依次传送到下一个象素中,由最底端部分输出,再经由传感器边缘的放大器进行放大输出;而在CMOS中,每个象素都会邻接一个放大器及A/D转换电路,用类似内存电路的方式将数据输出。
CMOS的每个象素都比CCD复杂,其象素尺寸很难达到CCD传感器的水平,因此,当我们比较相同尺寸的CCD与CMOS时,CCD的分辨率通常会优于CMOS的水平。最新CMOS获得广泛应用的一个前提是其所拥有的较高灵敏度、较短曝光时间和日渐缩小的像素尺寸。
随着CMOS的像素尺寸的日渐缩小,对其封装工艺也提出了更高的要求。现有的CLCC封装体包括基板、CMOS芯片、电容电阻、驱动马达、底座和盖板,通常是将芯片安装在基部腔体中,用导线将芯片与基部互连起来,再用盖板密封。盖板,又叫做强化光学玻璃、玻璃视窗、强化手机镜片等等,具有防冲击、耐刮花、耐油污、防指纹、增强透光率等功能,需要在基片上镀制各种各样的薄膜,即在光学零件表面上镀上一层或多层金属或介质薄膜,以达到减少或增加光的反射、分束、分色、滤光、偏振等要求。尺寸大于1个像素的颗粒,就会造成影像上的黑影,明显影响成像品质,在CMOS整个成像路径上,大尺寸颗粒造成的影响非常大。在CLCC封装体提高像素的过程中,其他部件已经具备实现更小像素尺寸的条件,但是盖板却因制备工艺的限制,无法实现表面的精细控制,无法保证表面不出现大尺寸的颗粒。在这种情况下,综合像素要求和实际生产工艺,下游厂家要求摄像模组盖板表面不允许存在超过5μm的颗粒。但即便如此,生产厂家的良率也仅在60%左右,这大大影响了技术的进一步发展。
因此,要想进一步提高CLCC封装体的像素性能,首先要克服的就是摄像模组中盖板的表面颗粒问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种含纳米级表面的CLCC封装体盖板及包含该盖板的CLCC封装体和摄像模组,能够保证表面颗粒在微米级以下,满足摄像模组向更高像素发展的需求。
为实现上述目的,本发明提供如下技术方案:
具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板的表面颗粒尺寸≤1μm,所述盖板包括衬底与覆盖于衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过CVD过程或者ALD过程实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。
进一步的,所述多层膜结构至少包括一低折射率L层与一高折射率H层,所述多层膜结构远离基板的最外层为低折射率L层。
进一步的,所述盖板的表面颗粒尺寸≤100nm。
进一步的,所述盖板的表面颗粒尺寸≤10nm。
进一步的,所述盖板表面的粗糙度Ra范围为0.01nm~20nm。
进一步的,所述衬底为玻璃、水晶或者蓝宝石,所述功能膜包括SiO2、TiO2、Nb2O5、Ta3O5、MgF2、Al2O3、ZrO2的一层或几层。
进一步的,所述功能膜包括以下组合镀膜中的一种:SiO2低折射率L层与TiO2高折射率H层;SiO2低折射率L层与Nb2O5高折射率H层;SiO2低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层与TiO2高折射率H层;MgF2低折射率L层与Nb2O5高折射率H层;Nb2O5低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层、Al2O3高折射率H层与SiO2低折射率L层;Al2O3低折射率L层、H4高折射率H层与MgF2低折射率L层;Al2O3低折射率L层、ZrO2高折射率H层与MgF2低折射率L层。
一种CLCC封装体,其特征在于,包括一基板,所述的基板上贴装有位于中部的CMOS及位于边缘位置的电容电阻和驱动马达,所述的基板上设有一隔离墙底座,所述的隔离墙底座上对应基板上CMOS、电容电阻和驱动马达的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一上述盖板。
一种摄像模组,其特征在于,包括上述CLCC封装体。
本发明的有益效果如下:
本发明的盖板通过表面的精细控制,实现了盖板表面的颗粒尺寸在纳米级别,远远低于现有技术的5μm要求,保证表面不出现大尺寸的颗粒,克服了限制CMOS像素提高的不利因素;本发明通过CVD(Chemical vapor deposition,化学气相沉积)或ALD(Atomic layerdeposition,原子层沉积)实现封装盖板功能膜的沉积,反应物料不存在蒸发或者溅射过程,消除了产生大颗粒的途径,提升了产品合格率,极大地提高了CLCC封装体和摄像模组的像素水平;本发明沉积的功能膜是多层结构,常规CVD或ALD沉积工艺仅适用于单层膜沉积,在沉积多层膜结构过程中,当前一层膜实现沉积之后,由于沉积表面发生了变化,会出现后一层膜无法成功沉积的情况,本发明通过在每层膜结构后的等离子体轰击表面改性,实现了多层膜的成功沉积。
附图说明
图1是本发明的CLCC封装体结构示意图。
图2是对比例的盖板在金相显微镜目镜10X、物镜100X下的示意图。
图3是实施例1的盖板在金相显微镜目镜10X、物镜100X下的示意图。
图4是实施例1的盖板表面的AFM图。
图5是实施例1的盖板表面的三维AFM图。
图6是实施例2的盖板表面的AFM图。
图7是实施例2的盖板表面的三维AFM图。
1,基板;2,CMOS;3,电容电阻;4,驱动马达;5,隔离墙底座;6,盖板。
具体实施方式
下面结合附图及实施方式对本发明做进一步说明。
具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板的表面颗粒尺寸≤1μm,进一步优选表面颗粒尺寸≤100nm,更进一步优选盖板的表面颗粒尺寸≤10nm。
盖板表面的粗糙度Ra范围为0.01nm~20nm。
盖板包括衬底与覆盖于衬底之上的功能膜。所述盖板的表面颗粒尺寸≤1μm,所述盖板包括衬底与覆盖于衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过CVD过程或者ALD过程实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。改性采用的等离子体电压为100-1000V、电流100-1000mA,时间以1-2分钟为宜,否则有可能影响已沉积膜层的性能与厚度。
所述多层膜结构至少包括一低折射率L层与一高折射率H层,所述多层膜结构远离基板的最外层为低折射率L层。所述衬底为玻璃、水晶或者蓝宝石,所述功能膜包括SiO2、TiO2、Nb2O5、Ta3O5、MgF2、Al2O3、ZrO2的一层或几层。
进一步的,所述功能膜包括以下组合镀膜中的一种:SiO2低折射率L层与TiO2高折射率H层;SiO2低折射率L层与Nb2O5高折射率H层;SiO2低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层与TiO2高折射率H层;MgF2低折射率L层与Nb2O5高折射率H层;Nb2O5低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层、Al2O3高折射率H层与SiO2低折射率L层;Al2O3低折射率L层、H4高折射率H层与MgF2低折射率L层;Al2O3低折射率L层、ZrO2高折射率H层与MgF2低折射率L层。
一种CLCC封装体,如图1所示,包括一基板1,所述的基板1上贴装有位于中部的CMOS2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6。
一种摄像模组,其特征在于,包括上述CLCC封装体。
盖板通过CVD过程或者ALD过程实现功能膜与衬底的结合。
在ALD过程中,上述盖板通过包括如下步骤的方法制备:
S1:在反应腔中放置衬底基板,加热到100~400℃;
S2:将第一反应前体导入到原子层反应腔内,化学吸附在衬底基板上,形成第一膜层;
S3:将过量的第一反应前体泵出,用惰性气体吹扫;
S4:将第二反应前体导入到反应腔内,并与化学吸附在衬底基板表面的第一反应前体发生反应,形成第一折射率层;
S5:将过量的第二反应前体以及反应副产物泵出,用惰性气体吹扫,对沉积表面通过等离子轰击进行表面改性;
S6:将第三反应前体导入到反应腔内,化学吸附在第一折射率层表面,形成第二膜层;
S7:将过量的第三反应前体泵出,用惰性气体吹扫;
S8:将第四反应前体导入到原子层反应腔内,并与化学吸附在第一折射率层表面的第三反应前体发生反应,形成第二折射率层;所述第二折射率层的折射率>第一折射率层的折射率;
S9:将过量的第四反应前体以及反应副产物泵出。
步骤S2~S9可以周期性重复进行,重复之前对上一层膜结构表面通过等离子轰击进行表面改性,制备得到折射率不同的多层膜,即在第N-1折射率层上形成第N折射率层,N为大于等于3的正整数。一般来说,偶数折射率层的折射率>奇数折射率层的折射率。这样膜层排列可以增加片的透光率,使得模组具有良好的光学性质,同时利用ALD原子层沉积的方法可以消除微米级的颗粒缺陷,提高成像品质。
反应前体根据膜层的材料﹑厚度和串联方式的选择,由所需要的中心波长和透射带宽λ确定。在本发明中,优选的第一反应前体为硅烷,第二反应前体为氧气或者臭氧;第三反应前体为含钛、钽、或者锆的气体(如四碘化钛气体、五氯化钽气体、四碘化锆气体或者其他含钛、钽、或者锆的有机气体),第四反应前体为水蒸气。温度与反应前体的分解温度与沉积速率有关,温度要求在反应前体的分解温度之下,但具有一定的沉积速率。
步骤S2和/或S4的温度优选为320~370℃;步骤S6和/或S8的温度优选为220~270℃。原料气体的通入可以采用脉冲方式通入,通过控制电磁阀门的开合控制气体的通入与停止,通过控制电磁阀门的开启时间来影响薄膜的沉积厚度。
在CVD过程中,上述盖板通过包括如下步骤的方法制备:
S1:将衬底基板通过超声清洗、烘干,得到预处理的衬底基板;
S2:将经预处理的衬底基板放入到反应腔内,抽真空,通入氮气或惰性气体至微正压;
S3:在500-700℃下,同时通入前驱体Ⅰ和前驱体Ⅱ,所述前驱体Ⅰ的流量为10~80sccm,所述前驱体Ⅱ的流量为20~80sccm,在衬底基板上沉积形成低折射率L层;
S4:停止通入前驱体Ⅰ和前驱体Ⅱ,用氮气或惰性气体吹扫反应腔,对沉积表面进行等离子轰击进行表面改性;
S5:在600~800℃条件下,通入原料气体前驱体Ⅲ和前驱体Ⅳ,所述前驱体Ⅲ的流量为20-90sccm,所述前驱体Ⅳ的流量为20-60sccm,在低折射率L层上沉积高折射率H层;
S6:停止通入原料气体前驱体Ⅲ和前驱体Ⅳ,用氮气或惰性气体吹扫反应腔;
S7:冷却至室温,得到具有两层不同折射率镀膜的光学元件;所述高折射率H层的折射率>所述低折射率L层的折射率。
上述光学元件可通过二次热处理、等离子处理等进一步提高光学性能。
进一步的,上述制备方法中,还包括周期性重复的步骤S3~S4和/或S5~S6;重复之前对上一层膜结构表面通过等离子轰击进行表面改性。
进一步的,上述制备方法中,在双组份材料膜结构(即结构中只含有由两种材料制成的膜)中,所述高折射率H层的折射率与所述低折射率L层的折射率之差≥0.5。两层的折射率差越大,光学性能越好。
进一步的,上述制备方法中,所述前驱体Ⅰ为SiH4、SiHCl3、SiCl2H2 、SiCl4、Al(CH3)3,Cp2Mg中的一种,所述前驱体Ⅱ为O2、O3、CO2、CO、NO2、NO、H2O、F2中的一种或几种,所述前驱体Ⅲ为TiH4、TiCl4、NbCl5、TaCl5、ZrCl4中的一种,所述前驱体Ⅳ为O2、O3、CO2、CO、NO2、NO、H2O、F2中的一种或几种。
实施例1
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤1μm,粗糙度Ra为1.342nm,如图3~5所示。
上述盖板为玻璃基板上覆有二氧化硅低折射率层L以及五氧化二钽高折射率层H的摄像模组光学元件。低折射率层L层厚为100-200nm,折射率为1.46-1.50;高折射率层H层厚为80-120nm,折射率为2.05-2.2。
上述盖板采用ALD制备方法,过程如下:
步骤1:首先把玻璃基板放置到原子层反应腔中,抽真空至0.6Pa,加热到150℃;
步骤2:以惰性气体为载体,将SiH4(硅烷)作为第一反应前体通入到反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
步骤3:泵出多余的第一反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤4:以惰性气体为载体,将臭氧(O3)作为第二反应前体通入到原子层反应腔中,气体通入时间为20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
步骤5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
步骤6:以惰性气体为载体,将五氯化钽气体作为第三反应前体并通入到反应腔中,并吸附在低折射率层L的改性后的表面,气体通入时间为20~30ms,形成第二膜层;
步骤7:泵出多余的第三反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤8:以惰性气体为载体,将水蒸气作为第四反应前体通入到原子层反应腔中,气体通入时间为20ms,并与第二膜层发生反应,形成五氧化二钽折射率层H;
步骤9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(五氯化钽气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产直径200mm的原片,一卡共21片,通过金相显微镜监测表面颗粒情况(图3),所有盖板未观察到粒径>1μm的颗粒,合格率100%。
实施例2
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤10nm,粗糙度Ra为1.340nm。
上述盖板为玻璃基板上覆有二氧化硅低折射率层L以及二氧化钛高折射率层H的摄像模组光学元件。低折射率层L层厚为100-200nm,折射率为1.46-1.50;高折射率层H层厚为10-50nm,折射率为2.28-2.35。
上述盖板采用ALD制备方法,过程如下:
步骤1:首先把玻璃基板放置到反应腔中,抽真空至0.6Pa,加热至250℃;
步骤2:将SiH4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间优选30-50ms;
步骤3:泵出多余的第一反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤4:将臭氧(O3)作为第二反应前体通入到反应腔中,气体通入时间20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
步骤5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
步骤6:将四碘化钛气体作为第三反应前体并通入到原子层反应腔中,气体通入时间优选30-50ms,并吸附在低折射率层L的表面,形成第二膜层;
步骤7:泵出多余的第三反应前体(四碘化钛气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤8:将水蒸气作为第四反应前体并通入到原子层反应腔中,气体通入时间为35ms,并与第二膜层发生反应,形成二氧化钛折射率层H;
步骤9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化钛气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产尺寸80*76*0.21mm,一卡156片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒,合格率100%;进一步对颗粒尺寸进行观察,未观察到粒径>10nm的颗粒。
实施例3
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤50nm,粗糙度Ra为9.440nm。
上述盖板为水晶基板上覆有二氧化硅低折射率层L以及二氧化锆高折射率层H的摄像模组光学元件。低折射率层L层厚为100-200nm,折射率为1.46-1.50;高折射率层H层厚为35-75nm,折射率为1.98-2.07。
上述盖板采用ALD制备方法,过程如下:
步骤1:首先把水晶基板放置到反应腔中,抽真空至0.6Pa,加热至400℃;
步骤2:将SiH4(硅烷)作为第一反应前体并脉冲通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间优选15-20ms;
步骤3:泵出多余的第一反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤4:将臭氧(O3)作为第二反应前体通入到原子层反应腔中,气体通入时间15-20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
步骤5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
步骤6:将四碘化锆气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L的表面,气体通入时间15-20ms,形成第二膜层;
步骤7:泵出多余的第三反应前体(四碘化锆气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,气体通入时间15-20ms,形成二氧化钛折射率层H;
步骤9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化锆气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产直径300mm,一卡12片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒,合格率100%;进一步对颗粒尺寸进行观察,未观察到粒径>50nm的颗粒。
实施例4
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤100nm,粗糙度Ra为7.581nm。
上述盖板为蓝宝石基板上覆有二氧化硅低折射率层L以及二氧化钛高折射率层H的摄像模组光学元件。低折射率层L层厚为100-200nm,折射率为1.47-1.51;高折射率层H层厚为10-50nm,折射率为2.28-2.35。
上述盖板采用ALD制备方法,过程如下:
步骤1:首先把蓝宝石基板放置到原子层反应腔中,抽真空至0.6Pa,加热至100℃;
步骤2:将SiH4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
步骤3:泵出多余的第一反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤4:将氧气(O2)作为第二反应前体通入到原子层反应腔中,气体通入时间20-40ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
步骤5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
步骤6:将四碘化钛气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L的表面,气体通入时间15-30ms,形成第二膜层;
步骤7:泵出多余的第三反应前体(四碘化钛气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
步骤8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,气体通入时间15-30ms,形成二氧化钛折射率层H;
步骤9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化钛气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产产品尺寸77*77*0.21mm,一卡169片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒,合格率100%;进一步对颗粒尺寸进行观察,未观察到粒径>100nm的颗粒。
实施例5
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤10nm,粗糙度Ra为0.622nm。
上述盖板为蓝宝石基板上覆有5层光学镀膜的光学元件。5层光学镀膜以低折射率、高折射率形式搭配周期性沉积于蓝宝石基板,最后一层以低折射率结束。5层光学镀膜从衬底基板向外依次是:
二氧化硅低折射率层L1,层厚100-200nm,折射率为1.46-1.50;
二氧化钛高折射率层H1,层厚10-50nm,折射率为2.28-2.35;
二氧化硅低折射率层L2,层厚100-200nm,折射率为1.46-1.50;
五氧化二钽高折射率层H2,层厚80-120nm,折射率为2.05-2.2;
二氧化硅低折射率层L3,层厚5-300nm,折射率为1.46-1.50。
上述盖板采用ALD制备方法,过程如下:
步骤1:首先把蓝宝石基板放置到原子层反应腔中,抽真空至0.6Pa,加热至200℃;
步骤2:将SiH4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
步骤3:泵出多余的第一反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫15s;
步骤4:将氧气(O2)作为第二反应前体通入到原子层反应腔中,并与第一膜层发生反应形成二氧化硅低折射率层L1;
步骤5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
步骤6:将五氯化钽气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L1的表面,形成第二膜层,气体通入时间10-30ms;
步骤7:泵出多余的第三反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫15s;
步骤8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,形成二氧化钛折射率层H1;
步骤9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(五氯化钽气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
步骤10:将SiH4(硅烷)作为第五反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第三膜层,气体通入时间30-50ms;
步骤11:泵出多余的第五反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫15s;
步骤12:将臭氧(O3)作为第六反应前体通入到原子层反应腔中,并与第三膜层发生反应形成二氧化硅低折射率层L2;
步骤13:泵出多余的第六反应前体臭氧以及第五反应前体(SiH4)与第六反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
步骤14:将五氯化钽气体作为第七反应前体并通入到原子层反应腔中,并吸附在低折射率层L2的表面,形成第四膜层,气体通入时间10-30ms;
步骤15:泵出多余的第七反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫15s;
步骤16:将水蒸气作为第八反应前体并通入到原子层反应腔中,并与第四膜层发生反应,形成五氧化二钽折射率层H2;
步骤17:泵出多余的第八反应前体(水蒸气)以及第七反应前体(五氯化钽气体)与第八反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
步骤18:将SiH4(硅烷)作为第九反应前体并通入到原子层反应腔中并吸附在衬底基板表面形成第五膜层,气体通入时间10-50ms;
步骤19:泵出多余的第九反应前体(SiH4),用惰性气体(如氦气、氩气等)吹扫15s;
步骤20:将臭氧(O3)作为第十反应前体通入到原子层反应腔中,并与第五膜层发生反应形成二氧化硅低折射率层L3;
步骤21:待反应完全后,泵出多余的第十反应前体臭氧以及第九反应前体(SiH4)与第十反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s。
本实施例批次生产直径200mm的原片,一卡共21片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径≥1μm的颗粒,合格率100%;;进一步对颗粒尺寸进行观察,未观察到粒径>10nm的颗粒。
实施例6
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤10nm,粗糙度Ra为1.135nm。
上述盖板为玻璃基板上覆有二氧化硅低折射率层L以及二氧化钛高折射率层H的摄像模组光学元件。低折射率层L层厚为100-200nm,折射率为1.46-1.50;高折射率层H层厚为350-650nm,折射率为2.28-2.35。
上述盖板采用CVD制备方法,过程如下:
步骤1:预处理,首先将玻璃衬底基板置于超声波清洗机中清洗60min,烘干,得到预处理的衬底基板;
步骤2:将经预处理的玻璃衬底基板放入到反应腔内,抽真空至0.1-5Torr,通入氮气或惰性气体;
步骤3:然后在650-700℃,分别以60sccm和30sccm的速率向所述的反应腔内脉冲通入硅烷和氧气, 通气时长为0.015s,循环通入2000次,在衬底基板上沉积二氧化硅形成低折射率L层,低折射率L层厚度为100-200nm;
步骤4:停止通入原料气体硅烷和氧气,用氮气或惰性气体吹扫反应腔,通过等离子轰击进行表面改性;
步骤5:在700-800℃,分别以30sccm和30sccm的速率向所述的反应腔内通入TiCl4和O2,通气时长为0.015s,循环通入2000次,通过反应在低折射率L层上沉积出高折射率H层TiO2,高折射率H层厚度为350-650nm;
步骤6:停止通入原料气体TiCl4和O2,用氮气或惰性气体吹扫反应腔;
步骤7:冷却至室温,得到具有不同折射率镀膜的光学元件。
本实施例批次生产直径直径300mm,一卡12片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒,合格率100%;;进一步对颗粒尺寸进行观察,未观察到粒径>10nm的颗粒。
实施例7
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤10nm,粗糙度Ra为0.433nm。
上述盖板为水晶基板上覆有SiO2低折射率层L以及Nb2O5高折射率层H的摄像模组光学元件。低折射率层L层厚为20-50nm,折射率为1.46-1.50;高折射率层H层厚为10-100nm,折射率为2.1-2.3。
上述盖板采用CVD制备方法,过程如下:
步骤1:预处理,首先将水晶衬底基板置于超声波清洗机中清洗60min,烘干,得到预处理的衬底基板;
步骤2:将经预处理的水晶衬底基板放入到反应腔内,抽真空至0.1-5Torr,通入氮气或惰性气体;
步骤3:然后在550-650℃,分别以10sccm和20sccm的速率向所述的反应腔内通入硅烷和氧气, 通气时长为0.010s,循环通入1000次,在衬底基板上沉积二氧化硅形成低折射率L层,低折射率L层厚度为20-50nm;
步骤4:停止通入原料气体硅烷和氧气,用氮气或惰性气体吹扫反应腔,通过等离子轰击进行表面改性;
步骤5:在700-800℃,分别以20sccm和20sccm的速率向所述的反应腔内通入NbCl5和臭氧,通气时长为0.01s,循环通入1000次,通过反应在低折射率L层上沉积出高折射率H层Nb2O5,高折射率H层厚度为10-100nm;
步骤6:停止通入NbCl5和臭氧,用氮气或惰性气体吹扫反应腔;
步骤7:冷却至室温,得到具有不同折射率镀膜的光学元件。
本实施例批次生产产品尺寸80*76*0.21mm,一卡156片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒;;进一步对颗粒尺寸进行观察,未观察到粒径>10nm的颗粒。
实施例8
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面颗粒尺寸≤100nm,粗糙度Ra为5.962nm。
上述盖板为玻璃基板上覆有MgF2低折射率L1层、Al2O3高折射率H层与SiO2低折射率L2层的摄像模组光学元件。MgF2低折射率L1层厚10-20nm,折射率为1.35-1.4;Al2O3高折射率H层厚100-200nm,折射率为1.54-1.62;SiO2低折射率L2层厚为200-300nm,折射率为1.45-1.47。
上述盖板采用CVD制备方法,过程如下:
步骤1:预处理,首先将蓝宝石衬底基板置于超声波清洗机中清洗60min,烘干,得到预处理的衬底基板;
步骤2:将经预处理的蓝宝石衬底基板放入到反应腔内,抽真空至0.1-5Torr,通入氮气或惰性气体;
步骤3:然后在500-700℃,分别以80sccm和80sccm的速率向所述的反应腔内通入Cp2Mg(二茂镁)和氟气(F2), 通气时长为0.005s,循环通入800次,在衬底基板上沉积MgF2形成低折射率L1层,低折射率L1层厚度为10-20nm;
步骤4:停止通入Cp2Mg(二茂镁)和氟气(F2),用氮气或惰性气体吹扫反应腔,通过等离子轰击进行表面改性;
步骤5:在600-750℃,分别以90sccm和60sccm的速率向所述的反应腔内通入Al(CH3)3和CO2,通气时长为0.015s,循环通入2000次,通过反应在低折射率L层上沉积出高折射率H层Al2O3,高折射率H层厚度为100-200nm;
步骤6:停止通入Al(CH3)3和CO2,用氮气或惰性气体吹扫反应腔;
步骤7:然后在650-700℃,分别以80sccm和80sccm的速率向所述的反应腔内通入硅烷和氧气, 通气时长为0.025s,循环通入3000次,在衬底基板上沉积二氧化硅形成低折射率L2层,低折射率L2层厚度为200-300nm;
步骤8:停止通入原料气体硅烷和氧气,用氮气或惰性气体吹扫反应腔;
步骤9:冷却至室温,得到具有不同折射率镀膜的光学元件。
本实施例批次生产直径200mm的原片,一卡共21片,通过金相显微镜监测颗粒情况,所有盖板未观察到粒径>1μm的颗粒,合格率100%;;进一步对颗粒尺寸进行观察,未观察到粒径>100nm的颗粒。
对比实施例
本实施例的目标产品与实施例1相同,其中,盖板采用的真空热蒸发制备方法过程如下:
步骤1:首先把衬底基板玻璃放置在夹具中,夹具置于伞架上,伞架放置镀膜机腔中。
步骤2:将SiO2(二氧化硅)和TiO2(二氧化钛)分别放入机腔中左边和右边的坩埚中,关上仓门,抽真空至0.0001-0.001Pa,温度设定在50-400℃范围内,机腔内一直处在抽气的状态。
步骤3:打开SiO2(二氧化硅)所在的位置的电子枪,电子枪会根据设定的镀膜厚度,达到这个厚度就会结束运作,结束后剩余的分子会被抽走;TiO2(二氧化钛)位置的电子枪就会自动打开进行镀膜。
步骤4:机器会根据设定镀膜层数,进行循环镀膜。
对比实施例的产品通过金相显微镜监测颗粒情况,结果如图2所示,能够观察到粒径≥5μm的颗粒。与实施例一进行相同的批次试验,生产直径200mm的原片,一卡共21片,利用该制备方法所得产物由于尺寸≥5μm的颗粒引起的不良盖板为13片,不良率率为62%。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域普通技术人员,在不脱离本发明精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属本发明的范畴,本发明专利保护范围应由权利要求限定。

Claims (9)

1.具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板的表面颗粒尺寸≤1μm,所述盖板包括衬底与覆盖于衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过CVD过程或者ALD过程实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。
2.根据权利要求1所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述多层膜结构至少包括一低折射率L层与一高折射率H层,所述多层膜结构远离基板的最外层为低折射率L层。
3.根据权利要求1所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板的表面颗粒尺寸≤100nm。
4.根据权利要求3所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板的表面颗粒尺寸≤10nm。
5.根据权利要求1所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述盖板表面的粗糙度Ra范围为0.01nm~20nm。
6.根据权利要求1所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述衬底为玻璃、水晶或者蓝宝石,所述功能膜包括SiO2、TiO2、Nb2O5、Ta3O5、MgF2、Al2O3、ZrO2的一层或几层。
7.根据权利要求6所述的具有纳米级表面的CLCC封装体盖板,其特征在于,所述功能膜包括以下组合镀膜中的一种:SiO2低折射率L层与TiO2高折射率H层;SiO2低折射率L层与Nb2O5高折射率H层;SiO2低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层与TiO2高折射率H层;MgF2低折射率L层与Nb2O5高折射率H层;Nb2O5低折射率L层与Ta3O5高折射率H层;MgF2低折射率L层、Al2O3高折射率H层与SiO2低折射率L层;Al2O3低折射率L层、H4高折射率H层与MgF2低折射率L层;Al2O3低折射率L层、ZrO2高折射率H层与MgF2低折射率L层。
8.一种CLCC封装体,其特征在于,包括一基板(1),所述的基板(1)上贴装有位于中部的CMOS(2)及位于边缘位置的电容电阻(3)和驱动马达(4),所述的基板(1)上设有一隔离墙底座(5),所述的隔离墙底座(5)上对应基板上CMOS(2)、电容电阻(3)和驱动马达(4)的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板(6);所述盖板(6)为权利要求1-7任一项所述的盖板。
9.一种摄像模组,其特征在于,包括权利要求8所述的CLCC封装体。
CN201911387147.XA 2019-11-01 2019-12-30 含纳米级表面的clcc封装体盖板、封装体和摄像模组 Active CN110767668B (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201911387147.XA CN110767668B (zh) 2019-12-30 2019-12-30 含纳米级表面的clcc封装体盖板、封装体和摄像模组
PCT/CN2020/090570 WO2021082400A1 (zh) 2019-11-01 2020-05-15 一种减少摄像模组点子缺陷的cvd制备方法及其产物
JP2020537720A JP7086198B2 (ja) 2019-11-01 2020-05-15 撮像モジュールのパーティクル欠陥を減少させるcvd製造方法及びその生成物
KR1020207025627A KR102627747B1 (ko) 2019-11-01 2020-05-15 카메라 모듈의 도트 결함을 감소시키는 cvd 제조 방법 및 그 생성물
US16/969,572 US20220302193A1 (en) 2019-11-01 2020-05-15 Cvd preparation method for minimizing camera module dot defects and product thereof
JP2020538658A JP7390296B2 (ja) 2019-11-01 2020-05-18 撮像モジュールのパーティクル欠陥を解消するald製造方法及びその生成物
KR1020207020909A KR102456684B1 (ko) 2019-11-01 2020-05-18 카메라 모듈의 도트 결함을 감소시키는 ald 제조 방법 및 그 생성물
US16/969,573 US11804501B2 (en) 2019-11-01 2020-05-18 ALD preparation method for eliminating camera module dot defects and product thereof
PCT/CN2020/090839 WO2021082402A1 (zh) 2019-11-01 2020-05-18 一种消除摄像模组点子缺陷的ald制备方法及其产物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911387147.XA CN110767668B (zh) 2019-12-30 2019-12-30 含纳米级表面的clcc封装体盖板、封装体和摄像模组

Publications (2)

Publication Number Publication Date
CN110767668A true CN110767668A (zh) 2020-02-07
CN110767668B CN110767668B (zh) 2020-03-27

Family

ID=69341676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911387147.XA Active CN110767668B (zh) 2019-11-01 2019-12-30 含纳米级表面的clcc封装体盖板、封装体和摄像模组

Country Status (5)

Country Link
US (2) US20220302193A1 (zh)
JP (2) JP7086198B2 (zh)
KR (2) KR102627747B1 (zh)
CN (1) CN110767668B (zh)
WO (2) WO2021082400A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082402A1 (zh) * 2019-11-01 2021-05-06 杭州美迪凯光电科技股份有限公司 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN116288277A (zh) * 2023-03-23 2023-06-23 哈尔滨工业大学 一种高透过光学镜头的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220293647A1 (en) * 2021-03-10 2022-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Dielectric structure overlying image sensor element to increase quantum efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071817A (zh) * 2003-02-19 2007-11-14 日本电气硝子株式会社 半导体封装体用外罩玻璃及其制造方法
CN101159280A (zh) * 2006-09-26 2008-04-09 东部高科股份有限公司 图像传感器及其制造方法
CN101378032A (zh) * 2007-08-30 2009-03-04 东部高科股份有限公司 微透镜及其制造方法
JP2014065259A (ja) * 2012-09-27 2014-04-17 Tokai Rubber Ind Ltd フィルム部材およびその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE159302T1 (de) * 1990-11-07 1997-11-15 Canon Kk Iii-v verbindungs-halbleiter-vorrichtung, drucker- und anzeigevorrichtung unter verwendung derselben, und verfahren zur herstellung dieser vorrichtung
WO2001029282A2 (en) * 1999-10-20 2001-04-26 Cvd Systems, Inc. Fluid processing system
JP4151229B2 (ja) * 2000-10-26 2008-09-17 ソニー株式会社 不揮発性半導体記憶装置およびその製造方法
JP4432110B2 (ja) 2003-02-19 2010-03-17 日本電気硝子株式会社 半導体パッケージ用カバーガラス
US7142375B2 (en) 2004-02-12 2006-11-28 Nanoopto Corporation Films for optical use and methods of making such films
FI117728B (fi) 2004-12-21 2007-01-31 Planar Systems Oy Monikerrosmateriaali ja menetelmä sen valmistamiseksi
KR101248651B1 (ko) * 2008-02-08 2013-03-28 도쿄엘렉트론가부시키가이샤 절연막의 형성 방법, 컴퓨터 판독 가능한 기억 매체 및 처리 시스템
KR20090097338A (ko) * 2008-03-11 2009-09-16 삼성전기주식회사 웹 카메라 및 그 제조방법
US8735797B2 (en) * 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
JP5499461B2 (ja) * 2008-11-25 2014-05-21 ソニー株式会社 表示装置、画素回路
US8193555B2 (en) 2009-02-11 2012-06-05 Megica Corporation Image and light sensor chip packages
CN101560653A (zh) * 2009-05-14 2009-10-21 浙江大学 梯度折射率薄膜的制备方法
JP2011258613A (ja) * 2010-06-04 2011-12-22 Panasonic Corp 固体撮像装置及びその製造方法
US20140168776A1 (en) * 2011-08-01 2014-06-19 Fukuvi Chemical Industry Co., Ltd. Antireflection film and antireflection plate
CN102903726B (zh) * 2012-09-29 2016-02-10 格科微电子(上海)有限公司 图像传感器的晶圆级封装方法
US9382615B2 (en) * 2012-10-12 2016-07-05 Asm Ip Holding B.V. Vapor deposition of LiF thin films
CN103773083B (zh) 2012-10-18 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 一种光学干涉变色颜料及其制备方法和应用
CN102983144B (zh) * 2012-11-30 2015-02-11 格科微电子(上海)有限公司 图像传感器的晶圆级封装方法
US8921236B1 (en) * 2013-06-21 2014-12-30 Eastman Kodak Company Patterning for selective area deposition
TWI538276B (zh) * 2013-09-30 2016-06-11 Lg化學股份有限公司 用於有機電子裝置之基板以及其製造方法
EP2886205A1 (en) 2013-12-19 2015-06-24 Institute of Solid State Physics, University of Latvia Method for antireflective coating protection with organosilanes
EP3146368A1 (en) * 2014-05-23 2017-03-29 Corning Incorporated Low contrast anti-reflection articles with reduced scratch and fingerprint visibility
CN105420683B (zh) 2015-12-31 2018-08-31 佛山市思博睿科技有限公司 基于低压等离子化学气相沉积制备纳米多层膜的装置
CN106547160A (zh) * 2016-10-08 2017-03-29 深圳市金立通信设备有限公司 一种摄像头、终端及滤光板的制备方法
US20190172861A1 (en) * 2017-12-05 2019-06-06 Semiconductor Components Industries, Llc Semiconductor package and related methods
US20190186008A1 (en) * 2017-12-19 2019-06-20 Eastman Kodak Company Process for forming compositionally-graded thin films
US11982918B2 (en) * 2018-04-25 2024-05-14 Wuxi Clearink Limited Apparatus and method for reflective image display with dielectric layer
CN109860250A (zh) * 2019-01-29 2019-06-07 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制备方法
CN110058342A (zh) 2019-06-05 2019-07-26 信阳舜宇光学有限公司 近红外带通滤光片及其制备方法以及光学传感系统
CN110885969A (zh) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种减少摄像模组点子缺陷的cvd制备方法及其产物
CN110885972A (zh) 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN110767668B (zh) * 2019-12-30 2020-03-27 杭州美迪凯光电科技股份有限公司 含纳米级表面的clcc封装体盖板、封装体和摄像模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071817A (zh) * 2003-02-19 2007-11-14 日本电气硝子株式会社 半导体封装体用外罩玻璃及其制造方法
CN101159280A (zh) * 2006-09-26 2008-04-09 东部高科股份有限公司 图像传感器及其制造方法
CN101378032A (zh) * 2007-08-30 2009-03-04 东部高科股份有限公司 微透镜及其制造方法
JP2014065259A (ja) * 2012-09-27 2014-04-17 Tokai Rubber Ind Ltd フィルム部材およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082402A1 (zh) * 2019-11-01 2021-05-06 杭州美迪凯光电科技股份有限公司 一种消除摄像模组点子缺陷的ald制备方法及其产物
WO2021082400A1 (zh) * 2019-11-01 2021-05-06 杭州美迪凯光电科技股份有限公司 一种减少摄像模组点子缺陷的cvd制备方法及其产物
US11804501B2 (en) 2019-11-01 2023-10-31 Hangzhou Mdk Opto Electronics Co., Ltd ALD preparation method for eliminating camera module dot defects and product thereof
CN116288277A (zh) * 2023-03-23 2023-06-23 哈尔滨工业大学 一种高透过光学镜头的制备方法

Also Published As

Publication number Publication date
WO2021082402A1 (zh) 2021-05-06
WO2021082400A1 (zh) 2021-05-06
US20220302200A1 (en) 2022-09-22
KR102456684B1 (ko) 2022-10-18
JP2022534139A (ja) 2022-07-28
KR20210053809A (ko) 2021-05-12
JP7390296B2 (ja) 2023-12-01
KR20210054487A (ko) 2021-05-13
JP2022513541A (ja) 2022-02-09
US20220302193A1 (en) 2022-09-22
KR102627747B1 (ko) 2024-01-22
US11804501B2 (en) 2023-10-31
JP7086198B2 (ja) 2022-06-17
CN110767668B (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110767668B (zh) 含纳米级表面的clcc封装体盖板、封装体和摄像模组
CN100551686C (zh) 用于微光学元件的保形涂层
CN107678081B (zh) 一种低雾度红外截止滤光片及其镀膜方法
CN113204066B (zh) 光学滤波器
JP6814853B2 (ja) 光学フィルタおよびその形成方法
KR20140098178A (ko) 광학 코팅 및 etc 코팅을 가진 유리 물품 제조 방법
KR20170117533A (ko) 개선된 투과를 갖는 근적외선 광학 간섭 필터
JP2006301489A (ja) 近赤外線カットフィルタ
US7133197B2 (en) Metal-dielectric coating for image sensor lids
JP2009128820A (ja) 多層反射防止膜を有するプラスチックレンズおよびその製造方法
KR101586073B1 (ko) 무반사 나노코팅 구조 및 그 제조방법
JP5698902B2 (ja) 光学物品およびその製造方法
CN110196466B (zh) 一种低翘曲度红外截止滤光片及其镀膜方法
JP5867794B2 (ja) 眼鏡レンズの製造方法および光学物品の製造方法
CN111999785A (zh) 减反射膜、制备方法、减反射光学制品及应用
JP2004176081A (ja) 原子層堆積法による光学多層膜の製造方法
JP2007156321A (ja) 光学多層膜フィルタの製造方法
US7033855B2 (en) Optical component and method of manufacturing the same
CN110885972A (zh) 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN110885969A (zh) 一种减少摄像模组点子缺陷的cvd制备方法及其产物
CN213182092U (zh) 减反射膜、减反射光学制品、显示屏、摄像机镜片及视窗玻璃
JP2023154291A (ja) 反射防止膜、樹脂レンズ、レンズモジュール、及びカメラモジュール
CN115685412A (zh) 透镜、镜头、摄像头模组及电子设备
CN116940537A (zh) 带有多层膜的透明基体和图像显示装置
CN112925054A (zh) 一种多角度低反射红外截止滤光膜的设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant