CN110724939A - 成膜方法和半导体装置的制造方法 - Google Patents

成膜方法和半导体装置的制造方法 Download PDF

Info

Publication number
CN110724939A
CN110724939A CN201910643973.XA CN201910643973A CN110724939A CN 110724939 A CN110724939 A CN 110724939A CN 201910643973 A CN201910643973 A CN 201910643973A CN 110724939 A CN110724939 A CN 110724939A
Authority
CN
China
Prior art keywords
substrate
mist
gallium
solution
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910643973.XA
Other languages
English (en)
Inventor
永冈达司
西中浩之
吉本昌广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Denso Corp
Original Assignee
Kyoto Institute of Technology NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Toyota Motor Corp filed Critical Kyoto Institute of Technology NUC
Publication of CN110724939A publication Critical patent/CN110724939A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及成膜方法和半导体装置的制造方法。实现以快的生长速度形成掺杂有锡的氧化镓膜。提出在基体上形成掺杂有锡的氧化镓膜的成膜方法。该成膜方法具有如下工序:一边加热上述基体,一边向上述基体的表面供给溶解有镓化合物和氯化锡(IV)·5水合物的溶液的雾。根据该成膜方法,能以快的生长速度形成包含锡(IV)作为供体的氧化镓膜。

Description

成膜方法和半导体装置的制造方法
技术领域
本说明书中公开的技术涉及在基体上形成膜的技术。
背景技术
专利文献1中公开了形成氧化镓膜的技术。该技术中,一边加热基板,一边向基板的表面供给溶解有镓化合物和锡(II)化合物的溶液的雾。根据该技术,可在基板的表面生长添加有锡的氧化镓膜。
现有技术文献
专利文献
专利文献1:日本特开2013-028480号公报
发明内容
发明所要解决的课题
锡可取得二价和四价的氧化数。四价的锡(以下称作锡(IV))在氧化镓中作为供体发挥作用,而二价的锡(以下称作锡(II))在氧化镓中不作为供体发挥作用。因此,在专利文献1中,在溶解有镓化合物和锡(II)化合物的溶液中添加盐酸和过氧化氢,将锡(II)化合物转变成锡(IV)化合物。但是,若在溶液中添加有盐酸和过氧化氢,则在将溶液雾化而在基板的表面生长氧化镓膜时,氧化镓膜的生长速度变慢。因此,在本说明书中,提出能以更快的生长速度形成掺杂有锡的氧化镓膜的成膜方法。
用于解决课题的手段
在本说明书公开的成膜方法中,在基体上形成掺杂有锡的氧化镓膜。该成膜方法具有如下工序:一边将上述基体加热,一边向上述基体的表面供给溶解有镓化合物和氯化锡(IV)·5水合物的溶液的雾。
在向基体的表面供给上述溶液(即,溶解有镓化合物和氯化锡(IV)·5水合物的溶液)的雾时,锡附着于基体的表面。附着于加热了的基体的表面的雾在基体上引起化学反应。其结果,在基体的表面生成添加有锡(IV)的氧化镓膜。锡(IV)在氧化镓膜中作为供体发挥作用。因此,根据该成膜方法,可形成掺杂有锡的氧化镓膜。另外,在该成膜方法中,即使不在溶液中添加盐酸或过氧化氢溶液,作为供体发挥作用的锡(IV)也纳入氧化镓膜中。因此,根据该成膜方法,能以快的生长速度生长氧化镓膜。
附图说明
图1是成膜装置10的构成图。
附图标记说明
10:成膜装置
12:炉
13:基板台
14:加热器
20:雾供给装置
22:容器
24:超声波换能器
26:雾供给路
28:运载气体导入路
30:稀释气体导入路
60:溶液
62:雾
64:运载气体
66:稀释气体
70:基板
80:排出管
具体实施方式
实施例
图1所示的成膜装置10是在基板70上形成氧化镓膜的装置。成膜装置10具备:配置基板70的炉12、对炉12进行加热的加热器14、与炉12连接的雾供给装置20和与炉12连接的排出管80。
对炉12的具体构成没有特别限定。作为一例,图1所示的炉12为从上游端12a至下游端12b延伸的管状炉。与炉12的纵向垂直的断面为圆形。例如,可将炉12的直径设为约40mm。不过,炉12的断面不限于圆形。炉12的上游端12a连接有雾供给装置20。炉12的下游端12b连接有排出管80。
炉12内设有用于支撑基板70的基板台13。基板台13以基板70相对于炉12的纵向倾斜的方式构成。支撑于基板台13的基板70在从上游端12a向下游端12b在炉12内流动的雾碰撞基板70的表面的朝向上被支撑。
如前所述,加热器14对炉12进行加热。对加热器14的具体构成没有特别限定。作为一例,图1所示的加热器14为电加热器且沿着炉12的外周壁配置。由此,加热器14对炉12的外周壁进行加热,从而炉12内的基板70被加热。
雾供给装置20向炉12内供给包含氧化镓膜的原料的溶液的雾。对雾供给装置20的具体构成没有特别限定。作为一例,图1所示的雾供给装置20具备:收容溶液60的容器22、设于容器22的超声波换能器24、将容器22和炉12之间连接的雾供给路26、与容器22连接的运载气体导入路28、和与雾供给路26连接的稀释气体导入路30。运载气体导入路28向容器22供给运载气体64。稀释气体导入路30向雾供给路26供给稀释气体66。超声波换能器24对容器22内的溶液60施加超声波振动,生成溶液60的雾62。
排出管80与炉12的下游端12b连接。由雾供给装置20向炉12内供给的雾62在炉12内流动至下游端12b后,经由排出管80排出至炉12的外部。
实施例1
接着,对使用了成膜装置10的成膜方法进行说明。在实施例1中,作为基板70,使用由表面露出有(010)晶面的β型氧化镓(β-Ga2O3)的单晶构成的基板。另外,在实施例1中,在基板70的表面形成β型氧化镓膜。另外,在实施例1中,作为溶液60,使用溶解有氯化镓(III)(GaCl3或Ga2Cl6)和氯化锡(IV)·5水合物(SnCl4·5H2O)的水溶液。在溶液60中以0.5mol/L的浓度溶解有氯化镓(III),以5×10-6mol/L的浓度溶解有氯化锡(IV)·5水合物。另外,在实施例1中,使用氮气作为运载气体64,使用氮气作为稀释气体66。
如图1所示那样,首先,在炉12内的基板台13上设置基板70。在此,在基板70的(010)晶面成为顶面(暴露于雾62的面)的朝向将基板70设置在基板台13上。接着,利用加热器14对基板70进行加热。在此,将基板70的温度控制为约750℃。基板70的温度稳定时,使雾供给装置20工作。即,通过使超声波换能器24工作,在容器22内生成溶液60的雾62。同时,从运载气体导入路28向容器22内导入运载气体64,从稀释气体导入路30向雾供给路26导入稀释气体66。在此,将运载气体64和稀释气体66的合计流量设为约5L/min。运载气体64通过容器22,如箭头44所示那样流入雾供给路26内。此时,容器22内的雾62与运载气体64一起流入雾供给路26内。另外,稀释气体66在雾供给路26内与雾62混合。由此,将雾62稀释。雾62与氮气(即,运载气体64和稀释气体66)一起在雾供给路26内流向下游侧,如箭头48所示那样从雾供给路26流入炉12内。在炉12内,雾62与氮气一起流向下游端12b侧,向排出管80排出。
在炉12内流动的雾62的一部分附着于加热了的基板70的表面。这样,雾62(即,溶液60)在基板70上引起化学反应。其结果,在基板70上生成β型氧化镓(β-Ga2O3)。由于向基板70的表面连续地供给雾62,因此β型氧化镓膜在基板70的表面生长。根据该成膜方法,高品质的单晶的β型氧化镓膜生长。β型氧化镓膜中纳入氯化锡(IV)·5水合物中的锡(IV)作为供体。因此,形成掺杂有锡的β型氧化镓膜。即,形成具有半导体或导体的特性的β型氧化镓膜。在此,进行30分钟的成膜处理,消耗约50ml的溶液60,生长β型氧化镓膜。对通过该成膜方法形成的β型氧化镓膜的特性利用霍尔效应测定进行测定,结果,观测到1.8×1018cm-3的载流子密度和77cm2/Vsec的迁移率。
根据实施例1的成膜方法,可形成高品质的β型氧化镓膜。特别地,在实施例1中,由于β型氧化镓膜在由β型氧化镓构成的基板70上进行同质外延生长,因此,可形成更高品质的β型氧化镓膜。另外,通过采用同质外延生长,β型氧化镓膜的导电性的控制也变得容易。
实施例2
接着,对实施例2的成膜方法进行说明。在实施例2中,作为基板70,使用由蓝宝石(Al2O3)构成的基板。另外,在实施例2中,在基板70的表面形成α型氧化镓膜(α-Ga2O3)。另外,在实施例2中,作为溶液60,使用溶解有溴化镓(GaBr3、Ga2Br6)和氯化锡(IV)·5水合物的水溶液。溶液60中以0.1mol/L的浓度溶解有溴化镓,以1×10-6mol/L的浓度溶解有氯化锡(IV)·5水合物。另外,在实施例2中,使用氮气作为运载气体64,使用氮气作为稀释气体66。
在实施例2的成膜方法中,也与实施例1同样地,在基板台13上设置基板70,利用加热器14对基板70进行加热。在此,将基板70的温度控制为约500℃。基板70的温度稳定时,使雾供给装置20工作。即,与实施例1同样地实施超声波换能器24的工作、运载气体64的导入和稀释气体66的导入。其结果,雾62流入炉12内,在炉12内流动的雾62的一部分附着于加热了的基板70的表面。这样,雾62(即,溶液60)在基板70上引起化学反应。其结果,在基板70上生成α型氧化镓。由于向基板70的表面连续地供给雾62,因此α型氧化镓膜在基板70的表面生长。根据该成膜方法,高品质的单晶的α型氧化镓膜生长。α型氧化镓膜中纳入氯化锡(IV)·5水合物中的锡(IV)作为供体。因此,形成掺杂有锡的α型氧化镓膜。即,形成具有半导体或导体的特性的α型氧化镓膜。
实施例3
接着,对实施例3的成膜方法进行说明。在实施例3中,作为基板70,使用由表面露出有(-201)晶面的β型氧化镓膜的单晶构成的基板。另外,在实施例3中,作为溶液60,使用溶解有氯化镓(III)和氯化锡(IV)·5水合物的水溶液。溶液60中以0.5mol/L的浓度溶解有氯化镓(III),以5×10-6mol/L的浓度溶解有氯化锡(IV)·5水合物。另外,在实施例3中,使用氮气作为运载气体64,使用氮气作为稀释气体66。
在实施例3的成膜方法中,也与实施例1同样地,在基板台13上设置基板70。在此,在基板70的(-201)晶面成为顶面(暴露于雾62的面)的朝向将基板70设置在基板台13上。接着,利用加热器14对基板70进行加热。在此,将基板70的温度控制为约600℃。基板70的温度稳定时,使雾供给装置20工作。即,与实施例1同样地实施超声波换能器24的工作、运载气体64的导入和稀释气体66的导入。其结果,雾62流入炉12内,在炉12内流动的雾62的一部分附着于加热了的基板70的表面。这样,雾62(即,溶液60)在基板70上引起化学反应。其结果,在基板70上生成ε型氧化镓(ε-Ga2O3)。由于向基板70的表面连续地供给雾62,因此ε型氧化镓膜在基板70的表面生长。根据该成膜方法,高品质的单晶的ε型氧化镓膜生长。ε型氧化镓膜中纳入氯化锡(IV)·5水合物中的锡(IV)作为供体。因此,形成掺杂有锡的ε型氧化镓膜。即,形成具有半导体或导体的特性的ε型氧化镓膜。
以下,对实施例1~3的成膜方法进行了说明。根据这些成膜方法,即使不在溶液60中添加盐酸或过氧化氢溶液,也能在生长的氧化镓膜中掺杂锡。因此,能以快的生长速度生长氧化镓膜。通过使用如实施例1~3那样地成膜的氧化镓膜制造半导体装置(例如二极管、晶体管等),可得到具有优异特性的半导体装置。
予以说明,在上述实施例1~3中,均是在溶液60中溶解的锡原子的数量(浓度)为在溶液60中溶解的镓原子的数量(浓度)的10倍以下。根据该构成,可形成晶体品质高的氧化镓膜。
另外,在上述实施例1~3中,将基板70加热至500~750℃。在成膜工序中,可将基板70控制为400~1000℃的温度。通过这样控制温度,可更合适地形成氧化镓膜。
另外,在上述实施例1~3中,形成了单晶的氧化镓膜。不过,也可以形成无定形或多晶的氧化镓膜。
另外,在上述实施例1~3中,基板70由β型氧化镓或蓝宝石构成。不过,基板70也可以由其它材料构成。通过使用由其它材料构成的基板70,可形成与实施例1~3不同的特性的氧化镓膜。例如,基板70也可以由α型氧化镓、γ型氧化镓、δ型氧化镓、ε型氧化镓、氧化铝(例如α型氧化铝(α-Al2O3))、氮化镓(GaN)或玻璃等构成。另外,基板70可以为绝缘体,可以为半导体,也可以为导体。
另外,在上述实施例1~3中,基板70(即,板状的部件)的表面形成了氧化镓膜。不过,可以使用其它形状的部件作为基材并在该基材的表面形成氧化镓膜。
另外,在上述实施例1~3中,在溶液60中溶解的镓化合物为氯化镓(III)或溴化镓。不过,可以使用其它材料作为在溶液60中溶解的镓化合物。予以说明,为了形成高品质的氧化镓膜,镓化合物可以为有机物。另外,镓化合物可以为金属络合物。或者,镓化合物可以为卤化物。例如,作为镓化合物,可使用乙酰丙酮镓(例如镓(III)乙酰丙酮(C15H21GaO6))、三乙酸镓(C6H9GaO6)、碘化镓(GaI3、Ga2I6)等。不过,氯化镓(特别是氯化镓(III))由于便宜且可形成残留杂质少的膜,因此更容易使用。
另外,在上述实施例1~3中,容器22收容溶解有镓化合物和氯化锡(IV)·5水合物这两者的溶液60,从该溶液60生成雾,将生成的雾供给至炉12。不过,可以各自个别地设置第1容器(其收容溶解有镓化合物的溶液)和第2容器(其收容溶解有氯化锡(IV)·5水合物的溶液)。然后,可以在第1容器内生成溶解有镓化合物的溶液的第1雾,在第2容器内生成溶解有氯化锡(IV)·5水合物的溶液的第2雾,将第1雾和第2雾供给至炉12。
另外,在上述实施例1~3中,使用了氮作为运载气体64和稀释气体66,但也可使用非活性气体等其它气体作为运载气体64和稀释气体66。
关于本说明书公开的技术要素,在以下列出。予以说明,以下的各技术要素各自独立地是有用的。
在本说明书公开的一例的成膜方法中,向基体的表面供给溶解有镓化合物和氯化锡(IV)·5水合物的溶液的雾的工序可具有:从溶解有上述镓化合物和上述氯化锡(IV)·5水合物这两者的溶液生成雾的工序,和向上述基体的上述表面供给溶解有上述镓化合物和上述氯化锡(IV)·5水合物这两者的上述溶液的上述雾的工序。
在本说明书公开的另一例的成膜方法中,向基体的表面供给溶解有镓化合物和氯化锡(IV)·5水合物的溶液的上述雾的工序可具有:从溶解有上述镓化合物的溶液生成雾的工序,从溶解有上述氯化锡(IV)·5水合物的溶液生成雾的工序,和向上述基体的上述表面供给溶解有上述镓化合物的上述溶液的上述雾和溶解有上述氯化锡(IV)·5水合物的上述溶液的上述雾的工序。
因此,用从溶解有镓化合物和氯化锡(IV)·5水合物这两者的溶液生成雾的方法以及将溶解有镓化合物的溶液和溶解有氯化锡(IV)·5水合物的溶液分别进行雾化的方法中的任一者都能适宜地形成氧化镓膜。
在本说明书公开的一例的成膜方法中,氧化镓膜可以为单晶膜。
通过形成单晶的氧化镓膜,可将氧化镓膜合适地用于半导体元件等。
在本说明书公开的一例的成膜方法中,镓化合物可以为有机物。
在本说明书公开的一例的成膜方法中,镓化合物可以为金属络合物。
在本说明书公开的一例的成膜方法中,镓化合物可以为乙酰丙酮镓。
在本说明书公开的一例的成膜方法中,镓化合物可以为卤化物。
在本说明书公开的一例的成膜方法中,镓化合物可以为氯化镓。
氯化镓便宜并且难以生成残留杂质。因此,作为氧化镓膜材料是有用的。
在本说明书公开的一例的成膜方法中,溶解有镓化合物和氯化锡(IV)·5水合物的溶液的雾中包含的锡原子的数量为溶解有上述镓化合物和上述氯化锡(IV)·5水合物的上述溶液的上述雾中包含的镓原子的数量的10倍以下。
根据该构成,可形成晶体品质高的氧化镓膜。
在本说明书公开的一例的成膜方法中,基体可以由氧化镓构成。
在本说明书公开的一例的成膜方法中,基体可以由β-Ga2O3构成。
在本说明书公开的一例的成膜方法中,基体可以由α-Ga2O3构成。
在本说明书公开的一例的成膜方法中,基体可以由α-Al2O3构成。
在本说明书公开的一例的成膜方法中,氧化镓膜可以由β-Ga2O3构成。
根据该构成,氧化镓膜的特性稳定,容易控制氧化镓膜的导电性。
在本说明书公开的一例的成膜方法中,在形成氧化镓膜时,可将上述基体加热至400~1000℃。
根据该构成,可形成晶体品质高的氧化镓膜,并可准确地控制氧化镓膜的导电性。
以上,对实施方式进行了详细说明,但这些仅为例示,不限定专利权利要求书。专利权利要求书中记载的技术包含将以上例示的具体例进行各种变形、改变而得的例子。本说明书或附图中说明的技术要素通过单独或各种组合来发挥技术有用性,不限定于申请时权利要求书中记载的组合。另外,本说明书或附图中例示的技术同时实现多个目的,实现其中的一个目的自身具有技术有用性。

Claims (17)

1.成膜方法,其是在基体上形成掺杂有锡的氧化镓膜的成膜方法,其具有如下工序:一边加热上述基体,一边向上述基体的表面供给溶解有镓化合物和氯化锡(IV)·5水合物的溶液的雾。
2.权利要求1所述的成膜方法,其中,向上述基体的上述表面供给溶解有上述镓化合物和上述氯化锡(IV)·5水合物的上述溶液的上述雾的上述工序具有:
从溶解有上述镓化合物和上述氯化锡(IV)·5水合物这两者的溶液生成雾的工序,和
向上述基体的上述表面供给溶解有上述镓化合物和上述氯化锡(IV)·5水合物这两者的上述溶液的上述雾的工序。
3.权利要求1所述的成膜方法,其中,向上述基体的上述表面供给溶解有上述镓化合物和上述氯化锡(IV)·5水合物的上述溶液的上述雾的上述工序具有:
从溶解有上述镓化合物的溶液生成雾的工序,
从溶解有上述氯化锡(IV)·5水合物的溶液生成雾的工序,和
向上述基体的上述表面供给溶解有上述镓化合物的上述溶液的上述雾和溶解有上述氯化锡(IV)·5水合物的上述溶液的上述雾的工序。
4.权利要求1~3的任一项所述的成膜方法,其中,上述氧化镓膜为单晶膜。
5.权利要求1~4的任一项所述的成膜方法,其中,上述镓化合物为有机物。
6.权利要求1~5的任一项所述的成膜方法,其中,上述镓化合物为金属络合物。
7.权利要求1~6的任一项所述的成膜方法,其中,上述镓化合物为乙酰丙酮镓。
8.权利要求1~4的任一项所述的成膜方法,其中,上述镓化合物为卤化物。
9.权利要求1~4和8的任一项所述的成膜方法,其中,上述镓化合物为氯化镓。
10.权利要求1~9的任一项所述的成膜方法,其中,溶解有上述镓化合物和上述氯化锡(IV)·5水合物的上述溶液的上述雾中包含的锡原子的数量为溶解有上述镓化合物和上述氯化锡(IV)·5水合物的上述溶液的上述雾中包含的镓原子的数量的10倍以下。
11.权利要求1~10的任一项所述的成膜方法,其中,上述基体由氧化镓构成。
12.权利要求11所述的成膜方法,其中,上述基体由β-Ga2O3构成。
13.权利要求11所述的成膜方法,其中,上述基体由α-Ga2O3构成。
14.权利要求1~10的任一项所述的成膜方法,其中,上述基体由α-Al2O3构成。
15.权利要求1~14的任一项所述的成膜方法,其中,上述氧化镓膜由β-Ga2O3构成。
16.权利要求1~15的任一项所述的成膜方法,其中,在形成上述氧化镓膜时,将上述基体加热至400~1000℃。
17.制造方法,其为半导体装置的制造方法,其具备如下工序:利用权利要求1~16的任一项所述的成膜方法形成上述氧化镓膜。
CN201910643973.XA 2018-07-17 2019-07-17 成膜方法和半导体装置的制造方法 Pending CN110724939A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018134347A JP2020011859A (ja) 2018-07-17 2018-07-17 成膜方法、及び、半導体装置の製造方法
JP2018-134347 2018-07-17

Publications (1)

Publication Number Publication Date
CN110724939A true CN110724939A (zh) 2020-01-24

Family

ID=69148373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910643973.XA Pending CN110724939A (zh) 2018-07-17 2019-07-17 成膜方法和半导体装置的制造方法

Country Status (5)

Country Link
US (1) US20200027731A1 (zh)
JP (1) JP2020011859A (zh)
KR (1) KR20200008967A (zh)
CN (1) CN110724939A (zh)
DE (1) DE102019119197A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315927B2 (ja) * 2020-02-12 2023-07-27 株式会社デンソー 半導体装置とその製造方法
KR102537068B1 (ko) * 2020-11-27 2023-05-26 서울대학교산학협력단 사파이어 나노 멤브레인 상에서 산화갈륨층을 포함하는 기판의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272094A (zh) * 2009-01-09 2011-12-07 默克专利有限公司 用于印刷电子部件的功能材料
CN102918178A (zh) * 2010-06-01 2013-02-06 东芝三菱电机产业系统株式会社 金属氧化膜的成膜装置、金属氧化膜的制造方法及金属氧化膜
KR101295200B1 (ko) * 2010-07-15 2013-08-09 포항공과대학교 산학협력단 전면 발광형 유기 발광 다이오드 및 그 제조 방법
US20150064839A1 (en) * 2013-08-29 2015-03-05 Samsung Display Co., Ltd. Method of forming tin oxide semiconductor thin film
JP2015199648A (ja) * 2014-03-31 2015-11-12 株式会社Flosfia 結晶性積層構造体、半導体装置
CN105097957A (zh) * 2014-05-08 2015-11-25 Flosfia株式会社 结晶性层叠结构体、半导体装置
CN108231542A (zh) * 2018-01-09 2018-06-29 南京大学 一种基于异质叠层非晶薄膜的平面锗硅及相关纳米线生长方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791324A (fr) * 1971-11-16 1973-03-01 Vulcan Materials Co Preparation du chlorure stanneux
JPH0927849A (ja) * 1996-04-18 1997-01-28 Sony Corp 通信端末装置
JP2003205235A (ja) * 2002-01-16 2003-07-22 Canon Inc 傾斜膜の製造方法および装置
JP2004311175A (ja) * 2003-04-04 2004-11-04 Fujikura Ltd 透明電極用基材及びその製造方法
JP2008078113A (ja) * 2006-08-25 2008-04-03 Fujikura Ltd 透明導電性基板の製造装置
JP5793732B2 (ja) * 2011-07-27 2015-10-14 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2015196603A (ja) * 2014-03-31 2015-11-09 株式会社Flosfia 結晶性積層構造体、半導体装置
JP6539906B2 (ja) * 2014-09-25 2019-07-10 株式会社Flosfia 結晶性積層構造体の製造方法および半導体装置
JP6793942B2 (ja) * 2016-11-01 2020-12-02 国立大学法人 和歌山大学 酸化ガリウムの製造方法及び結晶成長装置
CN109952392A (zh) * 2016-11-07 2019-06-28 株式会社Flosfia 结晶性氧化物半导体膜及半导体装置
JP2018134347A (ja) 2017-02-23 2018-08-30 京楽産業.株式会社 遊技機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272094A (zh) * 2009-01-09 2011-12-07 默克专利有限公司 用于印刷电子部件的功能材料
CN102918178A (zh) * 2010-06-01 2013-02-06 东芝三菱电机产业系统株式会社 金属氧化膜的成膜装置、金属氧化膜的制造方法及金属氧化膜
KR101295200B1 (ko) * 2010-07-15 2013-08-09 포항공과대학교 산학협력단 전면 발광형 유기 발광 다이오드 및 그 제조 방법
US20150064839A1 (en) * 2013-08-29 2015-03-05 Samsung Display Co., Ltd. Method of forming tin oxide semiconductor thin film
JP2015199648A (ja) * 2014-03-31 2015-11-12 株式会社Flosfia 結晶性積層構造体、半導体装置
CN105097957A (zh) * 2014-05-08 2015-11-25 Flosfia株式会社 结晶性层叠结构体、半导体装置
CN108231542A (zh) * 2018-01-09 2018-06-29 南京大学 一种基于异质叠层非晶薄膜的平面锗硅及相关纳米线生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
衡隆等: "《铝冶炼生产技术手册》", 31 July 2011, 冶金工业出版社 *

Also Published As

Publication number Publication date
JP2020011859A (ja) 2020-01-23
US20200027731A1 (en) 2020-01-23
DE102019119197A1 (de) 2020-01-23
KR20200008967A (ko) 2020-01-29

Similar Documents

Publication Publication Date Title
CN111326417B (zh) 氧化镓膜的成膜方法
JP5923553B2 (ja) 三塩化ガリウムを製造するための大容量送達方法
JPH09315899A (ja) 化合物半導体気相成長方法
CN110724939A (zh) 成膜方法和半导体装置的制造方法
CN113454272B (zh) GaN结晶和基板
US20190259610A1 (en) Film forming method and method of manufacturing semiconductor device
JP2005223243A (ja) Iii族窒化物系半導体結晶の製造方法及びハイドライド気相成長装置
JP2012111677A (ja) Iii族窒化物結晶の製造方法、iii族窒化物テンプレートの製造方法、iii族窒化物結晶及びiii族窒化物テンプレート
US20220157598A1 (en) Method for forming film and manufacturing semiconductor device
CN110724935A (zh) 成膜方法和半导体装置的制造方法
US11753739B2 (en) Method for manufacturing a group III-nitride crystal comprising supplying a group III-element oxide gas and a nitrogen element-containng gas at a supersation ratio of greater than 1 and equal to or less than 5
JP2004296640A (ja) GaN系半導体層の成長方法およびそれを用いた半導体基板の製造方法、半導体装置の製造方法
Siche et al. Growth of bulk gan from gas phase
US20130183225A1 (en) Crystal growth using non-thermal atmospheric pressure plasmas
JP7240673B2 (ja) 成膜方法
JPH0760800B2 (ja) 化合物半導体の気相成長法
Suscavage et al. New iodide method for growth of GaN
JPH0897149A (ja) 有機金属気相成長方法及び有機金属気相成長装置
JP4544923B2 (ja) 気相成長装置
TW202204688A (zh) 成膜裝置及成膜方法
JP2023005168A (ja) Iii族窒化物結晶の製造装置及びiii族窒化物結晶の製造方法
CN116157360A (zh) 成膜方法及原料溶液
JP2013116851A (ja) ドープiii−nバルク結晶及び自立型ドープiii−n基板
JPH11329976A (ja) Iii族窒化物結晶成長装置
JPS63188936A (ja) 窒化ガリウム系化合物半導体の気相成長装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210201

Address after: Aichi Prefecture, Japan

Applicant after: DENSO Corp.

Applicant after: NATIONAL University CORPORATION KYOTO INSTITUTE OF TECHNOLOGY

Address before: Aichi Prefecture, Japan

Applicant before: Toyota Motor Corp.

Applicant before: NATIONAL University CORPORATION KYOTO INSTITUTE OF TECHNOLOGY

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200124