CN116288277A - 一种高透过光学镜头的制备方法 - Google Patents
一种高透过光学镜头的制备方法 Download PDFInfo
- Publication number
- CN116288277A CN116288277A CN202310290741.7A CN202310290741A CN116288277A CN 116288277 A CN116288277 A CN 116288277A CN 202310290741 A CN202310290741 A CN 202310290741A CN 116288277 A CN116288277 A CN 116288277A
- Authority
- CN
- China
- Prior art keywords
- film
- optical lens
- precursor
- preparation
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 49
- 238000002834 transmittance Methods 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims description 33
- 239000002243 precursor Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 238000000231 atomic layer deposition Methods 0.000 claims description 11
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000012686 silicon precursor Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000007747 plating Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000002310 reflectometry Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000035699 permeability Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 46
- 238000012360 testing method Methods 0.000 description 11
- 239000010409 thin film Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
一种高透过光学镜头的制备方法,涉及一种光学镜头的制备方法。本发明是要解决现有的薄膜制备技术难以精确控制纳米级薄膜厚度的技术问题。本发明利用高、低折射率搭配的原则,选用高折射率TiO2和低折射率SiO2为基础的膜系材料,以达到高透过的效果。此光学镜头兼实现了高透过,在400nm~800nm范围内的理论平均反射率约为10%,实际反射率也低于16%,具有良好的可见光光学性能。该光学镜头的实现,可为抬头显示可见光波段工作提供技术保障,极大程度地提升抬头显示使用性能。
Description
技术领域
本发明涉及一种光学镜头的制备方法。
背景技术
抬头显示系统(Head-UpDisplay,HUD),亦称平视显示系统,是一种光学虚像显示系统。此系统通过光学镜片的反射或折射,将与汽车、飞机行驶相关的各种信息通过位于驾驶者视线正前方的放大虚像来呈现。虚像与景物同时出现在驾驶者的视野中,这样可以让驾驶者的视线一直保持在路面之上,而不用低头去看仪表盘。光学塑料具有质量轻、成本低、易加工成型、良好的韧性和机械性能、抗老化性能强等优点具有优异的综合性能,是优秀的制造HUD光学镜头的材料,但是如何在光学塑料上制备光学性能好、牢固度高、耐环境性能好的光学薄膜仍是有待解决的难题。在抬头显示系统中要求光学镜头具有高透过率。常用的薄膜制备方法有热蒸发法、磁控溅射法和化学气相沉积法,但这些制备方法都难以精确控制薄膜生长的厚度。原子层沉积(Atomic layer deposition,ALD)法依赖于前驱体气体和蒸汽在基底表面上的交替脉冲以及前体的后续化学吸附或表面反应制备薄膜,并在前驱体脉冲之间用惰性气体吹扫反应腔体。在这种条件下,薄膜生长是稳定的,并且在每个沉积周期中厚度增加是恒定的。而且,其自限制生长机制有助于在大面积基底上生长具有精确厚度的保形薄膜。此外,ALD方法制备不同多层结构的薄膜生长也很简单。因此,依托ALD技术制备的高透过率膜系可以通过精确控制每层膜的厚度,从而获得应用于抬头显示的高透过率的光学镜头。
传统薄膜制备技术虽然可以制备纳米级的薄膜,但其难以精确控制薄膜的厚度,从而难以获得符合抬头显示应用需求的高透过率光学镜头。目前绝大多数针对光学镜头的薄膜制备方法主要依托于磁控溅射技术和热蒸发等技术,而利用ALD技术制备应用于抬头显示的高透过率光学镜头薄膜的相关研究相对较少。
发明内容
本发明是要解决现有的薄膜制备技术难以精确控制纳米级薄膜厚度的技术问题,而提供一种高透过光学镜头的制备方法。
本发明的高透过光学镜头的制备方法是按以下步骤进行的:
一、将PC镜片衬底依次用去离子水超声波清洗10min~15min,无水乙醇超声波清洗10min~15min,更换新的无水乙醇继续超声波清洗10min~15min,然后取出样品,用氮气吹干表面的水分,获得表面清洁的衬底PC镜片样品;
二、将步骤一中清洗好的PC镜片衬底固定在原子层沉积设备的样品台上,抽真空,设定载气流量为20sccm~25sccm,将钛的前驱体加热至50℃~100℃,反应腔加热至50℃~100℃,硅的前驱体保持常温,臭氧和水蒸气均是常温,达到设定温度以后开始镀膜;膜层结构为在PC镜片衬底的两侧均镀膜TiO2,然后将SiO2和TiO2交替镀膜,最外侧为SiO2膜层,PC镜片衬底的两侧完全对称布置,完成高透过率光学镜头薄膜的制备;
当镀膜TiO2时采用钛的前驱体和水蒸气;
当镀膜SiO2时采用硅的前驱体和臭氧。
本发明利用高、低折射率搭配的原则,选用高折射率TiO2和低折射率SiO2为基础的膜系材料,以达到高透过的效果。利用TFCalc光学软件进行模拟,设置分析波段的波长为300nm~800nm,设置优化的目标函数值为95%。将测试得到的TiO2和SiO2两种膜料在不同沉积温度下的折射率和消光系数导入软件,通过优化设计分析,获得高透过光学镜头在可见光高透过情况下所需要的膜系结构(如图1)及各层薄膜所需要的厚度,通过控制各种膜料前驱体的的沉积循环次数来控制各膜层的厚度,实现设计完整膜系的制备。膜系沉积完成后,关机取出样品,进行反射性能测试,获得应用于抬头显示的高透过率光学镜头薄膜。此光学镜头兼实现了高透过,在400nm~800nm范围内的理论平均反射率约为10%,实际反射率也低于16%,具有良好的可见光光学性能(如图2)。该光学镜头的实现,可为抬头显示可见光波段工作提供技术保障,极大程度地提升抬头显示使用性能。
本发明以应用于抬头显示的高透过率光学镜头为研究对象,通过TFCalc光学软件模拟设计结合ALD薄膜制备技术,获得了可应用于抬头显示系统的高透过率光学镜头的膜系设计,且实现了该可应用于抬头显示的高透过率光学镜头的制备。
附图说明
图1为本发明的高透过光学镜头的结构示意图;
图2为试验一的高透过率光学镜头薄膜光学性能图;
图3是试验一中当内膜(衬底下方)为6层TiO2和SiO2交叠结构,外膜(衬底上方)为6层TiO2和SiO2交叠结构时的结构示意图。
具体实施方式
具体实施方式一:本实施方式为一种高透过光学镜头的制备方法,具体是按以下步骤进行的:
一、将PC镜片衬底依次用去离子水超声波清洗10min~15min,无水乙醇超声波清洗10min~15min,更换新的无水乙醇继续超声波清洗10min~15min,然后取出样品,用氮气吹干表面的水分,获得表面清洁的衬底PC镜片样品;
二、将步骤一中清洗好的PC镜片衬底固定在原子层沉积设备的样品台上,抽真空,设定载气流量为20sccm~25sccm,将钛的前驱体加热至50℃~100℃,反应腔加热至50℃~100℃,硅的前驱体保持常温,臭氧和水蒸气均是常温,达到设定温度以后开始镀膜;膜层结构为在PC镜片衬底的两侧均镀膜TiO2,然后将SiO2和TiO2交替镀膜,最外侧为SiO2膜层,PC镜片衬底的两侧完全对称布置,完成高透过率光学镜头薄膜的制备;
当镀膜TiO2时采用钛的前驱体和水蒸气;
当镀膜SiO2时采用硅的前驱体和臭氧。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的PC镜片衬底的厚度为20mm。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中将PC镜片衬底依次用去离子水超声波清洗10min,无水乙醇超声波清洗10min,更换新的无水乙醇继续超声波清洗10min。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中抽真空至真空度为5×10-2Torr。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤二中设定载气流量为20sccm。其他与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是:步骤二中将钛的前驱体加热至80℃,反应腔加热至80℃。其他与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式六不同的是:步骤二中钛前驱体每个循环通入反应腔3.9×10-7Langmuir。其他与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方式七不同的是:步骤二中水蒸气每个循环通入反应腔1.5×10-3Langmuir。其他与具体实施方式七相同。
具体实施方式九:本实施方式与具体实施方式八不同的是:步骤二中硅前驱体每个循环通入反应腔9.9×10-7Langmuir。其他与具体实施方式八相同。
具体实施方式十:本实施方式与具体实施方式九不同的是:步骤二中臭氧每个循环通入反应腔8.1×10-3Langmuir。其他与具体实施方式九相同。
用以下试验对本发明进行验证:
试验一:本试验为一种高透过光学镜头的制备方法,具体是按以下步骤进行的:
一、将20mm厚的PC镜片衬底依次用去离子水超声波清洗10min,无水乙醇超声波清洗10min,更换新的无水乙醇继续超声波清洗10min,然后取出样品,用氮气吹干表面的水分,获得表面清洁的衬底PC镜片样品;
高透过光学镜头表面膜系结构的设计:
利用TFCalc软件,首先建立衬底PC的条件,其核心参数是PC衬底厚度,本试验采用的厚度为20mm。利用高、低折射率搭配的原则,选用高折射率TiO2和低折射率SiO2为基础的膜系材料,以达到高透过的效果。设置分析波段的波长为300nm~800nm,设置优化的目标函数值为95%。将TiO2和SiO2两种膜料在不同沉积温度下的折射率和消光系数导入软件,通过优化设计分析,获得高透过光学镜头在可见光高透过情况下所需要的膜系结构(如图1)及各层薄膜所需要的厚度;
二、将步骤一中清洗好的PC镜片衬底固定在原子层沉积设备的样品台上,抽真空至真空度为5×10-2Torr,设定载气流量为20sccm,将钛的前驱体加热至80℃,反应腔加热至80℃,硅的前驱体保持常温,臭氧和水蒸气均是常温,达到设定温度以后开始镀膜;膜层结构为在PC镜片衬底的两侧均镀膜TiO2,然后将SiO2和TiO2交替镀膜,最外侧为SiO2膜层,PC镜片衬底的两侧完全对称布置,通过控制各种膜料前驱体的沉积循环次数来控制各膜层的厚度(如表1),完成高透过率光学镜头薄膜的制备;
当镀膜TiO2时采用钛的前驱体和水蒸气;
当镀膜SiO2时采用硅的前驱体和臭氧;
步骤二中钛前驱体每个循环通入反应腔3.9×10-7Langmuir;
步骤二中水蒸气每个循环通入反应腔1.5×10-3Langmuir;
步骤二中硅前驱体每个循环通入反应腔9.9×10-7Langmuir;
步骤二中臭氧每个循环通入反应腔8.1×10-3Langmuir。
图3是试验一中当内膜(衬底下方)为6层TiO2和SiO2交叠结构,外膜(衬底上方)为6层TiO2和SiO2交叠结构时的结构示意图。
表1为试验一中薄膜的部分工艺参数,表格中靠近左侧的为相对靠近衬底的一侧。
表1试验一的膜系结构中各层薄膜的厚度结果及沉积循环次数
图2为试验一的高透过率光学镜头薄膜光学性能图,曲线1对应着纵坐标为10%,曲线2对应实际反射率,曲线3对应理论反射率,可以发现此光学镜头兼实现了高透过,在400nm~800nm范围内的理论平均反射率约为10%,实际反射率也低于16%,具有良好的可见光光学性能。该光学镜头的实现,可为抬头显示可见光波段工作提供技术保障,极大程度地提升抬头显示使用性能。
Claims (10)
1.一种高透过光学镜头的制备方法,其特征在于高透过光学镜头的制备方法是按以下步骤进行的:
一、将PC镜片衬底依次用去离子水超声波清洗10min~15min,无水乙醇超声波清洗10min~15min,更换新的无水乙醇继续超声波清洗10min~15min,然后取出样品,用氮气吹干表面的水分,获得表面清洁的衬底PC镜片样品;
二、将步骤一中清洗好的PC镜片衬底固定在原子层沉积设备的样品台上,抽真空,设定载气流量为20sccm~25sccm,将钛的前驱体加热至50℃~100℃,反应腔加热至50℃~100℃,硅的前驱体保持常温,臭氧和水蒸气均是常温,达到设定温度以后开始镀膜;膜层结构为在PC镜片衬底的两侧均镀膜TiO2,然后将SiO2和TiO2交替镀膜,最外侧为SiO2膜层,PC镜片衬底的两侧完全对称布置,完成高透过率光学镜头薄膜的制备;
当镀膜TiO2时采用钛的前驱体和水蒸气;
当镀膜SiO2时采用硅的前驱体和臭氧。
2.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤一中所述的PC镜片衬底的厚度为20mm。
3.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤一中将PC镜片衬底依次用去离子水超声波清洗10min,无水乙醇超声波清洗10min,更换新的无水乙醇继续超声波清洗10min。
4.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中抽真空至真空度为5×10-2Torr。
5.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中设定载气流量为20sccm。
6.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中将钛的前驱体加热至80℃,反应腔加热至80℃。
7.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中钛前驱体每个循环通入反应腔3.9×10-7Langmuir。
8.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中水蒸气每个循环通入反应腔1.5×10-3Langmuir。
9.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中硅前驱体每个循环通入反应腔9.9×10-7Langmuir。
10.根据权利要求1所述的一种高透过光学镜头的制备方法,其特征在于步骤二中臭氧每个循环通入反应腔8.1×10-3Langmuir。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310290741.7A CN116288277A (zh) | 2023-03-23 | 2023-03-23 | 一种高透过光学镜头的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310290741.7A CN116288277A (zh) | 2023-03-23 | 2023-03-23 | 一种高透过光学镜头的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116288277A true CN116288277A (zh) | 2023-06-23 |
Family
ID=86779510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310290741.7A Pending CN116288277A (zh) | 2023-03-23 | 2023-03-23 | 一种高透过光学镜头的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116288277A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103773083A (zh) * | 2012-10-18 | 2014-05-07 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种光学干涉变色颜料及其制备方法和应用 |
CN110767668A (zh) * | 2019-12-30 | 2020-02-07 | 杭州美迪凯光电科技股份有限公司 | 含纳米级表面的clcc封装体盖板、封装体和摄像模组 |
JP2021162717A (ja) * | 2020-03-31 | 2021-10-11 | キヤノン電子株式会社 | 光学層、光学部材及び光学装置 |
CN113540375A (zh) * | 2021-06-04 | 2021-10-22 | 华中科技大学 | 干涉滤光膜及其制备方法和发光装置 |
-
2023
- 2023-03-23 CN CN202310290741.7A patent/CN116288277A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103773083A (zh) * | 2012-10-18 | 2014-05-07 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种光学干涉变色颜料及其制备方法和应用 |
CN110767668A (zh) * | 2019-12-30 | 2020-02-07 | 杭州美迪凯光电科技股份有限公司 | 含纳米级表面的clcc封装体盖板、封装体和摄像模组 |
JP2021162717A (ja) * | 2020-03-31 | 2021-10-11 | キヤノン電子株式会社 | 光学層、光学部材及び光学装置 |
CN113540375A (zh) * | 2021-06-04 | 2021-10-22 | 华中科技大学 | 干涉滤光膜及其制备方法和发光装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9459379B2 (en) | Optical member and method for producing same | |
JP5135753B2 (ja) | 光学物品 | |
US11977205B2 (en) | Curved surface films and methods of manufacturing the same | |
TWI588112B (zh) | 用於製造具光學及易於清潔之塗層的玻璃製品之製程 | |
CN111679347A (zh) | 一种高损伤阈值激光薄膜工艺技术方法 | |
JP6081736B2 (ja) | 反射防止膜、光学素子及び反射防止膜の製造方法。 | |
JP2001295032A (ja) | 光学複合薄膜の形成方法およびそれを用いた光学物品 | |
CN111381299A (zh) | 一种低反射色中性低应力树脂镜片及其制备方法 | |
CN101493534B (zh) | 一种显示器减反射屏及其制备方法 | |
Bulkin et al. | Properties and applications of electron cyclotron plasma deposited SiOxNy films with graded refractive index profiles | |
CN116288277A (zh) | 一种高透过光学镜头的制备方法 | |
JP2013182091A (ja) | 反射防止膜及びその形成方法 | |
JPH07104102A (ja) | ガラス製光学部品の撥水製反射防止膜およびその製造 方法 | |
JP4793011B2 (ja) | 反射防止膜形成方法 | |
JPH10123303A (ja) | 反射防止光学部品 | |
US20230161077A1 (en) | Anti-reflective optical coatings and methods of forming the same | |
CN220773287U (zh) | 一种高宽带ir滤光片 | |
JP2002372602A (ja) | 反射防止膜、およびそれを用いた光学素子 | |
CN114076997A (zh) | 一种薄膜及其制备方法 | |
CN117130085A (zh) | 一种高宽带ir滤光片及其制备方法 | |
CN117784437A (zh) | 一种薄膜分束镜及其制备方法 | |
CN117660890A (zh) | 氧化锆光学镀膜及制备方法与应用和减反射膜 | |
CN114846362A (zh) | 带有防反射膜的光学透镜的制造方法 | |
JPH07287103A (ja) | ガラス製光学部品 | |
JP2000231005A (ja) | 光学薄膜の製造方法及び光学薄膜を有する基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |