WO2023010709A1 - 一种磷掺杂的镍铝氧化物及其制备方法与应用 - Google Patents

一种磷掺杂的镍铝氧化物及其制备方法与应用 Download PDF

Info

Publication number
WO2023010709A1
WO2023010709A1 PCT/CN2021/130970 CN2021130970W WO2023010709A1 WO 2023010709 A1 WO2023010709 A1 WO 2023010709A1 CN 2021130970 W CN2021130970 W CN 2021130970W WO 2023010709 A1 WO2023010709 A1 WO 2023010709A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
phosphorus
aluminum oxide
aluminum
reaction
Prior art date
Application number
PCT/CN2021/130970
Other languages
English (en)
French (fr)
Inventor
王光辉
李德昌
潘政宜
张珊
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院青岛生物能源与过程研究所 filed Critical 中国科学院青岛生物能源与过程研究所
Priority to EP21952572.2A priority Critical patent/EP4382201A1/en
Priority to US18/291,453 priority patent/US20240207827A1/en
Publication of WO2023010709A1 publication Critical patent/WO2023010709A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention belongs to the technical field of application of novel catalytic materials, and in particular relates to a phosphorus-doped nickel-aluminum oxide and its preparation method and application.
  • Hydrodeoxygenation is an important class of catalytic reaction processes that usually occur in the production of oxygenated compounds (such as biomass-based molecules) to biofuels or chemicals.
  • the HDO reaction is generally carried out under high temperature and high pressure conditions, which can easily cause the agglomeration of active metals and carbon deposition on the surface, thereby affecting the catalytic activity and stability.
  • the HDO reaction of sulfides commonly used in the petrochemical industry to oils also shows certain catalytic activity, but the initial activity of sulfide catalysts is low, and it is easy to cause the loss of sulfur during the reaction process, resulting in catalyst deactivation and environmental pollution.
  • Metal phosphides are promising non-precious metal catalysts, and P can improve the affinity for oxygen-containing functional groups by changing the electronic structure around the metal center, thereby avoiding the defects of catalytic cracking at metal sites and exhibiting high deoxygenation selectivity
  • the present invention provides a phosphorus-doped nickel-aluminum oxide and its preparation method and application, which solve the technical problem that traditional phosphide catalysts are prone to deactivation due to carbon deposition or phase transition.
  • the material prepared by this method realizes the adjustment of the electrons around the active metal by constructing the interaction between Ni-Al and Ni-P under the premise of ensuring that the metal remains in the oxide phase state, making it Balanced in the intermediate state of metal element and phosphide, it suppresses inactivation factors such as metal agglomeration, carbon deposition, and phase transition, and exhibits excellent catalytic activity, selectivity, and stability.
  • the first aspect of the present invention provides a method for preparing phosphorus-doped nickel-aluminum oxides, specifically: subjecting nickel-aluminum-based hydrotalcite-like compounds to high-temperature aerobic roasting to obtain nickel-aluminum oxides, and then The nickel aluminum oxide is mixed with the phosphorus source, heated under the protection of an inert gas or under vacuum airtight conditions, and the phosphorus is doped into the nickel aluminum oxide to finally obtain the phosphorus doped nickel aluminum oxide.
  • the second aspect of the present invention provides a phosphorus-doped nickel aluminum oxide obtained by the above preparation method.
  • the third aspect of the present invention provides an application of the above phosphorus-doped nickel aluminum oxide in catalytic hydrodeoxygenation reaction.
  • the present invention constructs the Ni-Al interaction by subjecting the nickel-aluminum-based hydrotalcite-like compound to high-temperature aerobic roasting, and constructs the Ni-P interaction through the doping of P in the nickel-aluminum oxide.
  • Ni-Al The synergistic interaction with Ni-P realizes the adjustment of the electrons around the P active metal, making it balanced in the intermediate state of the metal element and phosphide, inhibiting the inactivation factors such as metal agglomeration, carbon deposition, and phase transition, showing excellent catalytic activity, selectivity and stability.
  • the phosphorus-doped nickel-aluminum oxide prepared by the present invention has excellent performance in the catalytic hydrodeoxygenation reaction, the conversion rate of the raw material can reach more than 95%, the hydrodeoxygenation efficiency can reach more than 90%, and the cracked product is less ;
  • the catalyst has no obvious deactivation phenomenon in the continuous operation of more than 500h under the optimal state, has extremely high stability, and has industrial application prospects;
  • the phosphorus-doped nickel-aluminum oxide prepared by the present invention has cheap and easy-to-obtain raw materials, simple preparation method, and easy scale-up production;
  • the phosphorus-doped nickel-aluminum oxide prepared in the present invention has good universality for catalyzing the hydrodeoxygenation reaction of various oxygen-containing compounds.
  • Fig. 1 is the SEM figure a) and the XRD figure b) of the hydrotalcite precursor of 3:1 in Ni:Al ratio in the embodiment 1-3 of the present invention and comparative example 1-3;
  • Fig. 2 is the XRD pattern of the sample obtained by phosphating at 350°C after calcination at different temperatures in Examples 1-3 and Comparative Example 2 of the present invention
  • Fig. 3 is the TEM image of the sample obtained by phosphating at 350°C after being calcined at different temperatures in Examples 1-3 and Comparative Example 2 of the present invention
  • Fig. 4 is the XRD pattern of comparative examples 1 and 3;
  • Fig. 5 is the result of NiAl-800-P350 catalyzed hydrodeoxygenation reaction of methyl laurate in embodiment 4;
  • Fig. 6 is the catalytic performance result of NiAl-800-P350 at different reaction temperatures in embodiment 5;
  • Fig. 7 is the result of NiAl-650-P350 and NiAl-500-P350 catalytic hydrodeoxygenation reaction of methyl laurate in embodiment 6;
  • Fig. 8 is the result of the hydrodeoxygenation reaction of methyl laurate catalyzed by the phosphorus-doped nickel aluminum oxide obtained in Comparative Example 1-3 (ie the result in Comparative Example 4-6).
  • metal phosphides are a promising non-precious metal catalyst, and P can improve the affinity for oxygen-containing functional groups by changing the electronic structure around the metal center, thereby avoiding the defects of catalytic cracking at metal sites, It shows high deoxygenation selectivity; however, most phosphide catalysts are prone to deactivation due to carbon deposition or phase transition, and the catalytic effect is unstable, which is not conducive to long-term application.
  • the first aspect of the present invention provides a method for preparing phosphorus-doped nickel-aluminum oxides, specifically: subjecting nickel-aluminum-based hydrotalcite-like compounds to high-temperature aerobic roasting to obtain nickel-aluminum oxides, Then mix nickel aluminum oxide with phosphorus source, heat under the protection of inert gas or vacuum airtight condition, dope phosphorus into nickel aluminum oxide, finally obtain phosphorus doped nickel aluminum oxide.
  • Metal phosphides are highly efficient non-noble metal catalysts.
  • P can improve the affinity for oxygen-containing functional groups by changing the electronic structure around the metal center, thereby avoiding the defects of catalytic cracking at metal sites, but it is common that carbon deposition or
  • the present invention proposes to load P in the metal oxide in the form of doping, not in the form of nickel phosphide, so as to ensure that the advantages of P are used, and the catalyst will not be deactivated by carbon deposition or phase transition. Phenomenon.
  • the present invention prepares nickel-aluminum oxide by high-temperature aerobic roasting of nickel-aluminum-based hydrotalcite-like compounds, and obtains Ni-Al interaction in nickel-aluminum oxide, so Ni species has a higher reduction energy barrier , helps to appear as a phosphorus-doped metal oxide after phosphating, instead of forming nickel phosphide crystals; at the same time, the present invention heats the nickel-aluminum oxide and the phosphorus source, and P is directly doped into the nickel-aluminum The oxide further prevents the phase formation of nickel phosphide to build the Ni-P interaction.
  • the present invention realizes the adjustment of the electrons around the P active metal, making it balanced in the intermediate state of metal element and phosphide, and suppressing the loss of metal agglomeration, carbon deposition, phase transition, etc. active factor, exhibiting excellent catalytic activity, selectivity and stability.
  • Ni-Al interaction has an important influence on the existence of nickel phosphide phase in the final product, and this Ni-Al interaction depends on the molar ratio of Ni and Al. A relatively stable Ni-Al interaction relationship is established.
  • the molar ratio of Ni to Al is 5:1-1:5, preferably 4:1-2:1;
  • the acquisition effect of the nickel-aluminum-based hydrotalcite-like compound is mainly to obtain a stable Ni-Al interaction, and its synthesis method is not limited, and can be selected from hydrothermal synthesis, co-precipitation, ion exchange, roasting and restoration as required. Any one of the methods; preferably a hydrothermal synthesis method;
  • the process of preparing nickel aluminum oxide by hydrothermal synthesis method is as follows: nickel precursor, aluminum precursor, and alkali precursor are heated in an aqueous solution by a hydrothermal kettle, and after washing with water, drying to obtain nickel-aluminum-based hydrotalcite-like compounds;
  • the nickel precursor and the aluminum precursor are selected from one or more of nitrates, acetates, halides, and sulfates, preferably nickel nitrate and aluminum nitrate;
  • the alkali precursors are selected from urea, One or more of cyclohexamethylenetetramine, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, sodium hydroxide, potassium hydroxide, preferably urea;
  • the heating temperature is 60-150°C, preferably 90-110°C;
  • the reaction time is 6-48h, preferably 20-28h;
  • the number of moles of the alkali precursor is 1-10 times, preferably 2-4 times, the total number of metal moles (the total number of moles of nickel and aluminum);
  • the role of high-temperature calcination is to obtain metal oxides, and replace the traditional metal phosphides with P-doped metal oxides to avoid the problem of inactivation due to carbon deposition or phase transition in the nickel phosphide phase.
  • the temperature of the high-temperature aerobic calcination is 500-1000°C, preferably 750-850°C; the time of high-temperature calcination is 0.5-12h, preferably 1-3h; the heating rate is 1-20°C/ min.
  • the phosphorus source is a substance containing P element, including but not limited to red phosphorus, phosphine, phosphoric acid and phosphate, hypophosphite, phosphonic acid, phosphinic acid Phosphine and its derivatives, phosphine and its derivatives, phosphorus-containing organic substances and phosphorus-containing species produced by thermal decomposition;
  • the phosphorus doping temperature is 250-425° C., within this temperature range, no nickel phosphide phase will be produced.
  • the doping time is 1-24h, preferably 2-6h.
  • the process of mixing and heating phosphorus source and nickel-aluminum oxide is the process of doping P into nickel-aluminum oxide, that is, the process of building Ni-P interaction. Construction is very important.
  • the heating method for doping the phosphorus in the phosphorus source into the nickel-aluminum-based oxide can be any one of the separation heating method, the mixed heating method, and the solvothermal method;
  • Separation heating method Weigh a certain mass of nickel aluminum oxide, calculate according to the molar ratio and weigh the phosphorus precursor, place the two separately, and raise the two to a certain temperature under the protection of an inert gas or under vacuum airtight conditions. phosphorus doping;
  • Solvothermal method Weigh a certain mass of nickel aluminum oxide, calculate according to the molar ratio and weigh the phosphorus precursor, disperse the two into the solvent, and raise the two to a certain level under the protection of an inert gas or under vacuum airtight conditions. temperature for phosphorous doping.
  • the obtained material is passivated with an oxygen-containing mixed gas
  • the oxygen-containing mixed gas is an O 2 /Ar mixed gas, wherein the volume fraction of O 2 is 0.5%.
  • the second aspect of the present invention provides a phosphorus-doped nickel aluminum oxide obtained by the above preparation method.
  • the third aspect of the present invention provides an application of the above phosphorus-doped nickel aluminum oxide in catalytic hydrodeoxygenation reaction.
  • the catalytic hydrodeoxygenation reaction temperature is 300-400°C
  • the pressure of hydrogen is 2-5MPa
  • the molar ratio of hydrogen/substrate is 5-100
  • the mass space velocity of the feed is 0.01-100h -1
  • an organic solvent that does not participate in the reaction can be used as the reaction medium.
  • the reaction substrate is an oxygen-containing organic molecule
  • oxygen-containing organic molecules are one or more of alcohols, acids, ketones, aldehydes, phenols, esters, furans, animal and vegetable oil oxygenates;
  • oxygen-containing organic molecules include, but are not limited to: palm oil, kitchen waste oil, coconut oil, castor oil, coffee seed oil, cottonseed oil, rapeseed oil, microalgae oil, laurate, palmitate, oil Esters, stearates, guaiacol, phenol, furfural, 5-hydroxymethylfurfural, fatty alcohols, fatty aldehydes, fatty acids, fatty ketones.
  • NiAl-800-P350 phosphorus doped nickel aluminum oxide
  • NiAl-650-P350 phosphorus doped nickel aluminum oxide
  • NiAl-500-P350 phosphorus doped nickel aluminum oxide
  • Phosphorus-doped nickel-aluminum oxide catalyzes oil hydrodeoxygenation reaction:
  • the NiAl-800-P350 obtained in Example 1 was used to catalyze the reaction of hydrodeoxygenation of methyl laurate to prepare undecane/dodecane.
  • Phosphorus-doped nickel-aluminum oxide catalyzes oil hydrodeoxygenation reaction (300-400°C reaction):
  • the NiAl-800-P350 obtained in Example 1 was used to catalyze the reaction of hydrodeoxygenation of methyl laurate to prepare undecane/dodecane.
  • Example 2 and Example 3 The phosphorus-doped nickel-aluminum oxides obtained in Example 2 and Example 3 were respectively used to catalyze the reaction of undecane/dodecane by hydrodeoxygenation of methyl laurate.
  • Phosphorus-doped nickel-aluminum oxide catalyzes the hydrodeoxygenation of methyl palmitate:
  • the phosphorus-doped nickel-aluminum oxide obtained in Example 1 was used to catalyze the reaction of methyl palmitate hydrodeoxygenation to prepare diesel chain hydrocarbons.
  • NiAl-800-P350 has excellent catalytic performance, especially in the aspect of anti-deactivation performance, which has great industrial potential.
  • the phosphorus-doped nickel-aluminum oxide obtained in Example 1 was used to catalyze the reaction of palm oil hydrodeoxygenation to prepare diesel chain hydrocarbons.
  • NiAl-800-P350 has excellent catalytic performance, especially in the aspect of anti-deactivation performance, which has great industrial potential.
  • NiAl-800 phosphorus-free nickel aluminum oxide
  • NiAl-350-P350 phosphorus-doped nickel aluminum oxide
  • NiAl-800-P450 NiAl-800-P450
  • Phosphorus-free nickel-aluminum oxide catalyzes oil hydrodeoxygenation reaction:
  • the NiAl-800 obtained in Comparative Example 1 was used to catalyze the reaction of hydrodeoxygenation of methyl laurate to prepare undecane/dodecane.
  • Phosphorus-doped nickel-aluminum oxide catalyzes oil hydrodeoxygenation reaction:
  • the NiAl-350-P350 obtained in Comparative Example 2 was used to catalyze the reaction of hydrodeoxygenation of methyl laurate to prepare undecane/dodecane.
  • Nickel phosphide catalyst catalyzes oil hydrodeoxygenation reaction:
  • the NiAl-800-P450 obtained in Comparative Example 3 was used to catalyze the reaction of hydrodeoxygenation of methyl laurate to prepare undecane/dodecane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种磷掺杂的镍铝氧化物及其制备方法与应用。所述制备方法为:将镍铝基类水滑石化合物进行高温有氧焙烧,得到镍铝氧化物,再将镍铝氧化物与磷源混合,在惰性气体的保护下或真空密闭条件下进行加热,将磷掺杂到镍铝氧化物中,最终得到磷掺杂的镍铝氧化物。通过将镍铝基类水滑石化合物进行高温有氧焙烧,构建Ni-Al相互作用,通过P在镍铝氧化物中的掺杂,构建了Ni-P相互作用,Ni-Al和Ni-P的协同相互作用,实现了对P活性金属周围电子的调节,使其平衡于金属单质与磷化物的中间状态,抑制了金属团聚、碳沉积、相变等失活因素,展示出了优异的催化活性、选择性和稳定性。

Description

一种磷掺杂的镍铝氧化物及其制备方法与应用 技术领域
本发明属于新型催化材料应用技术领域,具体涉及一种磷掺杂的镍铝氧化物及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
加氢脱氧(HDO)是一类重要的催化反应过程,通常发生在含氧化合物(例如生物质基分子)制取生物燃料或化学品的过程中。HDO反应一般在高温高压条件下进行,这很容易引起活性金属的团聚和表面碳沉积,从而影响催化活性和稳定性。此外,在催化C-O/C=O脱氧的过程中,热力学上更容易发生C=C、C-C、C-H的加氢裂解反应,影响脱氧效率,形成过度加氢副产物。因此,如何开发廉价、高效、高稳定性的催化剂,提高HDO反应的效率和选择性,是当前相关领域研究以及工业应用的重点。
Chen等人(Renew.Sust.Energ.Rev.2019,101,568-589)在其综述研究中详细总结了油脂HDO的常用催化剂。其中,Pd、Pt、Ru和Rh等贵金属催化剂具有高活性和反应效率,但是价格昂贵且易于失活,这限制了其大规模应用。非贵金属催化剂的研究主要集中在Ni、Co、Cu和Fe催化剂上,这些催化剂虽易于获取,但反应效率较低,通常需要较高的反应温度(350-450℃)和反应压强(5-15MPa),进而容易出现C-C键裂化、积碳沉积等问题。石化工业中常用的硫化物对油脂的HDO反应也展示出了一定的催化活性,但是硫化物催化剂的初始活性较低,而且在反应过程中容易引起硫的损失,导致催化剂失活和环境污染。金属磷化物是一种很有前途的非贵金属催化剂,P可以通过改变金属中心周围的电子结构来提高对含氧官能团的亲和力,进而避免金属位点催化裂化的缺陷,展示出较高的脱氧选择性;但发明人发现,在以往的研究中,大多数磷化物催化剂容易发生积碳或相变而失活,催化效果不稳定,不利于长时间的应用。
发明内容
为了解决现有技术的不足,本发明提供一种磷掺杂的镍铝氧化物及其制备方法与应用,解决传统磷化物催化剂容易发生积碳或相变而失活的技术问题。与传统的金属磷化物不同,该方法制得的材料在确保金属保持氧化物相态的前提下,通过构建Ni-Al和Ni-P相互作用,实现了对活性金属周围电子的调节,使其平衡于金属单质与磷化物的中间状态,抑制了金 属团聚、碳沉积、相变等失活因素,展示出了优异的催化活性、选择性和稳定性。
为了实现上述目的,本发明第一方面提供一种磷掺杂的镍铝氧化物的制备方法,具体为:将镍铝基类水滑石化合物进行高温有氧焙烧,得到镍铝氧化物,再将镍铝氧化物与磷源混合,在惰性气体的保护下或真空密闭条件下进行加热,将磷掺杂到镍铝氧化物中,最终得到磷掺杂的镍铝氧化物。
本发明第二方面提供一种上述制备方法得到的磷掺杂的镍铝氧化物。
本发明第三方面提供一种上述磷掺杂的镍铝氧化物在催化加氢脱氧反应中的应用。
本发明的一个或多个实施方式至少具有以下有益效果:
(1)本发明通过将镍铝基类水滑石化合物进行高温有氧焙烧,构建Ni-Al相互作用,通过P在镍铝氧化物中的掺杂,构建了Ni-P相互作用,Ni-Al和Ni-P的协同相互作用,实现了对P活性金属周围电子的调节,使其平衡于金属单质与磷化物的中间状态,抑制了金属团聚、碳沉积、相变等失活因素,展示出了优异的催化活性、选择性和稳定性。
(2)本发明所制备的磷掺杂的镍铝氧化物在催化加氢脱氧反应中性能优异,原料的转化率能够达到95%以上,加氢脱氧效率可达90%以上,裂化产物较少;该催化剂在最佳状态下连续运行500h以上不发生明显失活现象,具有极高的稳定性,具有工业应用前景;
(3)本发明所制备的磷掺杂的镍铝氧化物,原料廉价易得,制备方法简单,易于放大生产;
(4)本发明所制备的磷掺杂的镍铝氧化物对催化各类含氧化合物的加氢脱氧反应具有良好的普适性。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1-3和对比例1-3中Ni:Al比为3:1类水滑石前体的SEM图a)和XRD图b);
图2为本发明实施例1-3、对比例2中不同温度煅烧后经350℃磷化所得样品的XRD图;
图3为本发明实施例1-3、对比例2中不同温度煅烧后经350℃磷化所得样品的TEM图;
图4为对比例1和3的XRD图;
图5为实施例4中NiAl-800-P350催化月桂酸甲酯加氢脱氧反应的结果;
图6为实施例5中NiAl-800-P350在不同反应温度下的催化性能结果;
图7为实施例6中NiAl-650-P350和NiAl-500-P350催化月桂酸甲酯加氢脱氧反应的结果;
图8为对比例1-3所得磷掺杂的镍铝氧化物催化月桂酸甲酯加氢脱氧反应的结果(即对比例4-6中的结果)。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,金属磷化物是一种很有前途的非贵金属催化剂,P可以通过改变金属中心周围的电子结构来提高对含氧官能团的亲和力,进而避免金属位点催化裂化的缺陷,展示出较高的脱氧选择性;然而,大多数磷化物催化剂容易发生积碳或相变而失活,催化效果不稳定,不利于长时间的应用。
为了解决如上的技术问题,本发明第一方面提供一种磷掺杂的镍铝氧化物的制备方法,具体为:将镍铝基类水滑石化合物进行高温有氧焙烧,得到镍铝氧化物,再将镍铝氧化物与磷源混合,在惰性气体的保护下或真空密闭条件下进行加热,将磷掺杂到镍铝氧化物中,最终得到磷掺杂的镍铝氧化物。
金属磷化物是高效的非贵金属催化剂,P可以通过改变金属中心周围的电子结构来提高对含氧官能团的亲和力,进而避免金属位点催化裂化的缺陷,但普遍存在催化过程中易发生积碳或相变而失活的问题,发明人探究发现,这种现象的原因在于磷化镍物相的存在,为了更好的利用P原子的这种电子结构优势,同时避免催化剂易失活的问题,本发明提出将P以掺杂的形式负载于金属氧化物中,不以磷化镍的形式存在,这样就能够保证利用P的优势的同时,催化剂不会发生积碳或相变导致的失活现象。
为了实现上述目的,本发明以镍铝基类水滑石化合物进行高温有氧焙烧来制备镍铝氧化物,得到镍铝氧化物中存在Ni-Al相互作用,因而Ni物种具有较高的还原能垒,有助于在磷化之后呈现为磷掺杂的金属氧化物,而不是形成磷化镍晶体;同时,本发明对镍铝氧化物和磷源进行加热处理,将P直接掺杂于镍铝氧化物,进一步阻止了有磷化镍的物相生成,以构建Ni-P相互作用。本发明通过构建Ni-Al和Ni-P相互作用,实现了对P活性金属周围电子 的调节,使其平衡于金属单质与磷化物的中间状态,抑制了金属团聚、碳沉积、相变等失活因素,展示出了优异的催化活性、选择性和稳定性。
正如上文所述,Ni-Al相互作用对于最终产物中是否存在磷化镍物相具有重要影响,而这种Ni-Al相互作用取决于Ni和Al的摩尔比,在适当的比例下,能够建立一种比较稳定的Ni-Al作用关系。作为优选的实施方式,所述镍铝基类水滑石化合物中,Ni与Al的摩尔比值为5:1-1:5,优选为4:1-2:1;
所述镍铝基类水滑石化合物的获得作用主要是为了获得稳定的Ni-Al相互作用,其合成方法不限定,可根据需要选自水热合成法、共沉淀法、离子交换法、焙烧复原法中的任意一种;优选为水热合成法;
在本发明的一种或多种实施方式中,通过水热合成法制备镍铝氧化物的过程具体为:镍前驱体、铝前驱体、碱前驱体在水溶液中通过水热釜加热,水洗后烘干,获得镍铝基类水滑石化合物;
进一步的,所述镍前驱体和铝前驱体分别选自硝酸盐、醋酸盐、卤化盐、硫酸盐中的一种或多种,优选为硝酸镍和硝酸铝;碱前驱体选自尿素、环六亚甲基四胺、碳酸氢钠、碳酸氢钾、碳酸氢氨、氢氧化钠、氢氧化钾中的一种或多种,优选为尿素;
进一步的,所述加热温度为60-150℃,优选90-110℃;反应时间为6-48h,优选20-28h;
碱前驱体的摩尔数是金属摩尔总数(镍与铝的摩尔总数)的1-10倍,优选2-4倍;
高温焙烧的作用是为了获得金属氧化物,通过P掺杂的金属氧化物代替传统的金属磷化物发挥作用,避免因磷化镍物相产生积碳或相变而失活的问题。作为优选的实施方式,所述高温有氧焙烧的温度为500-1000℃,优选为750-850℃;高温焙烧的时间为0.5-12h,优选为1-3h;升温速率为1-20℃/min。
在本发明的一种或多种实施方式中,所述磷源为含有P元素的物质,包含但不限于红磷、磷化氢、磷酸及磷酸盐、次磷酸盐、膦酸、次膦酸及其衍生物、膦及其衍生物、含磷有机物及其热分解产生的含磷物种;
进一步的,所述磷掺杂的温度为250-425℃,在该温度区间内,不会产生磷化镍物相。
优选为325-375℃,进一步优选为350℃;
所述掺杂时间为1-24h,优选为2-6h。
磷源与镍铝氧化物混合加热的过程,就是向镍铝氧化物中掺杂P的过程,也就是构建Ni-P相互作用的过程,因此,P与Ni的摩尔比对于Ni-P关系的构建至关重要,作为优选的实施方式,磷源与镍铝氧化物按照P:Ni=1:1-30:1的摩尔比进行混合,摩尔比优选为10:1-20:1;
进一步的,所述磷源中的磷掺杂到镍铝基氧化物中的加热方法可以是分离加热法、混合加热法、溶剂热法中的任意一种;
分离加热法:称取一定质量的镍铝氧化物,按照摩尔比例计算并称取磷前体,二者分隔放置,在惰性气体的保护下或真空密闭条件下,将二者升到一定温度进行磷掺杂;
混合加热法:称取一定质量的镍铝氧化物,按照摩尔比例计算并称取磷前体,二者物理混合,在惰性气体的保护下或真空密闭条件下,将二者升到一定温度进行磷掺杂;
溶剂热法:称取一定质量的镍铝氧化物,按照摩尔比例计算并称取磷前体,二者分散到溶剂中,在惰性气体的保护下或真空密闭条件下,将二者升到一定温度进行磷掺杂。
在本发明的一种或多种实施方式中,将磷掺杂到镍铝氧化物中后,用含氧混合气对得到的材料进行钝化;
进一步的,所述含氧混合气为O 2/Ar混合气,其中,O 2体积分数为0.5%。
本发明第二方面提供一种上述制备方法得到的磷掺杂的镍铝氧化物。
本发明第三方面提供一种上述磷掺杂的镍铝氧化物在催化加氢脱氧反应中的应用。
所述催化加氢脱氧反应温度为300-400℃,氢气的压强为2-5MPa,氢气/底物的摩尔比值为5-100,进料的质量空速为0.01-100h -1,如有必要,可使用不参与反应的有机溶剂作为反应介质。
进一步地,催化加氢脱氧反应中,反应底物为含氧有机分子;
进一步的,含氧有机分子为醇类、酸类、酮类、醛类、酚类、酯类、呋喃类、动植物油脂含氧化合物中的一种或多种;
具体地,含氧有机分子包含但不仅限于:棕榈油、餐厨废弃油、椰子油、蓖麻油、咖啡籽油、棉籽油、菜籽油、微藻油、月桂酸酯、棕榈酸酯、油酸酯、硬脂酸酯、愈创木酚、苯酚、糠醛、5-羟甲基糠醛、脂肪醇、脂肪醛、脂肪酸、脂肪酮。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案。
实施例1
制备磷掺杂的镍铝氧化物(NiAl-800-P350):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 3·9H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10 ℃/min,焙烧温度为800℃,保持1h后,降至室温;
d)称取0.1g所得氧化物、1.0g次亚磷酸钠(NaH 2PO 2)置于石英管中,用氩气(100mL/min)吹扫30min后,用真空泵将反应体系抽至真空,密封,将温度升到350℃,保持2h,降至室温后释压,用O 2/Ar(O 2体积分数为0.5%)吹扫1h,获得相应的磷掺杂镍铝氧化物,表示为NiAl-800-P350。
实施例2
制备磷掺杂的镍铝氧化物(NiAl-650-P350):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 39H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10℃/min,焙烧温度为650℃,保持1h后,降至室温;
d)称取0.1g所得氧化物、1.0g次亚磷酸钠(NaH 2PO 2)置于石英管中,用氩气(100mL/min)吹扫30min后,用真空泵将反应体系抽至真空,密封,将温度升到350℃,保持2h,降至室温后释压,用O 2/Ar(O 2体积分数为0.5%)吹扫1h,获得相应的磷掺杂镍铝氧化物,表示为NiAl-650-P350。
实施例3
制备磷掺杂的镍铝氧化物(NiAl-500-P350):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 3·9H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10℃/min,焙烧温度为500℃,保持1h后,降至室温;
d)称取0.1g所得氧化物、1.0g次亚磷酸钠(NaH 2PO 2)置于石英管中,用氩气(100mL/min)吹扫30min后,用真空泵将反应体系抽至真空,密封,将温度升到350℃,保持2h,降至室温后释压,用O 2/Ar(O 2体积分数为0.5%)吹扫1h,获得相应的磷掺杂镍铝氧化物,表示为NiAl-500-P350。
实施例4
磷掺杂的镍铝氧化物催化油脂加氢脱氧反应:
将实施例1得到的NiAl-800-P350用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
结果如图5所示,月桂酸甲酯的转化率在运行100h后趋于稳定,维持在65%左右,连续运行500h后没有出现明显的失活现象;整个反应过程中,主产物是十一烷和十二烷,选择性分别稳定在87%和5%左右。
实施例5
磷掺杂的镍铝氧化物催化油脂加氢脱氧反应(300-400℃反应):
将实施例1得到的NiAl-800-P350用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,初始反应温度设为300℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。之后,将反应温度逐级升高至350、375、400℃,对比反应温度对催化反应的影响。
结果如图6所示,随着反应温度的升高,月桂酸甲酯的转化率逐渐升高,在400℃下,转化率达到97%以上,十一烷和十二烷的选择性分别为90%和2.5%左右。
实施例6
磷掺杂的镍铝氧化物催化月桂酸甲酯加氢脱氧反应:
将实施例2和实施例3得到的磷掺杂的镍铝氧化物分别用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
结果如图7所示,实施例2所得NiAl-650-P350的催化体系中,反应物的初始转化率48%,之后逐步稳定在57%左右,十一烷和十二烷的总选择性在90%左右;实施例3所得NiAl-500-P350的催化体系中,反应物的初始转化率为56%,之后逐步下降,24后降至27%,十一烷和十二烷的总选择性稳定在86%左右。由此可见,较低的煅烧温度下得到的催化剂的催化活性和稳定性相对较差。
实施例7
磷掺杂的镍铝氧化物催化棕榈酸甲酯加氢脱氧反应:
将实施例1得到的磷掺杂的镍铝氧化物用于催化棕榈酸甲酯加氢脱氧制备柴油链烃的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将棕榈酸甲酯的环己烷溶液(30wt.%)按0.06ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
棕榈酸甲酯的转化率维持在88%左右,连续运行500h后没有出现明显的失活现象;整个反应过程中,主产物是十五烷和十六烷,选择性分别稳定在83%和12%左右。以上数据说明,NiAl-800-P350具有优异的催化性能,尤其在抗失活性能方面具有极大的工业化潜质。
实施例8
磷掺杂的镍铝氧化物催化棕榈油加氢脱氧反应:
将实施例1得到的磷掺杂的镍铝氧化物用于催化棕榈油加氢脱氧制备柴油链烃的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将棕榈油的环己烷溶液(30wt.%)按0.06ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
棕榈酸甲酯的转化率维持在80%左右,连续运行150h后没有出现明显的失活现象;整个反应过程中,主产物是C15-C18链烃,总选择性稳定在85-90%。以上数据说明,NiAl-800-P350具有优异的催化性能,尤其在抗失活性能方面具有极大的工业化潜质。
对比例1
制备不含磷的镍铝氧化物(NiAl-800):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 3·9H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10℃/min,焙烧温度为800℃,保持1h;降至室温后,获得不含磷的镍铝氧化物,表示为NiAl-800。
对比例2
制备磷掺杂的镍铝氧化物(NiAl-350-P350):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 3·9H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10℃/min,焙烧温度为350℃,保持1h后,降至室温;
d)称取0.1g所得氧化物、1.0g次亚磷酸钠(NaH 2PO 2)置于石英管中,用氩气(100mL/min)吹扫30min后,用真空泵将反应体系抽至真空,密封,将温度升到350℃,保持2h,降至室温后释压,用O 2/Ar(O 2体积分数为0.5%)吹扫1h,获得相应的磷掺杂镍铝氧化物,表示为NiAl-350-P350。
对比例3
制备磷化镍催化剂(NiAl-800-P450):
a)将9mmol Ni(NO 3) 2·6H 2O、3mmol Al(NO 3) 3·9H 2O、27mmol尿素溶解于90mL去离子水中,搅拌至澄清,装入聚四氟乙烯水热釜中,置于100℃烘箱中反应24h;
b)水热反应结束,得到类水滑石沉淀物,抽滤分离出沉淀物,水洗3-5次,并置于80℃烘箱中干燥12h;
c)将干燥后的样品研磨至细小均匀,然后置于马弗炉中进行有氧焙烧,升温速率为10℃/min,焙烧温度为800℃,保持1h后降至室温;
d)称取0.1g所得氧化物、1.0g次亚磷酸钠(NaH 2PO 2)置于石英管中,用氩气(100mL/min)吹扫30min后,用真空泵将反应体系抽至真空,密封,将温度升到450℃,保持2h,降至室温后释压,用O 2/Ar(O 2体积分数为0.5%)吹扫1h,获得相应的磷化镍催化剂,表示为NiAl-800-P450。
对比例4
不含磷的镍铝氧化物催化油脂加氢脱氧反应:
将对比例1得到的NiAl-800用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
结果如图8所示,对比实施例1所得NiAl-800的催化体系中,反应物的初始转化率为 76%,之后逐步下降,120h后降至21%,催化剂的稳定性较差。
对比例5
磷掺杂的镍铝氧化物催化油脂加氢脱氧反应:
将对比例2得到的NiAl-350-P350用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
结果如图8所示,对比实施例3所得NiAl-500-P350的催化体系中,反应物的初始转化率只有37%,且稳定性很差,24后降至22%。
对比例6
磷化镍催化剂催化油脂加氢脱氧反应:
将对比例3得到的NiAl-800-P450用于催化月桂酸甲酯加氢脱氧制备十一烷/十二烷的反应。
首先称取100mg催化剂,填充在固定床反应器中,向反应器中充氢气至3Mpa,反应温度为350℃,氢气的流速设为110mL/min,将月桂酸甲酯按0.055ml/min的流速通入反应器中。间隔一定时间取样测试,内标物为四氢萘,用气相色谱和气相色谱-质谱仪检测反应产物。
结果如图8所示,对比实施例3所得NiAl-800-P450的催化体系中,反应物的初始转化率为61%,之后逐步下降,48h后降至27%,催化剂的稳定性较差。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种磷掺杂的镍铝氧化物的制备方法,其特征在于:将镍铝基类水滑石化合物进行高温有氧焙烧,得到镍铝氧化物,再将镍铝氧化物与磷源混合,在惰性气体的保护下或真空密闭条件下进行加热,将磷掺杂到镍铝氧化物中,最终得到磷掺杂的镍铝氧化物。
  2. 如权利要求1所述的制备方法,其特征在于:镍铝基类水滑石化合物中,Ni与Al的摩尔比值为5:1-1:5,优选为4:1-2:1;
    进一步的,所述镍铝基类水滑石化合物的合成方法可选自水热合成法、共沉淀法、离子交换法、焙烧复原法中的一种或多种,优选为水热合成法。
  3. 如权利要求2所述的制备方法,其特征在于:通过水热合成法制备镍铝氧化物的过程具体为:镍前驱体、铝前驱体、碱前驱体在水溶液中通过水热釜加热,水洗后烘干,获得镍铝基类水滑石化合物;
    进一步的,所述镍前驱体和铝前驱体分别选自硝酸盐、醋酸盐、卤化盐、硫酸盐中的一种或多种,优选为硝酸镍和硝酸铝;碱前驱体选自尿素、环六亚甲基四胺、碳酸氢钠、碳酸氢钾、碳酸氢氨、氢氧化钠、氢氧化钾中的一种或多种,优选为尿素;
    进一步的,所述加热温度为60-150℃,优选90-110℃;反应时间为6-48h,优选20-28h;
    进一步的,碱前驱体的摩尔数是镍与铝的摩尔总数的1-10倍,优选2-4倍。
  4. 如权利要求1所述的制备方法,其特征在于:高温有氧焙烧的温度为500-1000℃,优选为750-850℃;高温有氧焙烧的时间为0.5-12h,优选为1-3h;升温速率为1-20℃/min。
  5. 如权利要求1所述的制备方法,其特征在于:所述磷源为含有P元素的物质,包含但不限于红磷、磷化氢、磷酸及磷酸盐、次磷酸盐、膦酸、次膦酸及其衍生物、膦及其衍生物、含磷有机物及其热分解产生的含磷物种;
    或,所述磷掺杂的温度为250-425℃,优选为325-375℃,进一步优选为350℃;
    所述掺杂时间为1-24h,优选为2-6h。
  6. 如权利要求1所述的制备方法,其特征在于:磷源与镍铝氧化物按照P:Ni=1:1-30:1的摩尔比进行混合,摩尔比优选为10:1-20:1;
    或,所述磷源中的磷掺杂到镍铝基氧化物中的加热方法可以是分离加热法、混合加热法、溶剂热法中的任意一种。
  7. 如权利要求1所述的制备方法,其特征在于:将磷掺杂到镍铝氧化物中后,用含氧混合气对得到的材料进行钝化;
    进一步的,所述含氧混合气为O 2/Ar混合气,其中,O 2体积分数为0.5%。
  8. 权利要求1-7任一项所述的制备方法得到的磷掺杂的镍铝氧化物。
  9. 权利要求8所述的磷掺杂的镍铝氧化物在催化加氢脱氧反应中的应用。
  10. 如权利要求9所述的应用,其特征在于:所述催化加氢脱氧反应温度为300-400℃,氢气的压强为2-5MPa,氢气/底物的摩尔比值为5-100,进料的质量空速为0.01-100h -1,如有必要,可使用不参与反应的有机溶剂作为反应介质;
    进一步地,催化加氢脱氧反应中,反应底物为含氧有机分子;
    进一步的,含氧有机分子为醇类、酸类、酮类、醛类、酚类、酯类、呋喃类、动植物油脂含氧化合物中的一种或多种;
    具体地,含氧有机分子包含但不仅限于:棕榈油、餐厨废弃油、椰子油、蓖麻油、咖啡籽油、棉籽油、菜籽油、微藻油、月桂酸酯、棕榈酸酯、油酸酯、硬脂酸酯、愈创木酚、苯酚、糠醛、5-羟甲基糠醛、脂肪醇、脂肪醛、脂肪酸、脂肪酮。
PCT/CN2021/130970 2021-08-03 2021-11-16 一种磷掺杂的镍铝氧化物及其制备方法与应用 WO2023010709A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21952572.2A EP4382201A1 (en) 2021-08-03 2021-11-16 Phosphorus-doped nickel aluminum oxide, and preparation method therefor and use thereof
US18/291,453 US20240207827A1 (en) 2021-08-03 2021-11-16 Phosphorus-doped nickel aluminum oxide, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110886367.8A CN114042454B (zh) 2021-08-03 2021-08-03 一种磷掺杂的镍铝氧化物及其制备方法与应用
CN202110886367.8 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023010709A1 true WO2023010709A1 (zh) 2023-02-09

Family

ID=80204384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130970 WO2023010709A1 (zh) 2021-08-03 2021-11-16 一种磷掺杂的镍铝氧化物及其制备方法与应用

Country Status (4)

Country Link
US (1) US20240207827A1 (zh)
EP (1) EP4382201A1 (zh)
CN (2) CN116196930B (zh)
WO (1) WO2023010709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351446A (zh) * 2023-03-17 2023-06-30 大连理工大学 一种化学镀制备Ni3P/SiO2催化剂的方法及在加氢脱氧中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618561B (zh) * 2022-02-28 2023-11-21 天津大学 水滑石-含铝酸复合结构金属及其磷化物催化剂制备方法及木质素转化应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764212A1 (fr) * 1997-06-04 1998-12-11 China Petrochemical Corp Catalyseur a base d'alliage amorphe contenant du phosphore, son procede de preparation et son utilisation
CN101671009A (zh) * 2009-09-24 2010-03-17 南开大学 低温热处理还原氧化镍前体法制备Ni2P
CN106166496A (zh) * 2016-06-06 2016-11-30 青岛科技大学 一种油脂加氢脱氧催化剂
CN110586147A (zh) * 2019-09-11 2019-12-20 天津大学 一种水滑石结构磷化镍催化剂及制备方法
CN110694656A (zh) * 2019-09-11 2020-01-17 天津大学 水滑石基磷化镍催化剂及在愈创木酚转化制取环烷烃中的应用
CN110813361A (zh) * 2019-11-29 2020-02-21 东华大学 磷掺杂氧化钴铁氮掺杂碳纳米纤维复合材料及其制备方法与应用
CN110975914A (zh) * 2019-11-29 2020-04-10 东华大学 磷掺杂氧化镍铁氮掺杂碳纳米纤维复合材料及其制备方法与应用
CN111068695A (zh) * 2019-11-25 2020-04-28 浙江大学 一种基于三元ldh衍生的多元金属磷掺杂电催化剂的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013011294B1 (pt) * 2010-12-06 2021-12-21 Georgia Tech Research Corporation Composição de catalisador e processo para preparar um álcool superior
FR2984312A1 (fr) * 2011-12-20 2013-06-21 Rhodia Operations Procede de preparation d'un melange d'alcools
CN107876072B (zh) * 2017-11-10 2020-02-11 中国石油大学(北京) 一种加氢催化剂及其制备方法和应用
CN108554413B (zh) * 2018-04-11 2020-10-02 北京化工大学 一种三维多级结构高分散镍基电催化材料及其制备方法
CN111250156A (zh) * 2020-03-23 2020-06-09 中科碧绿(湖州)能源科技有限公司 一种脂肪酸甲酯加氢脱氧-异构制备烷烃的催化剂及制备方法和用途
CN112206795A (zh) * 2020-10-26 2021-01-12 福州大学 一种用于制备氢化石油树脂的负载型磷化镍催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764212A1 (fr) * 1997-06-04 1998-12-11 China Petrochemical Corp Catalyseur a base d'alliage amorphe contenant du phosphore, son procede de preparation et son utilisation
CN101671009A (zh) * 2009-09-24 2010-03-17 南开大学 低温热处理还原氧化镍前体法制备Ni2P
CN106166496A (zh) * 2016-06-06 2016-11-30 青岛科技大学 一种油脂加氢脱氧催化剂
CN110586147A (zh) * 2019-09-11 2019-12-20 天津大学 一种水滑石结构磷化镍催化剂及制备方法
CN110694656A (zh) * 2019-09-11 2020-01-17 天津大学 水滑石基磷化镍催化剂及在愈创木酚转化制取环烷烃中的应用
CN111068695A (zh) * 2019-11-25 2020-04-28 浙江大学 一种基于三元ldh衍生的多元金属磷掺杂电催化剂的制备方法
CN110813361A (zh) * 2019-11-29 2020-02-21 东华大学 磷掺杂氧化钴铁氮掺杂碳纳米纤维复合材料及其制备方法与应用
CN110975914A (zh) * 2019-11-29 2020-04-10 东华大学 磷掺杂氧化镍铁氮掺杂碳纳米纤维复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL., RENEW. SUST. ENERG. REV., vol. 101, 2019, pages 568 - 589

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351446A (zh) * 2023-03-17 2023-06-30 大连理工大学 一种化学镀制备Ni3P/SiO2催化剂的方法及在加氢脱氧中的应用
CN116351446B (zh) * 2023-03-17 2024-04-19 大连理工大学 一种化学镀制备Ni3P/SiO2催化剂的方法及在加氢脱氧中的应用

Also Published As

Publication number Publication date
US20240207827A1 (en) 2024-06-27
CN116196930B (zh) 2024-06-11
EP4382201A1 (en) 2024-06-12
CN116196930A (zh) 2023-06-02
CN114042454B (zh) 2023-03-31
CN114042454A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023010709A1 (zh) 一种磷掺杂的镍铝氧化物及其制备方法与应用
WO2022188432A1 (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN108855130B (zh) 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法
He et al. Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN110215927A (zh) 一种高分散的负载型磷化镍催化剂的制备方法
CN114522716B (zh) 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用
WO2023015632A1 (zh) 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用
Shao et al. Alloying cobalt in Co–Fe–Al catalyst for achieving the selective conversion of furfural to cyclopentanone
CN110935473B (zh) 加氢脱氧催化剂及其制备方法与应用
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
CN110586112B (zh) 一种加氢脱氧固体酸催化剂Ni/CeO2-Al2O3
CN103464157B (zh) 一种醋酸酯加氢催化剂的制备方法
CN113441140A (zh) 加氢脱氧催化剂及其制备方法和应用
CN112657519B (zh) 一种介孔结构磷化镍-磷酸锆复合催化剂及其制备方法与应用
CN111359644B (zh) 用于二甲醚水蒸气重整制氢的非贵金属基碳化钼催化剂及其制备方法和应用
Chen et al. Environmentally-friendly preparation of natural hollow carbon spheres derived from a biomass puffball for in situ upgrading of lignin-derived vanillin
Chen et al. Preparation of higher alcohols by biomass-based syngas from wheat straw over CoCuK/ZrO2-SiO2 catalyst
CN113813991B (zh) 膦酸改性的钌金属负载铌基氧化物催化剂的制备方法及其应用
Long et al. ReO x promotes Ni cluster interactions on TiO 2 to improve the activity and durability for green alkane and alcohol production at low temperature
CN113731413A (zh) 一种MOFs限域金属催化剂及其制备方法与应用
WO2024031877A1 (zh) 环戊酮合成环戊二烯的方法
CN113509940B (zh) 一种NiSn-MgAlO@C相转移催化剂及其制备方法和应用
CN115532267B (zh) 一种用于低温液相甲酸制氢纳米镍催化剂及其制备方法
KR20100079570A (ko) 프로판디올 제조용 촉매의 제조 방법 및 그를 이용한 프로판디올의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18291453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952572

Country of ref document: EP

Effective date: 20240304