CN114522716A - 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用 - Google Patents

一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用 Download PDF

Info

Publication number
CN114522716A
CN114522716A CN202210232029.7A CN202210232029A CN114522716A CN 114522716 A CN114522716 A CN 114522716A CN 202210232029 A CN202210232029 A CN 202210232029A CN 114522716 A CN114522716 A CN 114522716A
Authority
CN
China
Prior art keywords
supported catalyst
salt
aviation kerosene
catalyst
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210232029.7A
Other languages
English (en)
Other versions
CN114522716B (zh
Inventor
崔勍焱
杨卓莹
王廷海
袁珮
张宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210232029.7A priority Critical patent/CN114522716B/zh
Publication of CN114522716A publication Critical patent/CN114522716A/zh
Application granted granted Critical
Publication of CN114522716B publication Critical patent/CN114522716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明设计制备适用于油脂加氢转化制备生物航空煤油的非贵双金属负载型催化剂,将其应用在棕榈油加氢脱氧、裂化/异构化反应中生产C8~C16烃类范围的生物航空煤油。本发明以镍为主要金属,添加第二过渡金属,以碱液沉淀负载在酸性载体上制备而得的双金属负载型催化材料,金属高度分散在载体表面,大大提高了催化剂加氢脱氧性能,在棕榈油的加氢脱氧、裂化异构化反应中,油脂转化率高达100%,生物航空煤油收率可达60%,并减少碳损失,因而在油脂加氢转化生产生物航空煤油工艺上具有良好的应用前景。

Description

一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化 制备生物航空煤油中的应用
技术领域
本发明涉及一种加氢脱氧催化剂的制备,主要是用于油脂一步加氢脱氧裂化异构化生产生物航空煤油,属于能源化工技术领域。
背景技术
航空业作为21世纪的造碳大户之一,在化石能源危机及减碳目标的双重压力下,发展可持续航空燃料势在必行。传统航空煤油是石油经加氢裂化和催化裂化加工成的产品,主要组成成分是碳数范围为C8~C16的正构烷烃、带支链的异构烷烃、环烷烃及少量芳烃,而生物航空煤油是从生物质原料直接或间接转化而来。生物航空煤油在燃烧热值、能量密度、冷凝点、润滑性能满足石油基航空煤油的性能指标基础上,同时具有较低的硫氮含量,热稳定性较高,低温流动性较好,在整个生命周期中至少可以减少80%的碳排放,可持续和环境友好。
目前,制备生物航空煤油的技术路线有四种,分别是根据原料的特点而命名的醇类制备路线(ATJ)、合成气制备路线(GTJ)、糖类制备路线(STJ)以及油脂类制备路线(OTJ)。OTJ技术路线的整体投资成本相对于ATJ、STJ及GTJ路线低,工艺流程相对简单,产品质量较好,且收率高,是目前最具竞争力优势的制备生物航空煤油的技术路线。发明专利CN113004953A、EP3795657A1、KR20210158492A、US10793785B2中公布的生产生物航空燃料的方法均是采用油脂加氢脱氧技术。
油脂制备生物航空煤油的技术路线有两段加氢工艺和一步加氢工艺。两段加氢工艺中,反应条件不同,催化剂不同,第一段加氢完成不饱和双键的加氢及脂肪酸酯的脱氧,得到的长链烷烃在第二段加氢中裂化、异构化得到航空煤油碳数范围的烃类。一步加氢工艺,能在同个反应器、同种催化剂下,一步实现油脂的加氢脱氧、裂化异构化,这将大大简化生产流程,提高生产效率,同时降低能耗,减少生产成本。因此,构建高效且稳定的具有双键加氢、酯基脱氧、烷烃裂化/异构化性能的催化剂是油脂制生物航空煤油的关键。
发明专利(CN103920528A)公开了一种用于油脂一步加氢脱氧裂化异构化制航空煤油组分的催化剂及其制备方法。其采用贵金属Pt、Pd、Ru作为活性组分负载于复合载体Beta-Al2O3上,对于油脂的转化率能达到100%,航空煤油组分收率可达72.3%,尽管贵金属类催化剂表现了优异的加氢脱氧活性及产物选择性,但贵金属成本较高,且对反应环境中的杂质、水等敏感,易中毒失活,不利于在加氢脱氧生产生物航空煤油工业上的广泛应用。
发明专利(CN111250156A)公布的一种磷化镍负载在SAPO-11载体上的催化剂的制备方法在脂肪酸甲酯的加氢脱氧-异构化反应中具有较高的加氢活性及异构烷烃选择性,具有优良的耐硫、耐水性,但磷化物类催化剂制备过程相对不可控,在空气中易氧化,稳定性差。
单一金属组分的催化剂存在着不稳定金属组分易流失、易失活及结焦的问题,利用第二种金属组成双金属催化剂能够产生协同效应、几何结构效应、电子结构效应及稳定效应,表现出两种金属的组合性能,极大地提高催化活性,增强催化剂稳定性。文献Renewable Energy. 180(2021)1-13中,将Cu引入到Ni/Al2O3中,Ni金属的分散性和电子密度都得到了提高,在脂肪酸酯的加氢脱氧反应中,双金属Ni1Cu1/Al2O3催化剂表现出优于单金属Ni/Al2O3、贵金属Pd/C及硫化态NiMo/Al2O3催化剂的加氢脱氧活性。文献AppliedCatalysis B: Environmental. 224(2018)88-100. 将亲氧性Zn原子加入到Ni/Al2O3催化剂中,二者形成合金,提高了催化活性,由于几何和电子效应的影响,形成NiZn合金,电子由Ni转移到Zn,导致Ni位周围电子云密度减小,从而利于吸附C=O,且不利于C-C键的氢解,在NiZn/Al2O3在对月桂酸甲酯的加氢脱氧反应中,促进了HDO脱氧路线,DCO/DCO2脱羰脱羧路线受抑制。然而上述催化剂制备所用载体为氧化铝,不具备异构化裂化反应所需的B酸及孔道结构,不适用于成分复杂的棕榈油加氢转化制备生物航空煤油。
发明专利(CN105921168A)公布了一种加氢脱氧异构化催化剂NiFeCNTSAPO-11的制备方法及其在植物油加氢转化为生物航空煤油中的应用,生物航煤收率可达78~85%,但该催化剂制备过程相对复杂,其所用的镍盐和铁盐为有机酞菁盐,价格昂贵且不够绿色环保,不利于工业生产应用。
发明内容
在上述背景技术下,本发明的目的在于提供一种制备方法简单、催化性能稳定高效的用于棕榈油生产生物航空煤油的催化剂,
为实现上述目的,本发明的技术方案如下:
一种双金属负载型催化剂的制备方法包括以下步骤:
(1)将镍盐和第二种金属盐按照一定金属摩尔比均匀溶解于去离子水中,形成混合金属盐溶液;
(2)配制一定浓度的碱溶液;
(3)称取适量的固体酸载体,加入到步骤(1)所得的混合盐溶液中;
(5)将碱液匀速逐滴滴加至步骤(3)所得的混合液中;
(6)步骤(1)中所用的镍盐和第二种金属盐的量按摩尔比9:1~1:9进行混合。所述镍盐为乙酸镍、氯化镍、硝酸镍、硫酸镍中的任意一种,第二种金属盐为铜盐、铁盐、镁盐、锌盐、锰盐中的任意一种。所得混合金属盐溶液的总摩尔浓度为0.1~1 mol/L;
(7)步骤(2)中所述碱溶液所用的碱为碳酸钠、碳酸氢钠、氢氧化钠、氢氧化钾、尿素、氨水中的一种或两种,碱液浓度为0.05~5.0mol/L;
(8)步骤(3)中所述固体酸性载体为Beta(Si/Al=25~300)、ZSM-5(Si/Al=20~300)、USY(Si/Al=15~200)、SAPO-11(Si/Al=25~300)中的任意一种,与步骤(1)混合盐溶液充分搅拌均匀。
(9)将步骤(5)得到的混合液放于水浴锅中,水浴温度25~95℃,然后将碱液逐滴滴加进去,同时保证搅拌速度不低于300 rpm,调节pH不低于8,之后在密封状态下继续水浴4~12 h。
(10)将步骤(9)所得混合液室温陈化2~8 h后,抽滤洗涤至中性,烘箱干燥时间不低于6 h,温度不低于60℃;马弗炉焙烧时间不低于2 h(优选为3~5 h),温度不低于400℃(优选为450~600℃)。
(11)步骤(10)所得固体样品于管式炉中氢气进行还原,还原温度450~700℃,还原时间2~5 h,得到双金属负载型催化剂。
(12)步骤(11)所得的双金属负载型催化剂中,金属负载量为1~20 wt.%。
本发明所得双金属负载型催化剂可应用于棕榈油加氢脱氧制备生物航空煤油,其应用方法具体是以棕榈油(24、33、44、52、58度中的一种)为原料油,将固体催化剂粉体与棕榈油共同加入到反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行反应,所得产物经离心分离固体物质。所述反应过程的操作条件为:反应温度250~400℃(优选为300~380℃),氢气压力2~8 MPa(优选为4~8 MPa),搅拌速率300~800 rpm,催化剂用量为1~20 wt.%(优选为3 wt.%)。
本发明具有如下优点:
(1)本发明提供的双金属负载型催化剂的制备工艺绿色简单,成本低廉,制得的催化剂金属颗粒更小且均匀分散在载体表面,提高了金属位点与酸性位点协同作用,从而加氢脱氧、裂化、异构化性能优异,且抗积碳性能好。
(2)本发明制得的高活性双金属催化剂在棕榈油加氢转化制备生物航空煤油的应用中,能实现油脂的完全转化,生物航空煤油收率高,促进加氢脱氧路径向HDO转化,能减少碳损失,在工业生产中应用前景良好。
具体实施方式
为了进一步了解本发明,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
对比例
将0.01 mol六水合氯化镍,搅拌溶解于100 mL去离子水中,形成溶液A,然后将5.3g Beta分子筛粉末加入到A溶液中,以一定速度搅拌均匀形成悬浊液B。然后配制0.05mol/L的NaOH碱溶液C,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6 h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得单金属Ni/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的单金属Ni/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度350℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例1
将0.009 mol六水合氯化镍,0.001 mol六水合氯化铁,共同搅拌溶解于100 mL去离子水中,形成溶液A,然后将5.3 g Beta分子筛粉末加入到A溶液中,以一定速度搅拌均匀形成悬浊液B。然后配制0.05mol/L的NaOH碱溶液C,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6 h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiFe/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的双金属NiFe/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度350℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例2
将0.008 mol六水合氯化镍,0.002mol六水合氯化铁,共同搅拌溶解于100 mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6 h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得单金属NiFe/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的双金属NiFe/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度350℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例3
将0.007 mol六水合氯化镍,0.003 mol六水合氯化铁,共同搅拌溶解于100 mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6 h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得单金属NiFe/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的双金属NiFe/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度350℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例4
将0.008 mol硝酸镍六水合物,0.002 mol硝酸铁九水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiFe/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的双金属NiFe/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度350℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例5
将0.008 mol硝酸镍六水合物,0.002 mol硝酸铁九水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiFe/Beta催化剂。
取50 g棕榈油原料油和3.0 g制备的双金属Ni/Beta催化剂,装入高温高压反应釜中,用氮气吹扫反应器及管路中的空气,再用氢气置换残留氮气,然后向反应釜中充入普氢进行加氢反应,反应条件为:温度370℃,氢气压力5.0 MPa,搅拌速率500 rpm,反应4 h后产物经过过滤分离,液相产物进行GC-MS分析产物组成。
实施例6
将0.008 mol硝酸镍六水合物,0.002 mol硝酸铜九水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiCu/Beta催化剂。
催化剂对棕榈油加氢转化制备生物航空煤油的实验条件同实施例5,反应结果见表1。
实施例7
将0.008 mol硝酸镍六水合物,0.002 mol硝酸锌六水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiZn/Beta催化剂。
催化剂对棕榈油加氢转化制备生物航空煤油的实验条件同实施例5,反应结果见表1。
实施例8
将0.008 mol硝酸镍六水合物,0.002 mol硝酸镁六水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiMg/Beta催化剂。
催化剂对棕榈油加氢转化制备生物航空煤油的实验条件同实施例5,反应结果见表1。
实施例9
将0.008 mol硝酸镍六水合物,0.002 mol硝酸锰四水合物,共同搅拌溶解于100mL去离子水中,形成溶液A,然后将5.2 g Beta分子筛粉末加入到A溶液中,在800 rpm的搅拌速度、30℃水浴条件下将其逐滴滴加进悬浊液B中,调节pH至8.5,水浴6 h后,静置陈化6h,抽滤洗涤至中性,80℃干燥 8 h,将固体研磨成粉末后,于马弗炉中500℃焙烧4 h,管式炉中600℃还原3 h既得双金属NiMn/Beta催化剂。
催化剂对棕榈油加氢转化制备生物航空煤油的实验条件同实施例5,反应结果见表1。
Figure DEST_PATH_IMAGE001
由表1可见,与对比例1相比,本发明非贵双金属负载型催化剂相比于单金属镍基催化剂的加氢脱氧活性更优异,油脂转化率更高,且具有更高的生物航空煤油收率。n-C15+17/n-C16+18比值代表了加氢脱氧反应路径,对比例的数据结果表明,单金属Ni基催化剂对油脂的加氢脱氧路径主要是以脱除一个碳原子的DCO/CO2过程,而加入第二金属合成的双金属催化剂的脱氧路径向HDO过程转变,只是脱除氧原子,保留碳原子,从而减少了碳损失。
以上所述实例仅为本发明的较佳实施例,还可以实施其它类型实例,熟悉本领域的相应人员可以依据本发明做出相应改变,但这些改变皆应属于本发明的保护范围。

Claims (10)

1.一种双金属负载型催化剂的制备方法,其特征在于:包括以下步骤:
(1)将镍盐和第二种金属盐溶解于去离子水中,形成混合金属盐溶液;
(2)配制碱溶液;
(3)将固体酸载体加入到步骤(1)所得的混合盐溶液中;
(4)将步骤(2)的碱溶液匀速逐滴滴加至步骤(3)所得的混合液中,并进行水浴搅拌得到悬浊液;
(5)将步骤(4)中所得悬浊液陈化得到沉淀物,经过滤、洗涤、干燥,焙烧还原得到双金属负载型催化剂。
2.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:金属的负载量为1~30 wt.%。
3.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:步骤(1)中所用的镍盐和第二种金属盐的中金属摩尔比为9:1~1:9,所述镍盐为乙酸镍、氯化镍、硝酸镍、硫酸镍中的任意一种,第二种金属盐为铜盐、铁盐、镁盐、锌盐、锰盐中的任意一种,所得混合金属盐溶液的总摩尔浓度为0.1~1 mol/L。
4.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:步骤(2)中所述碱溶液所用的碱为碳酸钠、碳酸氢钠、氢氧化钠、氢氧化钾、尿素、氨水中的一种或两种,碱溶液浓度为0.05~5.0mol/L。
5.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:步骤(3)中所述固体酸性载体为Beta、ZSM-5、USY、SAPO-11中的任意一种。
6.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:步骤(4)具体为:步骤(3)所得的混合液在25~95℃的水浴温度下,将碱液逐滴滴加进去的同时保证搅拌速度不低于300 rpm,调节pH不低于8,之后在密封状态下继续水浴4~12 h。
7.根据权利要求1所述的双金属负载型催化剂的制备方法,其特征在于:步骤(5)中陈化是在室温陈化2~8 h,陈化后得到的沉淀物用去离子水抽滤洗涤至中性,烘箱干燥时间不低于6 h,温度不低于60℃;马弗炉焙烧时间不低于2 h,温度不低于400℃,还原温度450~700℃,还原时间2~5 h。
8.一种如权利要求1-7任一项所述的制备方法制得的双金属负载型催化剂。
9.一种如权利要求8所述的双金属负载型催化剂在棕榈油加氢转化生产生物航空煤油中的应用,其特征在于:以棕榈油为原料油,与双金属负载型催化剂共同放入高温高压反应釜中,用氮气排空反应釜及管路中的气体,之后充入普氢进行反应,所得反应产物进行固液分离,得到液体生物航空煤油。
10.根据权利要求9所述的双金属负载型催化剂在棕榈油加氢转化生产生物航空煤油中的应用,其特征在于:所述反应条件为:反应温度250~400℃,氢气压力2~8 MPa,搅拌速率300~800 rpm,双金属负载型催化剂用量1~20 wt.%。
CN202210232029.7A 2022-03-10 2022-03-10 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用 Active CN114522716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210232029.7A CN114522716B (zh) 2022-03-10 2022-03-10 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210232029.7A CN114522716B (zh) 2022-03-10 2022-03-10 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用

Publications (2)

Publication Number Publication Date
CN114522716A true CN114522716A (zh) 2022-05-24
CN114522716B CN114522716B (zh) 2023-11-28

Family

ID=81625899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210232029.7A Active CN114522716B (zh) 2022-03-10 2022-03-10 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用

Country Status (1)

Country Link
CN (1) CN114522716B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739096A (zh) * 2022-12-07 2023-03-07 中山大学 一种碳负载型金属催化剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614888A (zh) * 2012-03-12 2012-08-01 上海应用技术学院 一种负载型CuO/CeO2催化剂的制备方法
US20120216449A1 (en) * 2009-08-31 2012-08-30 Jx Nippon Oil & Energy Corporation Method for producing aviation fuel oil base and aviation fuel oil composition
CN103111299A (zh) * 2013-02-01 2013-05-22 东南大学 一种制备用于糠醛加氢制环戊酮的负载型催化剂的方法
CN103801295A (zh) * 2014-03-07 2014-05-21 南开大学 蓖麻油制备航空煤油的催化剂及其制备方法
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
CN110013854A (zh) * 2019-05-09 2019-07-16 福州大学 一种负载型镍系催化剂的制备及在c5/c9石油树脂催化加氢中的应用
US20210394162A1 (en) * 2018-10-26 2021-12-23 Universiteit Antwerpen Ammonia deposition precipitation process for producing a copper-nickel/gamma-alumina catalyst, said catalyst and its use in the conversion of exhaust gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120216449A1 (en) * 2009-08-31 2012-08-30 Jx Nippon Oil & Energy Corporation Method for producing aviation fuel oil base and aviation fuel oil composition
CN102614888A (zh) * 2012-03-12 2012-08-01 上海应用技术学院 一种负载型CuO/CeO2催化剂的制备方法
CN103111299A (zh) * 2013-02-01 2013-05-22 东南大学 一种制备用于糠醛加氢制环戊酮的负载型催化剂的方法
CN103801295A (zh) * 2014-03-07 2014-05-21 南开大学 蓖麻油制备航空煤油的催化剂及其制备方法
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
US20210394162A1 (en) * 2018-10-26 2021-12-23 Universiteit Antwerpen Ammonia deposition precipitation process for producing a copper-nickel/gamma-alumina catalyst, said catalyst and its use in the conversion of exhaust gases
CN110013854A (zh) * 2019-05-09 2019-07-16 福州大学 一种负载型镍系催化剂的制备及在c5/c9石油树脂催化加氢中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘思阳 等: "SAPO-11 的绿色制备及在棕榈油催化加氢制备生物航煤方面的应用", 《无机化学学报》, vol. 35, no. 11, pages 2051 - 2056 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739096A (zh) * 2022-12-07 2023-03-07 中山大学 一种碳负载型金属催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114522716B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN105817222A (zh) 一种烃类费-托合成用催化剂组合物的制备方法及应用
US7709541B2 (en) Fischer-Tropsch catalysts incorporating promoter for increasing yields of C5+ hydrocarbons and methods for making and using same
WO2016179974A1 (zh) 一种纤维素两步法制备乙醇和正丙醇的方法
CN104711012A (zh) 加氢脱氧催化剂在合成可再生柴油或航空煤油中的应用
CN105921147A (zh) 一种烃类费-托合成用催化剂组合物及其应用
CN114522716B (zh) 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用
CN110935473B (zh) 加氢脱氧催化剂及其制备方法与应用
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
CN109705892B (zh) 脂肪酸和/或脂肪酸酯催化加氢脱氧制备同碳数烷烃的方法
CN108339547B (zh) 一种催化转化焦油的方法
WO2023010709A1 (zh) 一种磷掺杂的镍铝氧化物及其制备方法与应用
WO2016180000A1 (zh) 一种纤维素两步法制备乙二醇和1,2-丙二醇的方法
CN102911693B (zh) 一种采用混合催化剂的费托合成方法
CN113441140A (zh) 加氢脱氧催化剂及其制备方法和应用
CN111135828A (zh) 一种催化剂及其该催化剂的应用、制备、性能测试方法
CN112473708B (zh) 一种催化油脂加氢生产生物航空燃油用催化剂及其制备方法和应用
CN112058306B (zh) 一种高活性负载型双功能催化剂、制备方法及其应用
CN104725187B (zh) 一种合成气直接制乙醇并联产甲烷的工艺
CN102911695A (zh) 使用不同种类催化剂混合体系的费托合成方法
CN114247464A (zh) 一种镍/稀土分子筛双功能催化剂及其制备和在γ-戊内酯制戊酸酯中的应用
CN107224980B (zh) 无需还原活化的二氧化碳甲烷化催化剂的制备方法
CN110871084A (zh) 一种非负载型加氢脱氧催化剂及其制备方法
CN114250080B (zh) 一种催化油脂脱氧制备富烃生物燃油的方法
CN115672343B (zh) 加氢催化剂、其制备方法及应用
CN111036257B (zh) 用于制备生物航油的多孔框架负载型催化剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant