CN110676065A - 一种金属交联多孔碳材料及制备方法和其应用 - Google Patents

一种金属交联多孔碳材料及制备方法和其应用 Download PDF

Info

Publication number
CN110676065A
CN110676065A CN201910886019.3A CN201910886019A CN110676065A CN 110676065 A CN110676065 A CN 110676065A CN 201910886019 A CN201910886019 A CN 201910886019A CN 110676065 A CN110676065 A CN 110676065A
Authority
CN
China
Prior art keywords
pim
carbon material
porous carbon
coona
crosslinked porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910886019.3A
Other languages
English (en)
Other versions
CN110676065B (zh
Inventor
黄爱生
岳文哲
刘传耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201910886019.3A priority Critical patent/CN110676065B/zh
Publication of CN110676065A publication Critical patent/CN110676065A/zh
Application granted granted Critical
Publication of CN110676065B publication Critical patent/CN110676065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开一种金属交联的多孔碳材料及制备方法和其应用,制备包括:(1)在氮气气氛下,加热混合搅拌四氟对苯二甲腈、5,5',6,6'‑四羟基‑3,3,3',3'‑四甲基‑1,1'‑螺双茚满、DMF和碳酸钾溶液,冷却后加水,用氯仿等溶剂洗涤,干燥,得到PIM‑1;(2)将所得的PIM‑1加热混合搅拌氢氧化钠、超纯水和乙醇溶液,冷却后加水,用氯仿等溶剂洗涤,干燥,得到PIM‑COONa;(3)将所得的PIM‑COONa室温混合搅拌醋酸钴、超纯水和乙醇溶液,7天后用氯仿等溶剂洗涤,干燥,得到PIM‑COONa‑Co;(4)将所得到的PIM‑COONa‑Co以5℃/min的升温速率升温至600℃~900℃氮气氛围煅烧3 h,得到金属交联的多孔碳材料。将其制备成电极片应用在超级电容器,表现出高达1341F/g的比电容,以及良好的倍率特性,是非常有潜力的超级电容器材料。

Description

一种金属交联多孔碳材料及制备方法和其应用
技术领域
本发明涉及金属钴交联自聚微孔聚合物的合成方法,特别是一种金属交联多孔碳材料及制备方法和其应用。
背景技术
自从20世纪以来,不断增长的人口和经济规模促进了世界各国对能源的迫切需求。作为地球含量较为丰富的化石能源,石油成为全球使用最为广泛的能源之一。然而,化石能源的不可持续性以及伴随着对石油等的大量使用所带来的全球气候变暖等环境问题日趋严重。为了解决日益严重的环境和能源问题,开发具有高活性、稳定性和低成本的清洁、可再生和可持续能源及能源转化和储能技术己成为一个热门研究课题,比如风能、太阳能、潮汐能等。
与传统的静电电容器电荷存储机理不同,超级电容器在高表面积的多孔电极材料与电解质溶液的电化学界面处存储电荷。由于超级电容器电极材料较高的比表面积以及电极与电解质离子更短的距离,使得超级电容器的比容量比传统的电容器高几个数量级。超级电容器作为一种新型储能元件,已经广泛的应用于电子设备、储能电源以及工业电力中。相比于可充电电池,包括双电层电容器和赝电容器在内的超级电容器具有更高的功率密度和更长的循环寿命。因此,在需要高功率输出和快速的能量储存的情况下,超级电容器能够有效的弥补电池的不足。
近年来,一种新型的高自由体积聚合物被开发出来,称为“本征微孔聚合物”(PIMs)。PIM具有稠环结构,梯形结构被扭曲部位打断。这些结构特征防止聚合物在固态下有效地填充空间,导致其高自由体积和微孔性(有效孔径<2nm)。PIM原型膜被称为PIM-1,具有高渗透性和良好的选择性。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种金属交联多孔碳材料及制备方法和其应用,它以本征微孔聚合物PIM-1为前驱体,经水解得到多孔高分子材料PIM-COONa;利用醋酸钴对多孔高分子材料PIM-COONa的离子键实现有效地交联,再经焙烧得到金属钴交联多孔碳材料;所得金属钴交联多孔碳材料可表现出优异的电化学性能和循环稳定性,且涉及的制备方法简单、易控,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种金属交联多孔碳材料的制备方法,首先以本征微孔聚合物PIM-1为前驱体,经水解得到多孔高分子材料PIM-COONa;利用醋酸钴对多孔高分子材料PIM-COONa的离子键实现有效地交联,再经焙烧得到金属交联多孔碳材料;包括以下步骤:
步骤1:合成多孔高分子材料PIM-1
在惰性氮气的气氛下,将四氟对苯二甲腈、5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到DMF中,再加入碳酸钾;60℃加热搅拌反应12小时,其中,物质的量之比为四氟对苯二甲腈∶5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满∶DMF∶碳酸钾=1∶1∶2500∶75;
步骤2:合成多孔高分子材料PIM-COONa
将PIM-1和氢氧化钠加入到乙醇和超纯水混合溶液中,120℃加热搅拌反应5小时,其中,物质的量之比为PIM-1∶氢氧化钠∶乙醇∶超纯水=∶1∶5∶155∶200;
步骤3:合成金属交联多孔高分子材料PIM-COONa-Co
将PIM-COONa和醋酸钴加入到乙醇和超纯水混合溶液中,室温混合搅拌7天,其中,物质的量之比为PIM-COONa∶醋酸钴∶乙醇∶超纯水=1∶3∶155∶200;
步骤4:制备金属交联多孔碳材料
将PIM-COONa-Co置于加盖的瓷舟中,在氮气氛围下以5℃/min的升温速度在管式炉中升温至600℃~900℃,保持4h,自然冷却后所得的黑色粉末即为金属交联多孔碳材料;
一种上述方法制得的金属交联多孔碳材料。
一种所述金属交联多孔碳材料作为超级电容器电极材料的应用。
所述的应用,包括以下具体步骤:
步骤1:金属交联多孔碳材料-泡沫镍电极片的制备
泡沫镍的预处理:将泡沫镍剪裁成矩形,首先在6M HCL中超声浸泡15min,然后分别用去离子水和乙醇超声清洗15min,在60℃的烘箱里烘干过夜。将金属交联多孔碳材料的粉末样品、乙炔黑和聚偏氟乙烯PVDF以质量比为8∶1∶1一起放入研钵中,向研钵中滴加分析纯N-甲基吡咯烷酮NMP,研磨变成浆状物,将浆状物滴涂在经处理的泡沫镍2/3的面积内,在60℃下放置12小时烘干,最后在压片机上加压至10MPa,得到所述金属交联多孔碳材料-泡沫镍电极片;
步骤2:将步骤1得到的金属交联多孔碳材料-泡沫镍电极片用于超级电容器电极。
所述金属交联多孔碳材料-泡沫镍电极片具有1341F/g的比电容,具有比容量高、循环性能好及结构稳定等特点,是一种优良的储能材料。
本发明的有益效果:
金属交联多孔碳材料。
本发明制备的金属交联多孔碳材料,利用Co2+和COO-成键,并通过静电相互作用形成交联,再通过焙烧,有效实现金属交联与多孔碳材料的充分复合。
本发明所制备的金属交联多孔碳材料,作为超级电容器电极材料的应用,结合了双电层超级电容器和赝电容超级电容器两者的优势,又可有效提升PIM-1的电化学导电性;此外本发明所得复合材料适用于超级电容器等领域。
附图说明
图1为实施例1制得的金属交联多孔碳材料的SEM和TEM照片图;
图2为实施例1制备的金属交联多孔碳材料用作超级电容器电极材料的循环伏安曲线图;
图3为实施例1制备的金属交联多孔碳材料用作超级电容器电极材料不同电流密度下的恒电流充放电时间-电压曲线图;
图4为实施例1制备的金属交联多孔碳材料用作超级电容器电极材料充放电前后的EIS谱图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
实施例1
(1)在惰性氮气的气氛下,将6.02g四氟对苯二甲腈和10.25g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到200ml分析纯DMF中,待完全溶解再加入10.25g碳酸钾。将上述溶液在60℃加热搅拌反应12小时,反应结束后,冷却至室温,分别用超纯水、氯仿、1,4二氧六环、四氢呋喃、丙酮洗涤,再于110℃下干燥24h,制得PIM-1;
(2)将0.5g PIM-1和5g氢氧化钠加入到乙醇和超纯水混合溶液中,将上述溶液在120℃加热搅拌反应5小时,反应结束后,冷却至室温,分别用超纯水、氯仿、1,4二氧六环、四氢呋喃、丙酮洗涤,再于110℃下干燥24h,制得PIM-COONa;
(3)将0.4g PIM-COONa和2g醋酸钴加入到乙醇和超纯水混合溶液中,在室温下混合搅拌7天,待反应结束后,分别用超纯水、氯仿、1,4二氧六环、四氢呋喃、丙酮洗涤,再于110℃下干燥24h,制得PIM-COONa-Co;
(4)将0.4g PIM-COONa-Co置于加盖的瓷舟中,在氮气氛围下以5℃/min的升温速度在管式炉中升温至600℃,保持4h,自然冷却后所得的黑色粉末即为金属交联多孔碳材料;SEM和TEM照片如图1所示,图中a为SEM图;b为TEM图;从图中可以看出所得金属交联多孔碳材料具有蓬松的结构孔,通过离子键的静电相互作用均匀分布在多孔碳材料中;
(5)泡沫镍预处理:将泡沫镍剪裁成矩形,首先在6M HCL中超声浸泡15min,然后分别用去离子水和乙醇超声清洗15min,在60℃的烘箱里烘干过夜。将步骤(4)制备的粉末样品、乙炔黑和聚偏氟乙烯(PVDF)以质量比为8:1:1一起放入研钵中,滴加分析纯N-甲基吡咯烷酮(NMP),研磨变成浆状物,用滴涂在泡沫镍上2/3的面积内,将其在60℃下放置12小时烘干,最后将烘干的多孔金属交联多孔碳材料/泡沫镍薄片在压片机上加压至10MPa,得到所需要的电极片。
实施例2~实施例5
各实施例与实施例1相同,其不同之处如表1所示:
表1
项目 实施例2 实施例3 实施例4 实施例5
煅烧温度(℃) 600 700 800 900
性能检测
将实施例1制备的金属交联多孔碳材料用作超级电容器电极材料,测得的比电容值如表2所示。
表2
Figure BDA0002207322610000041
图2为循环伏安曲线图;图3为不同电流密度下的恒电流充放电时间-电压曲线图;图4为该材料充放电前后的EIS谱。
通过以上数据看出,金属交联多孔碳材料的制备方法,使其拥有较高的比电容,使其用作超级电容器电极材料有着广泛的应用前景。
虽然上述实施例对于有关参数的选择未涉及所公开的全部范围,但在另外的实施例中,本发明能在所公开的有关参数的全部范围内实现。另外,本发明也并不限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所作出的变化、增减或替换,也应属于本发明的保护范围。

Claims (5)

1.一种金属交联多孔碳材料的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:合成多孔高分子材料PIM-1
在惰性氮气的气氛下,将四氟对苯二甲腈、5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到DMF中,再加入碳酸钾;60℃加热搅拌反应12小时,其中,物质的量之比为四氟对苯二甲腈∶5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满∶DMF∶碳酸钾=1∶1∶2500∶75;
步骤2:合成多孔高分子材料PIM- COONa
将PIM-1和氢氧化钠加入到乙醇和超纯水混合溶液中,120℃加热搅拌反应5小时,其中,物质的量之比为PIM-1∶氢氧化钠∶乙醇∶超纯水=∶1∶5∶155∶200;
步骤3:合成金属交联多孔高分子材料PIM-COONa-Co
将PIM- COONa和醋酸钴加入到乙醇和超纯水混合溶液中,室温混合搅拌7天,其中,物质的量之比为PIM-COONa∶醋酸钴∶乙醇∶超纯水=1∶3∶155∶200;
步骤4:制备金属交联多孔碳材料
将PIM-COONa-Co置于加盖的瓷舟中,在氮气氛围下以5 ℃/min的升温速度在管式炉中升温至600℃~900℃,保持4 h,自然冷却后所得的黑色粉末即为所述金属交联多孔碳材料。
2.一种权利要求1所述方法制得的金属交联多孔碳材料。
3.一种权利要求2所述金属交联多孔碳材料作为超级电容器电极材料的应用。
4.根据权利要求3所述的应用,其特征在于,包括以下具体步骤:
步骤1:金属交联多孔碳材料-泡沫镍电极片的制备
泡沫镍的预处理:将泡沫镍剪裁成矩形,首先在6 M HCL中超声浸泡15min,然后分别用去离子水和乙醇超声清洗15 min,在60 ℃的烘箱里烘干过夜;将金属交联多孔碳材料的粉末样品、乙炔黑和聚偏氟乙烯PVDF以质量比为 8∶1∶1一起放入研钵中,向研钵中滴加分析纯N-甲基吡咯烷酮NMP,研磨变成浆状物,将浆状物滴涂在经处理的泡沫镍2/3的面积内,在60℃下放置12小时烘干,最后在压片机上加压至10 MPa,得到所述金属交联多孔碳材料-泡沫镍电极片;
步骤2:将步骤1得到的金属交联多孔碳材料-泡沫镍电极片用于超级电容器电极。
5.根据权利要求3所述的应用,其特征在于,所述金属交联多孔碳材料-泡沫镍电极片具有1341 F/g的比电容。
CN201910886019.3A 2019-09-19 2019-09-19 一种金属交联多孔碳材料及制备方法和其应用 Active CN110676065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910886019.3A CN110676065B (zh) 2019-09-19 2019-09-19 一种金属交联多孔碳材料及制备方法和其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910886019.3A CN110676065B (zh) 2019-09-19 2019-09-19 一种金属交联多孔碳材料及制备方法和其应用

Publications (2)

Publication Number Publication Date
CN110676065A true CN110676065A (zh) 2020-01-10
CN110676065B CN110676065B (zh) 2021-05-07

Family

ID=69078247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910886019.3A Active CN110676065B (zh) 2019-09-19 2019-09-19 一种金属交联多孔碳材料及制备方法和其应用

Country Status (1)

Country Link
CN (1) CN110676065B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326349A (zh) * 2020-03-03 2020-06-23 华东师范大学 一种pim-1负载聚吡咯复合材料及制备方法和其应用
CN112321818A (zh) * 2020-11-20 2021-02-05 复旦大学 具有自微孔结构的高分子官能聚合物及其超组装制备方法
CN115096960A (zh) * 2022-06-24 2022-09-23 山东大学 一种高选择高灵敏碘蒸气电化学阻抗传感器及构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161367A1 (en) * 2015-04-03 2016-10-06 The Regents Of The University Of California Polymeric materials for electrochemical cells and ion separation processes
CN106328910A (zh) * 2016-11-22 2017-01-11 南阳师范学院 一种球形的氮掺杂碳材料与过渡金属氧化物的复合材料及其制备方法
CN107213807A (zh) * 2016-03-22 2017-09-29 苏州信望膜技术有限公司 一种自微孔聚合物的合成及其膜的制备方法与应用
CN111326349A (zh) * 2020-03-03 2020-06-23 华东师范大学 一种pim-1负载聚吡咯复合材料及制备方法和其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161367A1 (en) * 2015-04-03 2016-10-06 The Regents Of The University Of California Polymeric materials for electrochemical cells and ion separation processes
CN107213807A (zh) * 2016-03-22 2017-09-29 苏州信望膜技术有限公司 一种自微孔聚合物的合成及其膜的制备方法与应用
CN106328910A (zh) * 2016-11-22 2017-01-11 南阳师范学院 一种球形的氮掺杂碳材料与过渡金属氧化物的复合材料及其制备方法
CN111326349A (zh) * 2020-03-03 2020-06-23 华东师范大学 一种pim-1负载聚吡咯复合材料及制备方法和其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN WOO JEON: "Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high highperformance", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326349A (zh) * 2020-03-03 2020-06-23 华东师范大学 一种pim-1负载聚吡咯复合材料及制备方法和其应用
CN112321818A (zh) * 2020-11-20 2021-02-05 复旦大学 具有自微孔结构的高分子官能聚合物及其超组装制备方法
CN115096960A (zh) * 2022-06-24 2022-09-23 山东大学 一种高选择高灵敏碘蒸气电化学阻抗传感器及构建方法
CN115096960B (zh) * 2022-06-24 2023-08-11 山东大学 一种高选择高灵敏碘蒸气电化学阻抗传感器及构建方法

Also Published As

Publication number Publication date
CN110676065B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN109637831B (zh) 一种超级电容器用氮磷共掺杂多孔碳片的制备方法
CN110676065B (zh) 一种金属交联多孔碳材料及制备方法和其应用
CN108922790B (zh) 一种复合材料的制备方法和应用
CN110473712B (zh) 一种mof衍生纳米片插层材料及制备方法和其应用
AU2020101283A4 (en) Method for Manufacturing Straw-Based Activated Carbon Electrode Material for Super Capacitor with Energy Storage Efficiency Enhanced Through Acid Mine Drainage
CN111326349A (zh) 一种pim-1负载聚吡咯复合材料及制备方法和其应用
CN110634685A (zh) 一种ppy@ZIF-67复合材料及制备方法和其应用
CN105957723A (zh) 一种化学气相沉积法制备硒化钴超级电容器材料的方法
CN109192532B (zh) 一种超级电容器电极材料及其制备方法
CN111627726A (zh) 一种多孔泡沫镍负载氧化锰纳米片阵列的制备方法及应用
CN114843118B (zh) 具有多级孔电极复合材料go-c@m(oh)2及制备方法和应用
CN110718397B (zh) 一种碳点修饰的碱式碳酸镍/钴复合电极材料的制备方法
CN109859956B (zh) 一种氮掺杂的碳纳米片-Co3O4复合材料的制备方法及应用
CN114300276A (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用
CN110182806B (zh) 一种基于鸡树条衍生的多孔生物质炭电极材料的制备
CN113782346A (zh) 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极
CN113023704A (zh) 一种珊瑚状焦磷酸钴超级电容器电极材料的制备方法
CN111710535A (zh) 一种四氧化三锰/氧化锌复合材料及其制备方法和应用
CN110544767A (zh) 一种碳包覆三钛酸钠复合材料及其制备方法和应用
CN114496596B (zh) 一种泡沫镍-NiO/MnO2一体化电极材料、制备方法及应用
CN113113236B (zh) 一种以密胺泡绵为基底的锂离子电容器及其制备方法
CN114988405B (zh) 一种苦丁茶生物多孔碳材料的制备方法及应用
CN112886026B (zh) 一种芦苇花生物炭基电极材料及其制备方法
CN114974931B (zh) 锰基高电压窗口电极材料及超级电容器储能器件的制备
CN116313540B (zh) 一种电容器用电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant