WO2023015632A1 - 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用 - Google Patents

一种二氧化碳加氢制甲醇催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023015632A1
WO2023015632A1 PCT/CN2021/116450 CN2021116450W WO2023015632A1 WO 2023015632 A1 WO2023015632 A1 WO 2023015632A1 CN 2021116450 W CN2021116450 W CN 2021116450W WO 2023015632 A1 WO2023015632 A1 WO 2023015632A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon dioxide
reaction
methanol
preparation
Prior art date
Application number
PCT/CN2021/116450
Other languages
English (en)
French (fr)
Inventor
邓德会
胡景庭
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2023015632A1 publication Critical patent/WO2023015632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a carbon dioxide hydrogenation methanol catalyst and its preparation method and application, belonging to the fields of chemistry and chemical industry.
  • Carbon dioxide (CO 2 ) is the final product of the combustion of carbon-containing compounds, and its excessive emission aggravates the greenhouse effect and brings enormous pressure to the ecological environment.
  • the efficient conversion and utilization of CO2 is an important way to alleviate the energy crisis and the greenhouse effect, and it is also a research hotspot and difficulty in the field of energy and chemical industry.
  • the process of producing methanol by the reaction of "green H 2 " and CO 2 based on renewable energy production has attracted more and more attention.
  • Methanol is an important chemical raw material, intermediate and alternative fuel, and it also has important applications in hydrogen storage, fuel cells and other fields.
  • Cu/ZnO/Al 2 O 3 catalyst is currently the most widely studied catalyst for CO 2 hydrogenation to methanol, showing good catalytic performance.
  • the unavoidable RWGS reaction on Cu/ZnO-based catalysts limits the product selectivity.
  • metal oxide catalysts such as ZnO-ZrO 2 , In 2 O 3 , etc., have also been widely reported for high-temperature (>300°C) CO 2 hydrogenation to methanol, but the RWGS reaction is more serious and this type of catalyst
  • the optimization of the catalyst system or the development of a new catalyst system is of great significance to promote the industrialization process of this reaction.
  • Two-dimensional materials especially the abundant defect sites on the surface of two-dimensional metal sulfides, are highly potential active sites for CO2 hydrogenation to methanol, but their large-scale introduction is still a great challenge.
  • a carbon dioxide hydrogenation methanol catalyst and a preparation method thereof A high-temperature, high-pressure solvent-thermal coupling reduction method is provided to synthesize defect-rich thin-layer two-dimensional metal sulfides for carbon dioxide hydrogenation to methanol.
  • the rich defects make it highly active in carbon dioxide hydrogenation to methanol.
  • the invention provides a catalyst for hydrogenation of carbon dioxide to produce methanol, which is characterized in that: a defect-rich thin-layer two-dimensional metal sulfide catalyst is prepared by a high-temperature and high-pressure solvent thermal coupling reduction method, and the metal in the metal sulfide is selected from tungsten, molybdenum, and vanadium , tantalum; the catalyst synthesis temperature is 250-500°C, and the pressure after heating is 5-30MPa.
  • the thin two-dimensional metal sulfide layer has a thickness of 0.5 nm to 20 nm;
  • the defects are one or more of edge defects or transverse planar defects.
  • the molar ratio of S to metal elements is 2-500:1; preferably 2-200:1.
  • the catalyst is a supported or non-supported catalyst
  • the supported catalyst carrier is one or more of oxides, molecular sieves, and carbon materials, and the carrier is added and dispersed in the synthesis process. in solvent.
  • the present invention provides the preparation method of above-mentioned a kind of carbon dioxide hydrogenation methanol catalyst, it is characterized in that comprising the following steps:
  • the metal salt precursor is selected from a tungsten salt precursor, a molybdenum salt precursor, and a vanadium salt Precursors, tantalum salt precursors;
  • the metal salt precursor is ammonium tungstate, sodium tungstate, tungsten oxide, phosphotungstic acid, sodium phosphotungstate, tungsten chloride, ammonium tetrathiotungstate, dithiotungstate Ammonium, ammonium molybdate, sodium molybdate, molybdenum oxide, phosphomolybdic acid, sodium phosphomolybdate, molybdenum chloride, ammonium tetrathiomolybdate, ammonium dithiomolybdate, vanadium chloride, vanadium sulfate, vanadyl oxalate , Vanadyl acetylacetonate, vanadyl sulfate, vanadyl dichloride, sodium vanadite, metavanadate, pyrovanadate, orthovanadate, polyvanadate, decavanadate, tantalum oxalate, tantalum ethoxide
  • tantadite metavanadate
  • the solvent is one or more of water, methanol, ethanol, acetonitrile, hexamethylenediamine, N,N-dimethylformamide, and dimethyl sulfoxide.
  • the sulfur source is sulfur, hydrogen sulfide, sodium sulfide, potassium sulfide, thiourea, carbon disulfide, thioacetamide, dimethyl sulfoxide, sulfur dioxide, cysteine, methionine, mercaptan One or more of thiophenols and thioethers.
  • the amount of metal salt precursor and sulfur source added is 2-500:1 in molar ratio of sulfur element to metal element; preferably 2-200:1.
  • the reducing agent is one or more of hydrogen, ammonia, hydrogen sulfide, carbon disulfide, hydrazine hydrate, sodium borohydride, and thiourea.
  • a carrier is added in step (1) or step (2), and the carrier is selected from one or more of oxides, molecular sieves, and carbon materials.
  • the invention provides the application of the above-mentioned catalyst in the hydrogenation reaction of carbon dioxide to produce methanol, which is characterized in that the catalyst is pretreated at 200-600°C for 1-6 hours with a pretreatment gas containing H2 before being used in the hydrogenation reaction of carbon dioxide.
  • the present invention provides the application of the above-mentioned catalyst in the reaction of carbon dioxide hydrogenation to methanol, which is characterized in that the catalyst is used for carbon dioxide hydrogenation and is suitable for fixed bed reactors, fluidized bed reactors, moving bed reactors, slurry bed reactors, One or more in the tank reactor Compared with the prior art, the beneficial effects of the carbon dioxide hydrogenation methanol catalyst and the preparation method thereof provided by the present invention are mainly reflected in the following aspects:
  • the high-temperature and high-pressure solvent-thermal coupling reduction method provided by the present invention can synthesize defect-rich thin-layer two-dimensional sulfides.
  • High temperature and high pressure solvothermal can accelerate the crystallization of two-dimensional sulfides, greatly shorten the material synthesis time, improve the synthesis efficiency of catalysts, and reduce the layer thickness of two-dimensional sulfides.
  • Reducing conditions can provide a sufficient reducing atmosphere for the synthesis of 2D sulfides, making the central metal in a lower valence state and exposing more defects as active sites.
  • the thickness of the synthesized thin two-dimensional sulfide layer is less than 20nm, exposing a large number of active surfaces.
  • the characteristic peak signal with a g value of about 2.0 is strong, indicating a high concentration of single electrons, which proves that the thin-layer two-dimensional sulfide contains abundant sulfur defects.
  • Raman spectrum analysis shows that the thin-layer two-dimensional sulfide has stronger defect characteristic peaks. Abundant defects endow it with high activity of carbon dioxide hydrogenation to methanol.
  • the use of the thin-layer two-dimensional sulfide provided by the present invention as a catalyst for hydrogenation of carbon dioxide to methanol can avoid the phenomenon of catalyst sintering in the reaction process and improve the stability of the catalyst.
  • the catalyst for hydrogenation of carbon dioxide to methanol provided by the present invention can obtain high activity and selectivity, and good stability, and has good industrial application prospect.
  • a, b, c, and d are the electron microscope images of catalysts Cat1, Cat5, Cat9, and Cat10 respectively; the figure shows that the layer thickness of Cat1 and Cat5 is obviously less than 20nm, while the layer thickness of Cat9 and Cat10 is obviously greater than 20nm.
  • Fig. 2 is the electron paramagnetic resonance spectrogram (differential diagram) of catalyst Cat5, Cat9, Cat10.
  • Figure 3 is the Raman spectrum of catalysts Cat5 and Cat10; the peak at the position of 200-270 cm -1 is the characteristic peak of molybdenum sulfide defect, and the defect characteristic peak of Cat5 is obviously stronger than that of Cat10, so it has better catalytic performance.
  • the carbon dioxide hydrogenation methanol catalyst provided by the present invention and its preparation method and reaction performance are illustrated below, but the present invention is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种二氧化碳加氢制甲醇催化剂及其制备方法和应用。采用高温高压溶剂热耦合还原法合成富含缺陷的薄层二维金属硫化物用于二氧化碳加氢制甲醇,丰富的缺陷使其具备高的二氧化碳加氢制甲醇活性。二氧化碳加氢制甲醇催化剂能获得较高的活性和选择性,且稳定性良好,具有较好的工业应用前景。

Description

一种二氧化碳加氢制甲醇催化剂及其制备方法和应用 技术领域
本发明涉及一种二氧化碳加氢制甲醇催化剂及其制备方法和应用,属于化学、化工领域。
背景技术
二氧化碳(CO 2)是含碳化合物燃烧的最终产物,其过量排放使温室效应加剧,给生态环境带来巨大压力。CO 2的高效转化利用是缓解能源危机和温室效应的重要途径,也是能源化工领域的研究热点和难点。近年来,利用基于可再生能源生产的“绿色H 2”与CO 2反应制备甲醇的过程受到人们愈来愈多的关注。
甲醇是重要的化工原料、中间体和替代燃料,在储氢、燃料电池等领域也有重要应用。Cu/ZnO/Al 2O 3催化剂为目前研究最为广泛的CO 2加氢制甲醇催化剂,展现出不错的催化性能。然而,Cu/ZnO基催化剂上存在难以避免的RWGS反应,使产物选择性受限。除了Cu基催化剂,金属氧化物催化剂,如ZnO-ZrO 2、In 2O 3等,也被广泛报道用于高温(>300℃)CO 2加氢制甲醇,但RWGS反应较为严重也是这类催化剂体系的弊端之一。催化剂体系的优化或新催化剂体系的开发对该反应的工业化进程的推动意义重大。
二维材料的兴起给加氢催化体系的开发带来了新的契机,其简单易调控的表面结构为催化剂的设计优化提供了更多的可能性。二维材料,尤其是二维金属硫化物表面丰富的缺陷位是极具潜力的CO 2加氢制甲醇的活性位,但其大量引入仍存在巨大挑战性。
发明内容
一种二氧化碳加氢制甲醇催化剂及其制备方法。提供一种高温高压溶剂热耦合还原法合成富含缺陷的薄层二维金属硫化物用于二氧化碳加氢制甲醇,丰富的缺陷使其具备高的二氧化碳加氢制甲醇活性。
本发明提供一种二氧化碳加氢制甲醇催化剂,其特征在于:采用高温高压溶剂热耦合还原法制备富含缺陷的薄层二维金属硫化物催化剂,金属硫化物中金属选自钨、钼、钒、钽;催化剂合成温度为250~500℃,升温后压力为5~30MPa。
进一步地,在上述技术方案中,所述薄层二维金属硫化物层厚度为0.5nm~20nm;
所述缺陷为边缘缺陷或横向平面缺陷的一种或多种。
进一步地,在上述技术方案中,原料投入量中,S与金属元素摩尔比为2~500:1;优选2~200:1。
进一步地,在上述技术方案中,所述催化剂为负载型或非负载型催化剂,负载型催化剂载体为氧化物、分子筛、碳材料中的一种或多种,载体于合成过程中添加并分散于溶剂中。
本发明提供上述的一种二氧化碳加氢制甲醇催化剂的制备方法,其特征在于包括以下步骤:
(1)将金属盐前驱体分散或溶解于溶剂中并置于高压反应釜,加入硫源得到前驱体混合液;所述金属盐前驱体选自钨盐前驱体、钼盐前驱体、钒盐前驱体、钽盐前驱体;
(2)向上述高压反应釜中加入还原剂,并将反应釜密封;
(3)将高压反应釜加热至高温反应;反应温度为250~500℃,升温后压力为5~30MPa;
(4)待反应完全,将反应釜冷却至室温,取出粗产物洗涤后得到最终产物。
进一步地,在上述技术方案中,金属盐前驱体为钨酸铵、钨酸钠、氧化钨、磷钨酸、磷钨酸钠、氯化钨、四硫代钨酸铵、二硫代钨酸铵、钼酸铵、钼酸钠、氧化钼、磷钼酸、磷钼酸钠、氯化钼、四硫代钼酸铵、二硫代钼酸铵、氯化钒、硫酸钒、草酸氧钒、乙酰丙酮氧钒、硫酸氧钒、二氯氧钒、亚钒酸钠、偏钒酸盐、焦钒酸盐、正钒酸盐、多钒酸盐、十钒酸盐、草酸钽、乙醇钽、四乙醇乙酰丙酮钽、氯化钽、钽酸盐中的一种或几种。
进一步地,在上述技术方案中,溶剂为水、甲醇、乙醇、乙腈、己二胺、N,N-二甲基甲酰胺、二甲基亚砜中的一种或几种。
进一步地,在上述技术方案中,硫源为硫、硫化氢、硫化钠、硫化钾、硫脲、二硫化碳、硫代乙酰胺、二甲基亚砜、二氧化硫、半胱氨酸、蛋氨酸、硫醇、硫酚、硫醚中的一种或几种。
金属盐前驱体与硫源加入量以硫元素与金属元素的摩尔比例为2~500:1;优选2~200:1。
进一步地,在上述技术方案中,还原剂为氢气、氨气、硫化氢、二硫化碳、水合肼、硼氢化钠、硫脲中的一种或几种。
进一步地,在上述技术方案中,在步骤(1)或步骤(2)中加入载体,所述载体选自氧化物、分子筛、碳材料中的一种或多种。
本发明提供上述的催化剂在二氧化碳加氢制甲醇反应中的应用,其特征在于:催化剂在用于二氧化碳加氢反应前采用含H 2的预处理气于200~600℃预处理1~6h。
本发明提供上述的催化剂在二氧化碳加氢制甲醇反应中的应用,其特征在于催化剂用于二氧化碳加氢适用于固定床反应器、流化床反应器、移动床反应器、浆态床反应器、釜式反应器中的一种或多种与现有技术相比,本发明所提供的二氧化碳加氢制甲醇催化剂及其制备方法的有益效果主要体现在以下方面:
(1)本发明所提供的高温高压溶剂热耦合还原法可合成富含缺陷的薄层二维硫化物。高温高压溶剂热可加速二维硫化物的晶化,大幅度缩短材料合成时间,提高催化剂的合成效率,并减少二维硫化物的层厚度。还原条件可为二维硫化物的合成提供充分的还原气氛,使中心金属处于较低的价态,暴露更多的缺陷作为活性位。
(2)电镜分析中,所合成的薄层二维硫化物层厚度低于20nm,暴露出大量的活性表面。电子顺磁共振谱分析中,g值为2.0左右的特征峰信号强,表明单电子浓度高,证明该薄层二维硫化物含有丰富的硫缺陷。拉曼谱图分析表明薄层二维硫化物具有更强的缺陷特征峰。丰富的缺陷使其具备高的二氧化碳加氢制甲醇活性。
(3)由于二维硫化物层与层间通过范德瓦尔斯作用力相结合,不易烧结。因此,本发明所提供薄层二维硫化物用作二氧化碳加氢制甲醇催化剂可避免反应过程催化剂烧结的现象,提高了催化剂稳定性。
(4)所采用的催化剂制备过程简单且可控,易进行放大化制备。
综上,本发明所提供的二氧化碳加氢制甲醇催化剂能获得较高的活性和选择性,且稳定性良好,具有较好的工业应用前景。
附图说明
图1中a、b、c、d分别依次为催化剂Cat1、Cat5、Cat9、Cat10的电镜图;图中显示Cat1和Cat5的层厚度明显小于20nm,而Cat9和Cat10的层厚度明显大于20nm。
图2为催化剂Cat5、Cat9、Cat10电子顺磁共振谱图(微分图)。
图3为催化剂Cat5、Cat10的拉曼谱图;200~270cm -1位置的峰为硫化钼缺陷的特征峰,Cat5的缺陷特征峰明显强于Cat10,因此具有更优异的催化性能。
具体实施方式
下面举例说明本发明所提供的二氧化碳加氢制甲醇催化剂及其制备方法和反应性 能,但本发明并不因此而受到任何限制。
实施例1
将800mg钨酸铵溶解于水置于高压反应釜中,再加入15mL二甲基亚砜。将高压反应釜密封,并在釜中冲入氢气作还原剂(操作危险),将反应釜加热至450℃高温反应3小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat1。
实施例2
将400mg钨酸钠溶解于水置于高压反应釜中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat2。
实施例3
将400mg氯化钒溶解于乙醇置于高压反应釜中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至500℃高温反应3小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat3。
实施例4
将500mg乙醇钽溶解于乙醇置于高压反应釜中,再加入15mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat4。
实施例5
将400mg磷钼酸溶解于乙醇置于高压反应釜中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4.5小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat5。
实施例6
将400mg磷钼酸溶解于乙醇置于高压反应釜中,再加入800mg碳纳米管分散于上述溶液中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4.5小时,达到温度时压力为10~30MPa,反应完全后将反 应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat6。
实施例7
将400mg磷钼酸溶解于乙醇置于高压反应釜中,再加入1g二氧化硅分散于上述溶液中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4.5小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat7。
实施例8
将400mg磷钼酸溶解于乙醇置于高压反应釜中,再加入1g钛硅分子筛分散于上述溶液中,再加入10mL二硫化碳。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至400℃高温反应4.5小时,达到温度时压力为10~30MPa,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat8。
对比例1
将900mg磷钼酸溶解于乙醇置于高压反应釜中,再加入2g硫脲。将高压反应釜密封,并在釜中冲入氮气作保护气,将反应釜加热至180℃反应24小时,反应完全后将反应釜冷却至室温,放出气体取出粗产物。再利用乙醇、水交替洗涤上述粗产物至滤液为中性,烘干得到Cat9。
对比例2
将商用二硫化钼(CAS号:1317-33-5)作为对比样,记作Cat10。
应用例
称取0.2g(活性组分的质量)粒度大小为30~60目的Cat1~10催化剂装入固定床反应器中,通入10%H 2-90%N 2混合气流,在压力为1bar、空速为9000mL h -1g -1的条件下,升温至300℃对催化剂进行预处理,时间为1h,后将温度降低至30℃。切换至CO 2和H 2的混合气气氛,其中H 2与CO 2的体积比为3:1,加压至50bar,反应空速为3000mL h -1g -1,升温至180℃进行CO 2加氢制甲醇反应。反应产物采用气相色谱仪进行在线分析,分别采用TCD和FID检测器进行定性和定量分析。具体反应性能列于表1中。
表1催化剂性能评价结果
Figure PCTCN2021116450-appb-000001

Claims (10)

  1. 一种二氧化碳加氢制甲醇催化剂,其特征在于:采用高温高压溶剂热耦合还原法制备富含缺陷的薄层二维金属硫化物催化剂,金属硫化物中金属元素选自钨、钼、钒、钽;催化剂合成温度为250~500℃,升温后压力为5~30MPa。
  2. 如权利要求1所述的一种二氧化碳加氢制甲醇催化剂,其特征在于:所述薄层二维金属硫化物层厚度为0.5nm~20nm;所述缺陷为边缘缺陷或横向平面缺陷的一种或多种。
  3. 如权利要求1所述的一种二氧化碳加氢制甲醇催化剂,其特征在于:所述催化剂为负载型或非负载型催化剂,负载型催化剂载体为氧化物、分子筛、碳材料中的一种或多种,载体于合成过程中添加并分散于溶剂中。
  4. 如权利要求1~3任意一项所述的一种二氧化碳加氢制甲醇催化剂的制备方法,其特征在于包括以下步骤:
    (1)将金属盐前驱体分散或溶解于溶剂中并置于高压反应釜,加入硫源得到前驱体混合液;所述金属盐前驱体选自钨盐前驱体、钼盐前驱体、钒盐前驱体、钽盐前驱体;
    (2)向上述高压反应釜中加入还原剂,并将反应釜密封;
    (3)将高压反应釜加热至高温反应;反应温度为250~500℃,升温后压力为5~30MPa;
    (4)待反应完全,将反应釜冷却至室温,取出粗产物洗涤后得到最终产物。
  5. 如权利要求4所述的制备方法,其特征在于:金属盐前驱体为钨酸铵、钨酸钠、氧化钨、磷钨酸、磷钨酸钠、氯化钨、四硫代钨酸铵、二硫代钨酸铵、钼酸铵、钼酸钠、氧化钼、磷钼酸、磷钼酸钠、氯化钼、四硫代钼酸铵、二硫代钼酸铵、氯化钒、硫酸钒、草酸氧钒、乙酰丙酮氧钒、硫酸氧钒、二氯氧钒、亚钒酸钠、偏钒酸盐、焦钒酸盐、正钒酸盐、多钒酸盐、十钒酸盐、草酸钽、乙醇钽、四乙醇乙酰丙酮钽、氯化钽、钽酸盐中的一种或几种;
    硫源为硫、硫化氢、硫化钠、硫化钾、硫脲、二硫化碳、硫代乙酰胺、二甲基亚砜、二氧化硫、半胱氨酸、蛋氨酸、硫醇、硫酚、硫醚中的一种或几种;
    原料硫源与金属盐前驱体投入量中,S与金属元素摩尔比为2~500:1。
  6. 如权利要求4所述的制备方法,其特征在于:溶剂为水、甲醇、乙醇、乙腈、己二胺、N,N-二甲基甲酰胺、二甲基亚砜中的一种或几种。
  7. 如权利要求4所述的制备方法,其特征在于:还原剂为氢气、氨气、硫化氢、二硫化碳、水合肼、硼氢化钠、硫脲中的一种或几种。
  8. 如权利要求4所述的制备方法,其特征在于:在步骤(1)或步骤(2)中加入载体,所述载体选自氧化物、分子筛、碳材料中的一种或多种。
  9. 如权利要求1~3任意一项所述的催化剂在二氧化碳加氢制甲醇反应中的应用,其特征在于:催化剂在用于二氧化碳加氢反应前采用含H 2的预处理气于200~600℃预处理1~6h。
  10. 如权利要求1~3任意一项所述的催化剂在二氧化碳加氢制甲醇反应中的应用,其特征在于催化剂用于二氧化碳加氢适用于固定床反应器、流化床反应器、移动床反应器、浆态床反应器、釜式反应器中的一种或多种。
PCT/CN2021/116450 2021-08-13 2021-09-03 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用 WO2023015632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110931675.8A CN113499787A (zh) 2021-08-13 2021-08-13 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用
CN202110931675.8 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023015632A1 true WO2023015632A1 (zh) 2023-02-16

Family

ID=78016221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116450 WO2023015632A1 (zh) 2021-08-13 2021-09-03 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113499787A (zh)
WO (1) WO2023015632A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT526222B1 (de) * 2022-06-20 2024-02-15 Univ Wien Tech Katalysator und verfahren zur herstellung von methanol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246316A (zh) * 2018-03-16 2018-07-06 中国科学技术大学先进技术研究院 一种Pt/MoS2纳米催化剂及其制备方法和应用
CN108794298A (zh) * 2018-06-29 2018-11-13 厦门大学 一种低温合成甲醇的方法
CN109201096A (zh) * 2017-07-03 2019-01-15 中国石油化工股份有限公司 Co2加氢制低碳混合醇的催化剂及其用途
CN110833843A (zh) * 2018-08-16 2020-02-25 中国科学院大连化学物理研究所 一种二氧化碳加氢合成甲醇的催化剂
JP2021030117A (ja) * 2019-08-20 2021-03-01 国立大学法人島根大学 メタノール合成用触媒の活性向上剤
CN112718014A (zh) * 2021-01-12 2021-04-30 厦门大学 一种催化剂载体的处理方法、二氧化碳加氢制甲醇用催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268976B (zh) * 2015-06-05 2019-01-25 中国科学院大连化学物理研究所 一种汽油选择性加氢脱硫催化剂及其制备和应用
CN113089000B (zh) * 2021-03-24 2022-05-17 福州大学 一种具有面内缺陷的钼基催化剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109201096A (zh) * 2017-07-03 2019-01-15 中国石油化工股份有限公司 Co2加氢制低碳混合醇的催化剂及其用途
CN108246316A (zh) * 2018-03-16 2018-07-06 中国科学技术大学先进技术研究院 一种Pt/MoS2纳米催化剂及其制备方法和应用
CN108794298A (zh) * 2018-06-29 2018-11-13 厦门大学 一种低温合成甲醇的方法
CN110833843A (zh) * 2018-08-16 2020-02-25 中国科学院大连化学物理研究所 一种二氧化碳加氢合成甲醇的催化剂
JP2021030117A (ja) * 2019-08-20 2021-03-01 国立大学法人島根大学 メタノール合成用触媒の活性向上剤
CN112718014A (zh) * 2021-01-12 2021-04-30 厦门大学 一种催化剂载体的处理方法、二氧化碳加氢制甲醇用催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CENTI GABRIELE: "Controlled location of S vacancies in MoS2 nanosheets for high-performance hydrogenation of CO2 to methanol", JOURNAL OF ENERGY CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 64, 4 May 2021 (2021-05-04), AMSTERDAM, NL , pages 113 - 115, XP086700846, ISSN: 2095-4956, DOI: 10.1016/j.jechem.2021.04.036 *
HU JINGTING, YU LIANG, DENG JIAO, WANG YONG, CHENG KANG, MA CHAO, ZHANG QINGHONG, WEN WU, YU SHENGSHENG, PAN YANG, YANG JIUZHONG, : "Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol", NATURE CATALYSIS, vol. 4, no. 3, pages 242 - 250, XP093034892, DOI: 10.1038/s41929-021-00584-3 *
ZHANG SHOU-KUN, WANG HAOTIAN: "Converting CO2 to liquid fuel on MoS2 vacancies", JOULE, CELL PRESS, vol. 5, no. 5, 1 May 2021 (2021-05-01), pages 1038 - 1040, XP093034895, ISSN: 2542-4351, DOI: 10.1016/j.joule.2021.04.018 *

Also Published As

Publication number Publication date
CN113499787A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN113398994B (zh) 一种Keggin型杂多酸难溶盐异质结催化剂及其制备方法和应用
CN111468116B (zh) 一种褐煤焦负载纳米钴复合催化剂及其制备方法
CN109796044B (zh) 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN111185209B (zh) 碳化钼负载的镍基催化剂制备及其在二氧化碳加氢制备乙醇中的应用
WO2023015632A1 (zh) 一种二氧化碳加氢制甲醇催化剂及其制备方法和应用
CN107511159B (zh) 有机-无机杂化路线制备镍钨双金属碳化物催化剂的制备方法及其应用
CN111233040A (zh) 一种溶剂热制备纳米二硫化钼的方法及催化剂和应用
CN111233038A (zh) 一种球状二硫化钼及制备方法和其应用
Zhang et al. Understanding the reaction route of selectively converting furfural to furan over the alkali-induced Co-Mo2C heterostructure
WO2019192079A1 (zh) 用于费托合成反应的负载型ε/ε'碳化铁催化剂及其制备方法和费托合成的方法
CN114042454A (zh) 一种磷掺杂的镍铝氧化物及其制备方法与应用
EP4017630A1 (en) A catalyst composition and its applications thereof
CN109967066B (zh) 纳米片结构的钼酸铋催化剂在催化合成1,3-丁二烯中的应用
CN112844390B (zh) 制备低碳烯烃的铁镍双金属费托催化剂及制备方法与应用
CN111233039B (zh) 一种棒状二硫化钼材料及其制备和应用
CN113351207B (zh) 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用
CN113546631A (zh) 一种La改性Ni/Al2O3催化剂、制备方法及应用
CN111229259A (zh) 一种高活性二硫化钼催化剂的制备方法和催化剂及其应用
CN114452990A (zh) 过渡金属碳化物的制备方法和复合催化剂
WO2024031877A1 (zh) 环戊酮合成环戊二烯的方法
Lin et al. Temperature–Controlled hydrothermal hydrogenation of palmitic acid to alkanol or alkanes over Co@ CN–x catalysts derived from ZIF–67
CN115475637B (zh) 一种用于费托合成制备烯烃的催化剂及其制备方法和应用
CN114917935B (zh) 一种H2分子原位调控Ni-MoS2加氢脱硫催化剂制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE