CN110607561A - 一种单层过渡金属硫化物的制备方法 - Google Patents

一种单层过渡金属硫化物的制备方法 Download PDF

Info

Publication number
CN110607561A
CN110607561A CN201911032322.3A CN201911032322A CN110607561A CN 110607561 A CN110607561 A CN 110607561A CN 201911032322 A CN201911032322 A CN 201911032322A CN 110607561 A CN110607561 A CN 110607561A
Authority
CN
China
Prior art keywords
transition metal
metal sulfide
quartz tube
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911032322.3A
Other languages
English (en)
Inventor
谢黎明
巩凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN201911032322.3A priority Critical patent/CN110607561A/zh
Publication of CN110607561A publication Critical patent/CN110607561A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Abstract

本发明提供了一种单层过渡金属硫化物的制备方法,所述的制备方法包括:过渡金属硫化物与碱金属卤化物混合后高温加热得到所述的单层过渡金属硫化物。本发明通过使用碱金属卤化物辅助生长,通过加热碱金属卤化物和过渡金属硫化物形成共熔体,增大过渡金属硫化物的饱和蒸气压,能够实现较大面积单层过渡金属硫化物的连续生长和单畴区的可控生长。

Description

一种单层过渡金属硫化物的制备方法
技术领域
本发明属于电子和光电技术领域,涉及一种单层过渡金属硫化物的制备方法,尤其涉及一种实现大面积的单层过渡金属硫化物的制备方法。
背景技术
原子层厚度的单层半导体材料能够克服场效应晶体管的窄沟道效应,以及具有较低的功耗,是未来电子器件的候选材料之一。根据单层材料独特的性能优势,可以在场效应晶体管、储存器、振荡器、热辐射探测器、传感器、柔性器件中被广泛的应用。且高迁移率的单层原子晶体对逻辑器件、光谱检测、光电转换领域都具有很重要的推动作用。
二维过渡金属硫族化合物(TMDs)材料具有与石墨烯相类似的层状结构,涵盖了多种不同性质的材料,如金属性的1T'MoTe2、WTe2等,半导体性的MoS2、WSe2等以及绝缘体的Bi2Se3等。其中,大多数半导体性的二维TMDs材料具有层数依赖的带隙结构及较高的载流子迁移率等优异性质,有效弥补了石墨烯零带隙的缺点,有望在电子和光电器件中得到应用。
材料的制备决定未来,大面积、厚度均匀、高质量二维过渡金属硫族化合物材料的可控制备是实现其研究和应用的基础,但是目前还存在的成核和生长难以控制等挑战。
CN107522191A公开了一种基于自限制形核生长的大尺寸高质量石墨烯制备方法,包括如下步骤:(1)将铜箔进行抛光处理后,进行镍金属沉积覆盖;(2)将覆盖镍金属的铜箔放入生长腔内抽真空,通入保护气体,保持一定压强条件下,快速升温;(3)在温度到达生长温度时,通入氢气及甲烷进行石墨烯生长。
CN106567055A公开了一种大面积高质量完全单层的二硫化钨的制备方法,该方法采用化学气相沉积技术,以对钨溶解度极低的金为生长基体,在常压下利用钨源和硫源高温下在金基体表面催化反应,自限制生长高质量完全单层的二硫化钨的大尺寸单晶和大面积连续薄膜;利用常压条件下所得二硫化钨和金基体结合较弱的特点,分别采用鼓泡转移方法和鼓泡与卷对卷转移相结合的方法,在不破坏金基体的情况下,将大面积完全单层的二硫化钨转移至刚性目标基体和柔性目标基体上。
CN110257906A公开了一种二维过渡金属硫族化合物晶体的制备方法,所述制备方法包括如下步骤:(1)在加热装置中,沿着气流方向依次放置硫族单质源和过渡金属氧化物源;所述过渡金属氧化物源的表面覆盖有分子筛;所述过渡金属氧化物源的上方放置有生长基底;(2)向所述加热装置中通入保护性气体,升温至所述过渡金属氧化物源放置处的温度达到化学气相沉积温度、硫族单质源放置处的温度达到单质挥发温度,进行化学气相沉积,得到所述二维过渡金属硫族化合物晶体。
CN106757361A公开了一种基于CVD法生长MoS2二维晶体的方法,主要解决传统方法工艺较复杂,可控性差的问题。其实施步骤是:1.对衬底进行超声清洗,将S和MoO2前驱体置于两个独立的石英舟中,将衬底倒扣搭在装MoO2的舟上,并将两舟依次置于炉体反应腔中,在反应腔室内通入高纯氩气吹扫;2.快速加热MoO2粉末,降低升温速率将S粉推入120~220℃温区,使S蒸汽与MoO2蒸汽反应生成MoS2,沉积在倒扣于MoO2石英舟的衬底上;3.待炉体中心温度降至100℃以下时,将衬底取出,完成MoS2晶体制备。该发明成本较低,提高了生长过程的可调节性,但其得到的晶体形状单一,无法满足日益发展的电子和光电器件。
现有技术对于单层过渡金属硫化物的制备存在如下技术困难:
由于过渡金属硫化物在1000摄氏度以上会分解,而低温下过渡金属硫化物的蒸气压较低,无法获得较大面积单层过渡金属硫化物纳米薄膜的连续生长。因此,本领域亟待需要一种单层过渡金属硫化物的自限制生长的的方法,且获得的单层过渡金属硫族化物面积足够大。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种单层过渡金属硫化合物的制备方法,本发明通过使用碱金属卤化物辅助生长,通过加热碱金属卤化物和过渡金属硫化物形成共熔体,增大过渡金属硫化物的饱和蒸气压,能够实现较大面积单层过渡金属硫化物的连续生长和单畴区的可控生长。
为达此目的,本发明采用以下技术方案:
本发明提供了一种单层过渡金属硫化物的制备方法,所述的制备方法包括:
过渡金属硫化物与碱金属卤化物混合后高温加热得到所述的单层过渡金属硫化物。
本发明通过使用碱金属卤化物辅助生长,通过加热碱金属卤化物和过渡金属硫化物形成共熔体,增大过渡金属硫化物的饱和蒸气压,能够实现较大面积单层过渡金属硫化物的连续生长和单畴区的可控生长。
作为本发明一种优选的技术方案,所述的过渡金属硫化物的化学式为XY2,其中,X为Mo或W,Y为S或Se,例如过渡金属硫化物可以是MoS2、MoSe2、WS2或WSe2
优选地,所述的碱金属卤化物的纯度大于99.9%。
优选地,所述的碱金属卤化物的化学式为MN,其中,M为Na、K或Cs中的一种,N为Cl、Br或I中的一种,例如所述的碱金属卤化物可以是NaCl、NaBr、NaI、KCl、KBr、KI、CsCl、CsBr或CsI。
作为本发明一种优选的技术方案,所述的高温加热过程在物理气相沉积装置中进行。
优选地,所述的物理气相沉积装置包括加热装置、石英舟和石英管。
优选地,所述的加热装置为管式加热炉。
优选地,所述的石英管的长度为1~2m,例如可以是1.0m、1.1m、1.2m、1.3m、1.4m、1.5m、1.6m、1.7m、1.8m、1.9m或2.0m,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的石英管的长度为1.4m。
优选地,所述的石英管的直径为0.5~2英寸,例如可以是0.5英寸、0.6英寸、0.7英寸、0.8英寸、0.9英寸、1.0英寸、1.1英寸、1.2英寸、1.3英寸、1.4英寸、1.5英寸、1.6英寸、1.7英寸、1.8英寸、1.9英寸或2.0英寸,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的石英管的直径为1英寸。
优选地,所述的石英管的两端设置有真空阀。
优选地,所述的管式加热炉的长度短于石英管的长度。
作为本发明一种优选的技术方案,所述的制备方法具体包括:
(Ⅰ)将盛有过渡金属硫化物与碱金属卤化物的生长基底放入石英舟中;
(Ⅱ)石英舟放入石英管内,将石英管内部抽真空后通入保护性气体;
(Ⅲ)通过加热装置对石英管高温加热一段时间,过渡金属硫化物挥发后在基底表面沉积形成所述的单层过渡金属硫化物。
作为本发明一种优选的技术方案,步骤(Ⅰ)所述的基底为蓝宝石基底。
作为本发明一种优选的技术方案,所述的基底经过高温退火处理。
在本发明中,对基底进行退火处理的目的在于:去除基底上的悬挂键,例如:H2O、有机物等。
优选地,所述的退火温度为700~900℃,例如可以是700℃、710℃、720℃、730℃、740℃、750℃、760℃、770℃、780℃、790℃、800℃、810℃、820℃、830℃、840℃、850℃、860℃、870℃、880℃、890℃或900℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的蓝宝石基底的退火温度为800℃。
优选地,所述的退火时间为1~3h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h、2.0h、2.1h、2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h或3.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的蓝宝石基底的退火时间为2h。
作为本发明一种优选的技术方案,步骤(Ⅱ)所述的石英管抽真空至0.1~0.5Pa,例如可以是0.1Pa、0.2Pa、0.3Pa、0.4Pa或0.5Pa,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,将所述的石英管内部抽真空至0.1Pa。
作为本发明一种优选的技术方案,步骤(Ⅱ)所述的保护性气体为氩气。
优选地,所述的保护性气体通入的流速为5~15sccm,例如可以是5sccm、6sccm、7sccm、8sccm、9sccm、10sccm、11sccm、12sccm、13sccm、14sccm或15sccm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的保护性气体通入的流速为10sccm。
作为本发明一种优选的技术方案,步骤(Ⅲ)所述的加热温度为750~900℃,例如可以是750℃、760℃、770℃、780℃、790℃、800℃、810℃、820℃、830℃、840℃、850℃、860℃、870℃、880℃、890℃或900℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的加热温度为850℃。
优选地,所述的加热时间为0.5~2.5h,例如可以是0.5h、0.6h、0.7h、0.8h、0.9h、1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h、2.0h、2.1h、2.2h、2.3h、2.4h或2.5h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选地,所述的加热时间为1.5h。
作为本发明一种优选的技术方案,制备得到的单层过渡金属硫化物为连续薄膜。
优选地,所述的单层过渡金属硫化物的单晶形状为三角形或六边形。
优选地,所述的单层过渡金属硫化物的单晶尺寸>100μm。
本发明所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
与现有技术相比,本发明的有益效果为:
通过使用碱金属卤化物辅助生长,通过加热碱金属卤化物和过渡金属硫化物形成共熔体,增大过渡金属硫化物的饱和蒸气压,并得到较大单晶面积的单层过渡金属硫化物。
附图说明
图1为实施例1制备得到的二硫化钼的光学显微镜图像;
图2为实施例1制备得到的二硫化钼的原子力显微镜图像;
图3为实施例2制备得到的二硫化钨的光学显微镜图像;
图4为实施例2制备得到的二硫化钨的原子力显微镜图像;
图5为实施例3制备得到的二硒化钼的光学显微镜图像;
图6为实施例3制备得到的二硒化钼的原子力显微镜图像。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所采用的物理气相沉积装置为本领域公知的常用装置,具体包括:包括管式加热炉和石英管,其中,石英管长1.4m,直径1英寸,石英管的两端设置有真空阀,用于对石英管的内部进行抽真空和通入保护性气体。石英管要长于管式加热炉,管式加热炉在石英管中设置有一个独立的热电偶,用于加热石英管中的相应位置。
所述的制备方法具体包括如下步骤:
(1)取市售蓝宝石一块,将其切割成2×1cm的小片;经过800℃退火处理2h后待用。
(2)称取40mg的二硫化钼粉末和5.0g的碘化钠,将二者均匀混合后置于蓝宝石基底上,将蓝宝石基底放入石英舟中,将盛有蓝宝石基底的石英舟再缓慢推入石英管中的相应温度区域内。
(3)通过真空阀将石英管内部抽真空至0.1Pa,除去石英管内的氧化性气体;
(4)通过真空阀向石英管中持续通入100sccm流速的氩气至常压后将保护气体的流速调节到10sccm,并打开真空阀将石英管接通外界大气。打开管式炉加热相应区域,在20min内升温至850℃。
(5)保持850℃两个小时后关闭管式加热炉,停止加热,管式加热炉自然冷却到500℃。
(6)石英管自然冷却至室温后停止通入保护性气体,在蓝宝石基底上沉积得到了单层二硫化钼。
通过光学显微镜和原子力显微镜观察二硫化钼的表面微观形貌,图1为制备得到的二硫化钼薄膜的光学显微镜图片,图中标尺为50μm,由图1可以看出,二硫化钼单晶的最大尺寸超过了100μm。图2为制备得到的二硫化钼薄膜的原子力显微镜图片,图中标尺为5μm,本领域公知的是:单层晶体的厚度为0.7-1nm;少层晶体的厚度为1-10nm,约2-12层;厚层晶体的厚度大于10nm,层数大于12层,根据图2所示的原子力显微镜图片测量二硫化钼晶体厚度为0.76nm,由此可以认定,制备得到的二硫化钼薄膜为单层结构。
实施例2
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法与实施例1的区别在于:步骤(2)中的原料替换为50mg的二硫化钨和6.0g的氯化钠。
其他步骤与实施例1相同,最终经高温加热,在蓝宝石基底上沉积得到了单层二硫化钨。
通过光学显微镜和原子力显微镜观察二硫化钨的表面微观形貌,图3为制备得到的二硫化钨薄膜的光学显微镜图片,图中标尺为50μm,由图3可以看出,二硫化钨单晶的最大尺寸超过了100μm;图4为制备得到的二硫化钨薄膜的原子力显微镜图片,图中标尺为5μm,本领域公知的是:单层晶体的厚度为0.7-1nm;少层晶体的厚度为1-10nm,约2-12层;厚层晶体的厚度大于10nm,层数大于12层,根据图4所示的原子力显微镜图片测量二硫化钨晶体厚度为0.73nm,由此可以认定,制备得到的二硫化钨薄膜为单层结构。
实施例3
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法与实施例1的区别在于:步骤(2)中的原料替换为40mg的二硒化钼和6.0g的氯化铯。
通过光学显微镜和原子力显微镜观察二硒化钼的表面微观形貌,图5为制备得到的二硒化钼薄膜的光学显微镜图片,图中标尺为50μm,由图5可以看出,二硒化钼单晶的最大尺寸超过了100μm;图6为制备得到的二硒化钼薄膜的原子力显微镜图片,图中标尺为5μm,本领域公知的是:单层晶体的厚度为0.7-1nm;少层晶体的厚度为1-10nm,约2-12层;厚层晶体的厚度大于10nm,层数大于12层,根据图6所示的原子力显微镜图片测量二硒化钼晶体厚度为0.88nm,由此可以认定,制备得到的二硒化钼薄膜为单层结构。
实施例4
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法与实施例1的区别在于:步骤(2)中的原料替换为40mg的二硒化钨和5.0g的氯化钾。
其他步骤与实施例1相同,最终经高温加热,在蓝宝石基底上沉积得到了单层二硒化钨。
通过光学显微镜和原子力显微镜观察二硒化钨的表面微观形貌,由光学显微镜图片可以看出,制备得到的二硒化钨单晶的最大尺寸超过了100μm;由原子力显微镜图片可以看出,制备得到的二硒化钨单晶的厚度为0.8nm,属于单层结构。
实施例5
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法具体包括如下步骤:
(1)取市售蓝宝石一块,将其切割成2×1cm的小片;经过700℃退火处理3h后待用。
(2)称取40mg的二硫化钼粉末和5.0g的碘化钠,将二者均匀混合后置于蓝宝石基底上,将蓝宝石基底放入石英舟中,将盛有蓝宝石基底的石英舟再缓慢推入石英管中的相应温度区域内。
(3)通过真空阀将石英管内部抽真空至0.3Pa,除去石英管内的氧化性气体;
(4)通过真空阀向石英管中持续通入150sccm流速的氩气至常压后将保护气体的流速调节到15sccm,并打开真空阀将石英管接通外界大气。打开管式炉加热相应区域,在15min内升温至750℃。
(5)保持750℃,2.5小时后关闭管式加热炉,停止加热,管式加热炉自然冷却到400℃。
(6)石英管自然冷却至室温后停止通入氩气,在蓝宝石基底上沉积得到了单层二硫化钼。
通过光学显微镜和原子力显微镜观察二硫化钼的表面微观形貌,根据光学显微镜照片可以看出,制备得到的二硫化钼单晶的最大尺寸超过了100μm;根据原子力显微镜图片可以看出,制备得到的二硫化钼晶体厚度为0.7nm,属于单层结构。
实施例6
本实施例提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法具体包括如下步骤:
(1)取市售蓝宝石一块,将其切割成2×1cm的小片;经过900℃退火处理1h后待用。
(2)称取40g的二硫化钼粉末和5.0g的碘化钠,将二者均匀混合后置于蓝宝石基底上,将蓝宝石基底放入石英舟中,将盛有蓝宝石基底的石英舟再缓慢推入石英管中的相应温度区域内。
(3)通过真空阀将石英管内部抽真空至0.5Pa,除去石英管内的氧化性气体;
(4)通过真空阀向石英管中持续通入80sccm流速的氩气至常压后将保护气体的流速调节到5sccm,并打开真空阀将石英管接通外界大气。打开管式炉加热相应区域,在30min内升温至900℃。
(5)保持900℃两个小时后关闭管式加热炉,停止加热,管式加热炉自然冷却到500℃。
(6)石英管自然冷却至室温后停止通入氩气,在蓝宝石基底上沉积得到了单层二硫化钼。
通过光学显微镜和原子力显微镜观察二硫化钼的表面微观形貌,根据光学显微镜照片可以看出,制备得到的二硫化钼单晶的最大尺寸超过了100μm;根据原子力显微镜图片可以看出,制备得到的二硫化钼晶体厚度为0.7nm,属于单层结构。
对比例1
对比例1提供了一种采用物理气相沉积装置制备单层过渡金属硫化物的方法,所述的物理气相沉积装置与实施例1相同,所述的制备方法具体包括如下步骤:
(1)取市售蓝宝石一块,将其切割成2×1cm的小片;经过800℃退火处理2h后待用。
(2)称取g的二硫化钼粉末置于蓝宝石基底上,将蓝宝石基底放入石英舟中,将盛有蓝宝石基底的石英舟再缓慢推入石英管中的相应温度区域内。
(3)通过真空阀将石英管内部抽真空至0.1Pa,除去石英管内的氧化性气体;
(4)通过真空阀向石英管中持续通入100sccm流速的氩气至常压后将保护气体的流速调节到10sccm,并打开真空阀将石英管接通外界大气。打开管式炉加热相应区域,在20min内升温至850℃。
(5)保持850℃两个小时后关闭管式加热炉,停止加热,管式加热炉自然冷却到500℃。
(6)石英管自然冷却至室温后停止通入保护性气体,在蓝宝石基底上沉积得到了单层二硫化钼。
通过光学显微镜和原子力显微镜观察二硫化钼的表面微观形貌,根据光学显微镜照片可以看出,制备得到的二硫化钼单晶的最大尺寸为30μm;根据原子力显微镜图片可以看出,制备得到的二硫化钼晶体厚度为0.8nm,属于单层结构。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种单层过渡金属硫化物的制备方法,其特征在于,所述的制备方法包括:
过渡金属硫化物与碱金属卤化物混合后高温加热得到所述的单层过渡金属硫化物。
2.根据权利要求1所述的制备方法,其特征在于,所述的过渡金属硫化物的化学式为XY2,其中,X为Mo或W,Y为S或Se;
优选地,所述的碱金属卤化物的纯度大于99.9%;
优选地,所述的碱金属卤化物的化学式为MN,其中,M为Na、K或Cs中的一种,N为Cl、Br或I中的一种。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的高温加热过程在物理气相沉积装置中进行;
优选地,所述的物理气相沉积装置包括加热装置、石英舟和石英管;
优选地,所述的加热装置为管式加热炉;
优选地,所述的石英管的长度为1~2m,进一步优选地,所述的石英管的长度为1.4m;
优选地,所述的石英管的直径为0.5~2英寸,进一步优选地,所述的石英管的直径为1英寸;
优选地,所述的石英管的两端设置有真空阀;
优选地,所述的管式加热炉的长度短于石英管的长度。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述的制备方法具体包括:
(Ⅰ)将盛有过渡金属硫化物与碱金属卤化物的生长基底放入石英舟中;
(Ⅱ)石英舟放入石英管内,将石英管内部抽真空后通入保护性气体;
(Ⅲ)通过加热装置对石英管高温加热一段时间,过渡金属硫化物挥发后在基底表面沉积形成所述的单层过渡金属硫化物。
5.根据权利要求4所述的制备方法,其特征在于,步骤(Ⅰ)所述的基底为蓝宝石基底。
6.根据权利要求4或5所述的制备方法,其特征在于,步骤(Ⅰ)所述的基底经过高温退火处理;
优选地,所述的退火温度为700~900℃,进一步优选地,所述的蓝宝石基底的退火温度为800℃;
优选地,所述的退火时间为1~3h,进一步优选地,所述的蓝宝石基底的退火时间为2h。
7.根据权利要求4-6任一项所述的制备方法,其特征在于,步骤(Ⅱ)所述的石英管抽真空至0.1~0.5Pa;
优选地,将所述的石英管内部抽真空至0.1Pa。
8.根据权利要求4-7任一项所述的制备方法,其特征在于,步骤(Ⅱ)所述的保护性气体为氩气;
优选地,所述的保护性气体通入的流速为5~15sccm,进一步优选地,所述的保护性气体通入的流速为10sccm。
9.根据权利要求4-8任一项所述的制备方法,其特征在于,步骤(Ⅲ)所述的加热温度为750~900℃,进一步优选地,所述的加热温度为850℃;
优选地,所述的加热时间为0.5~2.5h,进一步优选地,所述的加热时间为1.5h。
10.根据权利要求1-9任一项所述的制备方法,其特征在于,制备得到的单层过渡金属硫化物为连续薄膜;
优选地,所述的单层过渡金属硫化物的单晶形状为三角形或六边形;
优选地,所述的单层过渡金属硫化物的单晶尺寸>100μm。
CN201911032322.3A 2019-10-28 2019-10-28 一种单层过渡金属硫化物的制备方法 Pending CN110607561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911032322.3A CN110607561A (zh) 2019-10-28 2019-10-28 一种单层过渡金属硫化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911032322.3A CN110607561A (zh) 2019-10-28 2019-10-28 一种单层过渡金属硫化物的制备方法

Publications (1)

Publication Number Publication Date
CN110607561A true CN110607561A (zh) 2019-12-24

Family

ID=68895300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911032322.3A Pending CN110607561A (zh) 2019-10-28 2019-10-28 一种单层过渡金属硫化物的制备方法

Country Status (1)

Country Link
CN (1) CN110607561A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285402A (zh) * 2020-02-18 2020-06-16 湖南大学 一种单层过渡金属硫化物的制备方法
CN111826713A (zh) * 2020-06-29 2020-10-27 南京大学 制备大面积过渡金属硫族化合物单晶的方法及其所得产品
CN113089088A (zh) * 2021-04-12 2021-07-09 东北师范大学 一种二维过渡金属硫族化合物的制备方法
CN113088922A (zh) * 2021-03-31 2021-07-09 西北工业大学 一种晶圆级绝对单层过渡金属硫族化合物的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938176A (zh) * 2014-04-10 2014-07-23 国家纳米科学中心 一种二维半导体合金、其制备方法及用途
CN105272358A (zh) * 2015-06-01 2016-01-27 湘潭大学 一种大面积单层及少层二硫化钼薄膜的制备方法
CN107021524A (zh) * 2017-05-18 2017-08-08 南京大学 水溶性盐辅助转移cvd二维过渡金属硫族化合物的方法
CN107587196A (zh) * 2017-09-05 2018-01-16 深圳大学 一种制备二维过渡金属二硫族化合物单晶的方法及设备
CN108193277A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 制备大面积单层二硒化钨单晶的方法
WO2018195004A1 (en) * 2017-04-17 2018-10-25 Massachusetts Institute Of Technology Chemical vapor transport growth of two-dimensional transition-metal dichalcogenides
CN109437124A (zh) * 2018-12-28 2019-03-08 吉林大学 一种合成单层过渡金属硫族化合物的方法
CN110241400A (zh) * 2019-06-17 2019-09-17 西安交通大学 无胶转移制备单层过渡金属硫族化合物纵向异质结的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938176A (zh) * 2014-04-10 2014-07-23 国家纳米科学中心 一种二维半导体合金、其制备方法及用途
CN105272358A (zh) * 2015-06-01 2016-01-27 湘潭大学 一种大面积单层及少层二硫化钼薄膜的制备方法
WO2018195004A1 (en) * 2017-04-17 2018-10-25 Massachusetts Institute Of Technology Chemical vapor transport growth of two-dimensional transition-metal dichalcogenides
CN107021524A (zh) * 2017-05-18 2017-08-08 南京大学 水溶性盐辅助转移cvd二维过渡金属硫族化合物的方法
CN107587196A (zh) * 2017-09-05 2018-01-16 深圳大学 一种制备二维过渡金属二硫族化合物单晶的方法及设备
CN108193277A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 制备大面积单层二硒化钨单晶的方法
CN109437124A (zh) * 2018-12-28 2019-03-08 吉林大学 一种合成单层过渡金属硫族化合物的方法
CN110241400A (zh) * 2019-06-17 2019-09-17 西安交通大学 无胶转移制备单层过渡金属硫族化合物纵向异质结的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRIAN J. MODTLAND,ET AL.: "Monolayer Tungsten Disulfide (WS2) via Chlorine-Driven Chemical Vapor Transport", 《SMALL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285402A (zh) * 2020-02-18 2020-06-16 湖南大学 一种单层过渡金属硫化物的制备方法
CN111826713A (zh) * 2020-06-29 2020-10-27 南京大学 制备大面积过渡金属硫族化合物单晶的方法及其所得产品
CN113088922A (zh) * 2021-03-31 2021-07-09 西北工业大学 一种晶圆级绝对单层过渡金属硫族化合物的制备方法和应用
CN113089088A (zh) * 2021-04-12 2021-07-09 东北师范大学 一种二维过渡金属硫族化合物的制备方法

Similar Documents

Publication Publication Date Title
CN110607561A (zh) 一种单层过渡金属硫化物的制备方法
Al-Jawhari A review of recent advances in transparent p-type Cu2O-based thin film transistors
CN105154849B (zh) 一种在金属基底上可控生长二维硫属化合物原子级薄膜的方法
Ma et al. Epitaxial growth of large area single-crystalline few-layer MoS2 with high space charge mobility of 192 cm2 V− 1 s− 1
KR101636442B1 (ko) 촉매합금을 이용한 그라핀의 제조방법
CN104389016B (zh) 一种快速制备大尺寸单晶石墨烯的方法
CN110228796B (zh) 一种薄层二维过渡金属碲基固溶体的制备方法
JP5967486B2 (ja) グラフェン基板の製造方法およびグラフェン基板
CN111146079B (zh) 一种二维金属-半导体范德华异质结阵列的合成及其应用
Li Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides
CN110104675B (zh) 一种碘化铅纳米材料及其制备方法和应用
Liu et al. Atomic layer deposited 2D MoS 2 atomic crystals: From material to circuit
CN112695381A (zh) 一种快速生长超薄大尺寸单晶过渡金属硫/硒化物的方法
CN108486656A (zh) 一种碲化铌二维材料及其合成和应用
Chen et al. Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe 2 with large domain size and fast growth rate
Chang et al. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition
Khimani et al. Study of indium and antimony incorporation into SnS2 single crystals
Guo et al. Influences of CuO phase on electrical and optical performance of Cu2O films prepared by middle frequency magnetron sputtering
CN104609406B (zh) 一种常压二段过程催化固体碳源合成石墨烯的方法
Shidpour et al. A general two-step chemical vapor deposition procedure to synthesize highly crystalline transition metal dichalcogenides: A case study of MoS2
CN113035692B (zh) 一种超宽禁带二维半导体GaPS4的制备方法
CN109019571A (zh) 层数可控氮掺杂石墨烯的制备方法
WO2017096626A1 (zh) 一种在石墨烯表面形成栅介质层及制备晶体管的方法
CN114086237A (zh) 一种大尺寸二维层状金属硫代磷酸盐晶体的制备方法
CN110668499A (zh) 铈掺杂的单分子层二硫化钨薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191224

WD01 Invention patent application deemed withdrawn after publication