CN110586112B - 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3 - Google Patents

一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3 Download PDF

Info

Publication number
CN110586112B
CN110586112B CN201910878840.0A CN201910878840A CN110586112B CN 110586112 B CN110586112 B CN 110586112B CN 201910878840 A CN201910878840 A CN 201910878840A CN 110586112 B CN110586112 B CN 110586112B
Authority
CN
China
Prior art keywords
ceo
hydrodeoxygenation
acid catalyst
solid acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910878840.0A
Other languages
English (en)
Other versions
CN110586112A (zh
Inventor
刘跃进
崔华敏
付琳
李勇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910878840.0A priority Critical patent/CN110586112B/zh
Publication of CN110586112A publication Critical patent/CN110586112A/zh
Application granted granted Critical
Publication of CN110586112B publication Critical patent/CN110586112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种含有弱酸和中强酸的催化剂Ni‑CeO2/Al2O3及其催化油酸乙酯加氢脱氧生成正十七烷生物燃油的方法,Ni/CeO2‑Al2O3催化剂催化活性高,易于与反应体系分离,重复使用性好,当催化剂、反应原料油酸乙酯、反应溶剂质量比为0.2~0.5:1:10,所加氢气压力2.5~3.0MPa,反应温度280~300℃,反应时间6~8h,得到加氢脱氧产物产物正十七烷生物燃油摩尔收率95%以,产品质量纯度百分数98%。

Description

一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3
技术领域
本发明属于生物质能源催化领域,涉及一种用于催化生物质加氢脱氧固体酸催化剂Ni/CeO2-Al2O3及其制备方法与应用。
背景技术
生物燃油是一种可再生能源,第一、二代生物柴油是通过动植物油脂与醇类物质(甲醇或乙醇)经酯交换反应得到的脂肪酸单烷基酯,但其含氧量高、不饱和程度大、凝固点高、热值低、粘性大,对生物质直接加氢脱氧能生产性能更加优良的生物燃油。负载Pt、Pd、Ru等贵金属以及含硫过渡金属的催化剂在加氢脱氧、脱羧、脱羰基等方面已取得应用,但存在贵金属成本与含硫催化剂的污染问题。此外,负载过渡金属的固体酸载体如HZSM-5、Al-SBA-15、SAPO-11等催化生物质油脂可得到较高收率的生物燃油液态烷烃产物,但由于过高的酸度,使得生物质油脂裂解和异构化反应难以避免,影响了目标产物的组成,而且这些载体在加氢脱氧过程中易积碳,从而降低催化活性或易使催化剂失活。针对上述问题,本发明制备一种含弱酸及中强酸的Ni/CeO2-Al2O3催化剂,金属Al2O3与 CeO2形成稳定的混合金属氧化物载体后,浸渍负载金属Ni再高温焙烧,制得具有弱酸和中强酸的催化剂Ni/CeO2-Al2O3,催化油酸乙酯加氢脱氧生成正十七烷生物燃油,其摩尔收率达95%以上,产物纯度达98%。
发明内容
本发明的目的
本发明旨在提供一种含有弱酸和中强酸的催化剂Ni-CeO2/Al2O3催化油酸乙酯加氢脱氧生成正十七烷生物燃油的方法。
本发明的技术方案
1.一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,其特征是:
(1)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3中,CeO2-Al2O3为载体, Ce与Al摩尔比1~4:1,Ni为加氢脱氧催化活性组分,Ni与载体CeO2-Al2O3质量比为0.1~0.15:1;
(2)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3同时具有弱、中强酸性,其中Al2O3提供弱酸与中强酸位点,酸性是依据NH3-TPD图中温度分布来划分的,200~250℃为弱酸性,250~350℃为中强酸性,避免强酸性下催化油酸乙酯加氢脱氧过程中易导致碳链裂解产生短链烷烃,得到产品纯度质量百分数98%的正十七烷生物燃油产品;
(3)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3为一种棒状介孔结构,棒长600~800nm,直径100~150nm,介孔孔径2~10nm,比表面积为100~120m2/g;
(4)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3通过CeO2中掺入Al2O3, 调节Ce与Al摩尔比在上述(1)所述的比例范围,使得Al3+进入Ce2+晶格中,阻碍基体相CeO2的生长,避免多个颗粒一次性聚集长大,从而减弱Ni与Ce的团聚现象发生,使得所负载Ni分散均匀,并具有较强的抗烧结能力,在 Ni/CeO2-Al2O3的TEM图片上没有明显团聚现象;
(5)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,是先用具有一定弱酸性与中强酸性的Al2O3掺杂表面缺陷丰富的CeO2,通过水热结晶、焙烧,形成具有弱酸和中强酸的CeO2-Al2O3载体,在浸渍硝酸镍溶液后再高温焙烧,使Ni 均匀分布在CeO2-Al2O3载体表面,得到所述的加氢脱氧固体酸催化剂 Ni/CeO2-Al2O3,具体过程如下:
将Ce(NO3)3·6H2O、Al(NO3)3·9H2O按照2.8~3.2:1的摩尔比溶解在去离子水中,形成0.28~0.32mol/L的溶液,加入与NO3 -离子2~4:1摩尔比的尿素,均匀搅拌至溶液澄清,将澄清液转入聚四氟乙烯内衬的反应器中100~120℃下晶化 4~8h,冷却至室温,将所形成的沉淀物抽滤,滤饼用去离子水洗涤至pH=7~8,在80~90℃下干燥过夜,所得固体研磨过筛,取100目的粉末置于箱式马弗炉中以2~3℃/min的升温速率升至450~550℃焙烧4~6h,冷却后即制得所述的含有弱酸及中强酸的CeO2-Al2O3载体;
将Ni(NO3)2·6H2O、以上所制备的CeO2-Al2O3载体、去离子水按照0.5~1:1:40 的质量比加入聚四氟乙烯内衬的反应器中,在40~60℃搅拌1~2h,升温至 90~110℃,蒸发除去水溶剂,将所得浅绿色片状沉淀80~100℃干燥过夜,研磨,再置于箱式马弗炉中以2~3℃/min升温速率升到450~550℃焙烧4~6h,冷却后,得到黄褐色固体粉末,再将其转移至石英管式炉,先通入N2排除空气,再连续通入H2,以5~8℃/min升温至450~550℃焙烧4~8h,冷却至室温,得到黑色固体粉末,即为所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3
所述连续通入H2,以5~8℃/min升温至450~550℃焙烧4~8h,是将加氢脱氧固体酸催化剂Ni/CeO2-Al2O3中的NiO组分经H2还原为活性组分单质金属Ni,同时还原部分CeO2,使得固体酸催化剂Ni/CeO2-Al2O3中同时存在Ce4+与Ce3+离子,催化剂载体表面的CeO2晶格氧缺失,形成氧空位带正电,对反应原料油酸乙酯有机物中的氧原子具有更强吸附作用,加快催化油酸乙酯加氢脱氧反应过程中的电子迁移,增强加氢脱氧固体酸催化剂Ni/CeO2-Al2O3的催化活性。
2.将1所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3催化油酸乙酯加氢脱氧生成正十七烷生物燃油产品的方法,其特征是:所加反应原料油酸乙酯、反应溶剂正十二烷、加氢脱氧固体酸催化剂Ni/CeO2-Al2O3的质量比0.1:1:0.02~0.05,反应器通入N2排除空气后再置换连续通入2.5~3MPa的H2,加热至反应温度 280~300℃反应6~8h,反应结束后冷却至室温,离心分离出加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,将无色透明的离心液用0.45μm滤膜过滤,所得液体抽真空 0.084~0.086MPa、130~150℃下蒸发回收反应溶剂正十二烷后,冷却至室温所得产品即为目标产物正十七烷生物燃油产品,其摩尔收率为95%,产品纯度质量百分数98%,回收离心分离的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3在80~100℃烘箱中干燥过夜,以2~3℃/min升温速率升至450~550℃焙烧4~6h后,作为加氢脱氧固体酸催化剂下次备用;
所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3在催化油酸乙酯加氢脱氧重复使用三次后,产物正十七烷摩尔收率仍达90%、产品纯度质量百分数98%。
本发明的技术特点与效果
Ni/CeO2-Al2O3固体酸催化剂制备过程简单,催化剂活性位点分布均匀,抗烧结能力强,重复使用性能好,易与产物分离,适合用于催化脂肪酸酯类脱氧合成直链烷烃生物燃油,催化剂与脂肪酸酯与溶剂质量比为0.02~0.05:0.1:1、反应温度280~300℃、反应时间6~8h,生物燃油正十七烷产物摩尔收率达95%、产品纯度质量百分数98%。
附图说明
图1a为反应完成后反应液(为了方便分析,加入一定量的内标物正十四烷 (C14),正十四烷与产物正十七烷性质相近,相对校正因子接近1,适合做内标物)、b为正十七烷(C17)标样与反应溶剂正十二烷(C12)混合液的气相谱图。由图1中a、b出峰时间对比可知,反应完成后反应液a中有产物正十七烷(C17)、反应溶剂正十二烷(C12)与内标物正十四烷(C14)。
图2为不同Ce-Al质量比例的载体CeO2-Al2O3的XRD图,其中a、b、c、d、e、f的Ce与Al摩尔比分别为1:3、1:2、1:1、2:1、3:1、4:1,2θ=28.6°、33.1°、 47.5°、56.4°、69.6°、76.8°、79.3°、88.6°分别对应于CeO2(JCPDS#65-5923)的(111)、(200)、(220)、(311)、(400)、(331)、(420)、(422)晶面,归属立方萤石结构的CeO2。在XRD中没有发现Al2O3的峰,是由于Al2O3以无定形状态存在, Al3+掺入到Ce4+晶格中,Al3+半径为0.057nm,小于Ce4+半径0.097nm,这样Al3+离子掺入会导致Ce4+晶格收缩。另外据表1不同Ce-Al质量比例载体CeO2-Al2O3样品晶格常数(依据谢乐公式由不同质量比例载体的XRD数据计算所得晶格常数,由jade软件计算)可知,所有CeO2-Al2O3晶格常数均小于CeO2的晶格常数,说明Al3+掺入到Ce4+晶格中导致Ce4+晶格收缩,从而XRD中没有Al2O3峰出现。
表1不同Ce-Al质量比例载体CeO2-Al2O3样品晶格常数
Figure BDA0002203516990000041
注:表中1、2、3、4、5、6样品中的Ce与Al摩尔比分别为1:3、1:2、1:1、2:1、 3:1、4:1,7为CeO2
图3为不同Ni负载量的Ni/CeO2-Al2O3的XRD图,其中a、b、c、d分别为负载Ni与载体CeO2-Al2O3质量比为0.05:1、0.1:1、0.15:1、0.2:1。与图2的a、 b、c、d比较,图3的a、b、c、d曲线峰形没有明显变化,且没有发现新的Ni 或NiO的峰,但在图6 H2-TPR上观测到了金属NiO的还原峰。这些综合一起证明了金属Ni在催化剂中分散分布均匀,CeO2-Al2O3载体负载Ni后本身晶型结构保持完整。
图4(a)、(b)分别为载体CeO2-Al2O3、催化剂Ni/CeO2-Al2O3(Ni与载体 CeO2-Al2O3质量比0.1:1)的SEM图,表明载体CeO2-Al2O3与Ni/CeO2-Al2O3大部分呈棒状形状,其长度在600nm~800nm,直径在100nm~150nm。
图5为催化剂Ni/CeO2-Al2O3的(Ni与载体CeO2-Al2O3质量比0.1:1)的TEM 图,其中(a)、(b)分辨率分别为50nm、20nm。从图(a)和(b)可知,在催化剂颗粒之间TEM图上没有明显的团聚现象。这是因为通过CeO2中掺入Al2O3,调节Ce/Al比例在3~1:1,利用金属Al3+进入Ce2+的晶格中,在100~110℃的水热及450~550℃煅烧过程中,阻碍基体相CeO2的生长,避免多个颗粒一次性聚集长大,同时活性组分Ni的负载量较少,载体比表面积大,分散均匀,从而减弱团聚现象发生。
图6为催化剂Ni/CeO2-Al2O3(Ni与载体CeO2-Al2O3质量比0.1:1)的H2-TPR 图,在250℃的还原峰属于NiO相与载体CeO2-Al2O3的弱相互作用,在330-350℃的峰转折归于与载体CeO2-Al2O3强相互作用的NiO相的还原,500℃的峰归属于 CeO2还原为Ce2O3,即催化剂存在部分的+3价的Ce2O3,CeO2-Al2O3载体表面 CeO2晶格氧缺失,形成氧空位带正电,对反应原料油酸乙酯有机物中的氧原子具有更强的吸附作用,加快反应过程中的电子迁移,增强催化活性。此外,大于 500℃的峰是Ni-Al相的混合物,难以被还原。这些铝酸盐可能是Ni与CeO2-Al2O3载体表面的Al-OH组分的相互作用。随着Ce与Al摩尔比增加,Ni还原峰前移,表明Ni更易被还原,这也证实了Ce的加入降低了Ni与载体的相互作用,使得 Ni的分散更为均匀,这些分析结论与图2XRD、图5TEM的分析吻合。
图7(a)、(b)分别为Ni/CeO2-Al2O3(Ni与载体CeO2-Al2O3质量比0.1:1)、 Ni/Al2O3(Ni与Al2O3质量比0.1:1)的NH3-TPD图,在NH3-TPD图中,250℃以下为弱酸性,250~350℃为中强酸。图7(a)、(b)中121℃与266℃出现的两个峰分别对应弱酸与中强酸。通过图7(a)、(b)中的121℃以及266℃峰的位置及峰的强度的对比发现,Ce的加入并没有改变两个峰的位置,说明Al2O3酸性位点分布没有发生变化,但随着Ce含量的增加,121℃处的弱酸性峰值明显提高,说明其酸度增加。
具体实施方式
下面通过实施例对本发明的技术方案及其实施方式予以说明,但本发明的技术方案及其实施方法并不限于以下实施例。
实施例1
1.制备Ni/CeO2-Al2O3催化剂
将Ce(NO3)3·6H2O与Al(NO3)3·9H2O按照3:1的摩尔比溶解在去离子水中形成0.3mol/L总浓度的溶液,加入与NO3 -离子3:1摩尔比的尿素,均匀搅拌至溶液澄清,再将混合溶液转入聚四氟乙烯内衬的反应器中在110℃晶化4h,冷却至室温,将所形成的沉淀物抽滤,滤饼用去离子水洗涤至中性(pH=7),在80℃下恒温干燥过夜,所得固体研磨过筛,取100目的粉末置于箱式马弗炉中以 2℃/min的升温速率至500℃焙烧4h,冷却后即制得所述的含有弱酸及中强酸的 CeO2-Al2O3载体;
再将Ni(NO3)2·6H2O、以上所制备的CeO2-Al2O3载体、去离子水按照0.495:1:40的质量比加入聚四氟乙烯内衬的反应器中,在40℃搅拌2h,升温至 90℃,蒸发除去水溶剂,将所得的浅绿色片状固体在80℃恒温干燥过夜后,研磨,再置于箱式马弗炉中以2℃/min的升温速率升到500℃焙烧4h,冷却后,转移至卧式石英管式炉,先通入N2排除空气,再连续通入H2,以5℃/min升温至 500℃保持6h,冷却至室温,得到黑色固体粉末,即为Ni/CeO2-Al2O3固体酸催化剂,其中所负载Ni与载体CeO2-Al2O3质量比0.1:1,其中Ce与Al摩尔比3:1。
2.催化合成生物柴油
将1所制备的催化剂Ni-CeO2/Al2O3、反应原料油酸乙酯、反应溶剂正十二烷按照0.2:1:10的质量比加入反应器中,反应前通入N2排除空气后,再通入2.5 MPa的H2,反应温度300℃,反应时间6h,反应结束冷却至室温,离心分离出下层催化剂,将上层无色透明液用0.45μm滤膜过滤,所得液体抽真空0.086MPa、 130℃下蒸发回收其中反应溶剂正十二烷后,冷却至室温所得产品即为生物燃油产物正十七烷,其摩尔收率为97%、产品纯度质量百分数99%。将分离所得的催化剂沉淀过滤,滤饼用无水乙醇洗涤三次,100℃恒温干燥箱干燥12h,再以 2℃/min的升温速率升至500℃,焙烧4h,作为催化剂备下次使用,催化剂使用前经管式炉通入N2排除空气后,再通入H2,以5℃/min升温至500℃还原6h。
实施例2操作步骤同实施例1,但催化剂中Ce与Al摩尔比0.5:1,得生物燃油产物正十七烷摩尔收率为77%、产品纯度质量百分数98%。
实施例3操作步骤同实施例1,但催化剂中Ce与Al摩尔比1:1,得生物燃油产物正十七烷摩尔收率为94%、产品纯度质量百分数98%。
实施例4操作步骤同实施例1,但催化剂中Ce与Al摩尔比2:1,得生物燃油产物正十七烷摩尔收率94%、产品纯度质量百分数98%。
实施例5操作步骤同实施例1,但催化剂中Ce与Al摩尔比4:1,得生物燃油产物正十七烷摩尔收率93%、产品纯度质量百分数98%。
实施例6操作步骤同实施例1,,但催化剂中Ce与Al摩尔比1:3,反应温度 280℃,得生物燃油产物正十七烷摩尔收率29%、产品纯度质量百分数28%。
实施例7操作步骤同实施例1,但催化剂中Ce与Al摩尔比1:1,反应温度 280℃,得生物燃油产物正十七烷摩尔收率61%、产品纯度质量百分数61%。
实施例8操作步骤同实施例1,但催化剂中Ce与Al摩尔比2:1,反应温度 280℃,得生物燃油产物正十七烷摩尔收率62%、产品纯度质量百分数53%。
实施例9操作步骤同实施例1,但反应温度280℃,得生物燃油产物正十七烷摩尔收率97%、产品纯度质量百分数99%。
实施例10操作步骤同实施例1,但催化剂中Ce与Al摩尔比4:1,反应温度 280℃,得生物燃油产物正十七烷摩尔收率82%、产品纯度质量百分数98%。
实施例11操作步骤同实施例1,但反应温度240℃,得生物燃油产物正十七烷摩尔收率22%、产品纯度质量百分数24%。
实施例12操作步骤同实施例1,但反应温度260℃,得生物燃油产物正十七烷的摩尔收率25%、产品纯度质量百分数27%。
实施例13操作步骤同实施例1,但反应温度320℃,得生物燃油产物正十七烷的摩尔收率70%、产品纯度质量百分数80%。
实施例14操作步骤同实施例1,但催化剂用量为实施例1的一半,得生物燃油产物正十七烷摩尔收率78%、产品纯度质量百分数82%。
实施例15操作步骤同实施例1,但催化剂用量为实施例1的1.5倍,得生物燃油产物正十七烷摩尔收率95%、产品纯度质量百分数98%。
实施例16操作步骤同实施例1,但催化剂用量为实施例1的二倍,得生物燃油产物正十七烷摩尔收率96%、产品纯度质量百分数98%。
实施例17操作步骤同实施例1,但催化剂用量为实施例1的2.5,得生物燃油产物正十七烷摩尔收率97%、产品纯度质量百分数99%。
实施例18操作步骤同实施例1,但反应时间为2h,得生物燃油产物正十七烷摩尔收率60%、产品纯度质量百分数63%。
实施例19操作步骤同实施例1,但反应时间为4h,得生物燃油产物正十七烷摩尔收率75%、产品纯度质量百分数83%。
实施例20操作步骤同实施例1,但反应时间为8h,得生物燃油产物正十七烷摩尔收率96%、产品纯度质量百分数98%。
实施例21操作步骤同实施例1,但催化剂中所负载Ni与载体CeO2-Al2O3质量比为0.05:1,得生物燃油产物正十七烷的摩尔收率69%、产品纯度质量百分数76%。
实施例22操作步骤同实施例1,但催化剂中所负载Ni与载体CeO2-Al2O3质量比为0.15:1,得生物燃油产物正十七烷摩尔收率95%、产品纯度质量百分数 99%。
实施例23操作步骤同实施例1,但催化剂中所负载Ni与载体CeO2-Al2O3质量比为0.2:1,得生物燃油产物正十七烷摩尔收率75%、产品纯度质量百分数 98%。
实施例24操作步骤同实施例1,但催化剂为使用一次后回收所得,得生物燃油产物正十七烷摩尔收率94%、产品纯度质量百分数99%。
实施例25操作步骤同实施例1,但催化剂为使用两次后回收所得,得生物燃油产物正十七烷摩尔收率91%、产品纯度质量百分数98%。
实施例26操作步骤同实施例1,但催化剂为使用三次后回收所得,得生物燃油产物正十七烷摩尔收率90%、产品纯度质量百分数98%。
表1实施例1~27操作条件及反应结果
Figure BDA0002203516990000081
Figure BDA0002203516990000091
注:实施例24、25、26分别为反应后所回收催化剂循环使用1、2、3次。

Claims (1)

1.一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3用于催化油酸乙酯加氢脱氧生成正十七烷生物燃油产品的方法,其特征是:
(1)将反应原料油酸乙酯、反应溶剂正十二烷、加氢脱氧固体酸催化剂Ni/CeO2-Al2O3按0.1:1:0.02~0.05的质量比加入反应器,通入N2排除空气后再置换连续通入2.5~3MPa的H2,加热至反应温度280~300℃反应6~8h,反应结束后冷却至室温,离心分离出加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,将无色透明的离心液用0.45μm滤膜过滤,所得液体抽真空0.084~0.086MPa、130~150℃下蒸发回收反应溶剂正十二烷后,冷却至室温所得产品即为目标产物正十七烷生物燃油产品,其摩尔收率为95%,产品纯度质量百分数98%,回收离心分离的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3在80~100℃烘箱中干燥过夜,以2~3℃/min升温速率升至450~550℃焙烧4~6h后,作为加氢脱氧固体酸催化剂下次备用;
所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3在催化油酸乙酯加氢脱氧重复使用三次后,产物正十七烷摩尔收率仍达90%、产品纯度质量百分数98%;
(2)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3中,CeO2-Al2O3为载体,其中氧化铝以无定形状态存在,Ce与Al摩尔比1~4:1,Ni为加氢脱氧催化活性组分,Ni与载体CeO2-Al2O3质量比0.1~0.15:1;
(3)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3同时具有弱、中强酸性,适合催化油酸乙酯加氢脱氧,避免强酸催化油酸乙酯加氢脱氧易导致碳链裂解产生短链烷烃,得到纯度较高的正十七烷生物燃油产品;
(4)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3为一种棒状介孔结构,棒长600~800nm,直径100~150nm,介孔孔径2~10nm,比表面积为100~120m2/g;
(5)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3通过CeO2中掺入Al2O3,调节Ce与Al摩尔比在上述(2)所述的比例范围,使得Al3+进入Ce2+晶格中,阻碍基体相CeO2的生长,避免多个颗粒一次性聚集长大,从而减弱Ni与Ce的团聚现象发生,使得所负载Ni分散均匀,并具有较强的抗烧结能力;
(6)所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,是先用具有一定弱酸性与中强酸性的Al2O3掺杂表面缺陷丰富的CeO2,通过水热结晶、焙烧,形成具有弱酸和中强酸的CeO2-Al2O3载体,在浸渍硝酸镍溶液后再高温焙烧,使Ni均匀分布在CeO2-Al2O3载体表面,得到所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3,具体过程如下:
将Ce(NO3)3·6H2O、Al(NO3)3·9H2O按照2.8~3.2:1的摩尔比溶解在去离子水中,形成0.28~0.32mol/L的溶液,加入与NO3 -离子2~4:1摩尔比的尿素,均匀搅拌至溶液澄清,将澄清液转入聚四氟乙烯内衬的反应器中100~120℃下晶化4~8h,冷却至室温,将所形成的沉淀物抽滤,滤饼用去离子水洗涤至pH=7~8,在80~90℃下干燥过夜,所得固体研磨过筛,取100目的粉末置于箱式马弗炉中以2~3℃/min的升温速率升至450~550℃焙烧4~6h,冷却后即制得所述的含有弱酸及中强酸的CeO2-Al2O3载体;
将Ni(NO3)2·6H2O、以上所制备的CeO2-Al2O3载体、去离子水按照0.5~1:1:40的质量比加入聚四氟乙烯内衬的反应器中,在40~60℃搅拌1~2h,升温至90~110℃,蒸发除去水溶剂,将所得浅绿色片状沉淀80~100℃干燥过夜,研磨,再置于箱式马弗炉中以2~3℃/min升温速率升到450~550℃焙烧4~6h,冷却后,得到黄褐色固体粉末,再将其转移至石英管式炉,先通入N2排除空气,再连续通入H2,以5~8℃/min升温至450~550℃焙烧4~8h,冷却至室温,得到黑色固体粉末,即为所述的加氢脱氧固体酸催化剂Ni/CeO2-Al2O3
所述连续通入H2,以5~8℃/min升温至450~550℃焙烧4~8h,是将加氢脱氧固体酸催化剂Ni/CeO2-Al2O3中的NiO组分经H2还原为活性组分单质金属Ni,同时还原部分CeO2,使得固体酸催化剂Ni/CeO2-Al2O3中同时存在Ce4+与Ce3+离子,催化剂载体表面的CeO2晶格氧缺失,形成氧空位带正电,对反应原料油酸乙酯有机物中的氧原子具有更强吸附作用,加快催化油酸乙酯加氢脱氧反应过程中的电子迁移,增强加氢脱氧固体酸催化剂Ni/CeO2-Al2O3的催化活性。
CN201910878840.0A 2019-09-17 2019-09-17 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3 Active CN110586112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878840.0A CN110586112B (zh) 2019-09-17 2019-09-17 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878840.0A CN110586112B (zh) 2019-09-17 2019-09-17 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3

Publications (2)

Publication Number Publication Date
CN110586112A CN110586112A (zh) 2019-12-20
CN110586112B true CN110586112B (zh) 2022-04-01

Family

ID=68860374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878840.0A Active CN110586112B (zh) 2019-09-17 2019-09-17 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3

Country Status (1)

Country Link
CN (1) CN110586112B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715229A (zh) * 2020-07-29 2020-09-29 湘潭大学 一种无硫镍基催化剂催化月桂酸甲酯加氢脱氧的方法
CN113198485B (zh) * 2021-05-18 2022-08-16 贵州大学 一种铝铈复合氧化物催化剂及制备方法及应用
CN116102709B (zh) * 2023-02-23 2023-09-15 旭川化学(苏州)有限公司 一种用于轮胎实芯填充的聚氨酯组合料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455961A (zh) * 2008-12-12 2009-06-17 北京化工大学 一种球形含铈氧化铝及其制备方法
US8629310B2 (en) * 2012-03-09 2014-01-14 Phillips 66 Company Transportation fuels from biomass oxygenates
CN103433018B (zh) * 2013-09-09 2015-08-12 王成瑞 一种CeO2/γ-Al2O3多级结构复合微球的制备方法
CN103725305B (zh) * 2013-12-17 2016-02-24 中国科学院广州能源研究所 一种高级脂肪酸甲酯制备烃类液体燃料的方法
CN105733646B (zh) * 2014-12-08 2017-11-03 中国石油化工股份有限公司 一种高级脂肪酸酯加氢制烃的方法
CN104673352B (zh) * 2015-01-30 2016-09-14 浙江大学 一种以地沟油为原料低氢耗制备长链烷烃的方法
CN110227473B (zh) * 2019-07-05 2022-03-15 湘潭大学 一种短纳米棒状固体酸催化合成γ-戊内酯的方法

Also Published As

Publication number Publication date
CN110586112A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110586112B (zh) 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3
CN111111679B (zh) 一种无硫镍钼双金属加氢脱氧催化剂
CN106140165B (zh) 多孔炭载双晶相钴基费托合成催化剂及其制备方法与应用
CN110844900B (zh) 一种以废轮胎为原料制备碳纳米管的方法
CN110773192A (zh) 一种碳负载高熵单原子催化剂的制备方法
CN104001538A (zh) 二氧化铈改性镍负载sba-15催化剂及其制备方法和应用
CN112675865A (zh) 一种高活性、高稳定性担载镍催化剂及其制备方法和应用
WO2023010709A1 (zh) 一种磷掺杂的镍铝氧化物及其制备方法与应用
CN109482212B (zh) 一种低温自组装碳化钼纳米线催化剂的制备及其生物质加氢脱氧应用
WO2020109304A1 (en) Preparation method for preparing a catalyst based on iron nanoparticles, cobalt nanoparticles or alloys thereof, the catalyst thus prepared and use of the catalyst for the selective hydrogenation of carbon dioxide to isobutane
CN110756194A (zh) 一种无硫镍基加氢脱氧催化剂及其应用
CN112657519B (zh) 一种介孔结构磷化镍-磷酸锆复合催化剂及其制备方法与应用
CN110935473B (zh) 加氢脱氧催化剂及其制备方法与应用
CN111054356B (zh) 一种加氢脱氧Ni/La2O3-SiO2催化剂及应用
CN110787804A (zh) 一种加氢脱氧无硫镍基Ni/Al2O3-ZrO2催化剂
CN111909737B (zh) 一种催化棕榈酸甲酯加氢脱氧转化为生物燃油的方法
Mao et al. Acid-base bifunctional Fe-NC catalyst with Fe-N4 and Fe nanoparticles active sites derived from Fe-doped ZIF-8 boosted microalgal lipid conversion
CN102319567A (zh) 一种埃洛石负载钴基催化剂的制备方法和应用
CN114522716A (zh) 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用
CN109046438B (zh) 一种双活性Ni2P/Zr-SBA-15催化剂及其制备方法和应用
Luo et al. Synthesis of etheric ester based biofuel additive over bifunctional metal/zeolite catalysts comprising NiRe nanoparticles and Beta zeolite
CN116196921B (zh) 一种用于天然气车尾气净化的三维有序大孔锰酸镧负载钯单原子催化剂
Liu et al. Synthesis of mesoporous Pt@ SAPO-11 via in situ encapsulation for the decarboxylation of oleic acid to prepare C8–C17 alkanes
CN115364856B (zh) 一种用于果糖加氢制甘露醇的催化剂及其制备方法
CN111715229A (zh) 一种无硫镍基催化剂催化月桂酸甲酯加氢脱氧的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant