CN110574147B - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN110574147B
CN110574147B CN201780089939.1A CN201780089939A CN110574147B CN 110574147 B CN110574147 B CN 110574147B CN 201780089939 A CN201780089939 A CN 201780089939A CN 110574147 B CN110574147 B CN 110574147B
Authority
CN
China
Prior art keywords
substrate
layer
type conductive
conductive layer
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780089939.1A
Other languages
English (en)
Other versions
CN110574147A (zh
Inventor
北野俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN110574147A publication Critical patent/CN110574147A/zh
Application granted granted Critical
Publication of CN110574147B publication Critical patent/CN110574147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

在Si基板(1)之上设置有氮化物半导体层(2、3、4)。在氮化物半导体层(2、3、4)之上设置有栅极电极(5)、源极电极(6)以及漏极电极(7)。在漏极电极(7)之下,在Si基板(1)设置有与氮化物半导体层(2、3、4)相接的P型导电层(11)。

Description

半导体装置
技术领域
本发明涉及在Si基板之上形成的氮化物类高电子迁移率晶体管(HEMT:HighElectron Mobility Transistor)。
背景技术
具有AlGaN/GaN类异质构造的GaN HEMT与GaAs类HEMT相比高频(RF)输出密度大,能够减小器件尺寸即栅极宽度,因此,正在积极地进行开发。例如,如果试图实现与GaAs类HEMT相同功率的GaN HEMT,则由于耐压大,所以能够减小漏极电流,能够减小晶体管尺寸,也能够减小电极间电容。因此,输出阻抗变大,由串联寄生电阻引起的电力损耗变小,并且阻抗变化比变小,频带变宽。
图7是表示Si基GaN器件的输入输出特性的图。在低温时,输入输出特性是正常的。但是,在高温时,输出电力在与低温时相比明显低的输入电力时饱和,随后降低。这里,高温例如是Si基板超过180℃这样的状况,小于或等于180℃的温度是低温。虽然Si基板比SiC基板便宜,但是存在这样的问题。
图8是表示高电阻Si基板的电阻率的图。Si基板的电阻率与温度一起变化,如果大于或等于180℃则急剧地降低。这是由于Si的带隙小,因此产生载流子。因此,Si基GaN HEMT的输出在高温时降低是由于基板电阻降低所导致的。这是Si基板特有的问题,对于带隙是Si的3倍左右大的SiC基板而言,不会引起电阻率的降低。
图9是将Si基板的电阻率高的情况和低的情况下的断开时、即通过RF动作而使沟道被夹断的状态的输出路径进行了比较的剖面。在低温时基板电阻Rs大,漏源电容Cds也小。因此,RF电力试图在经由背面电极的通路通过,在该通路RF电力几乎不泄漏。另一方面,在高温时,基板电阻Rs降低,RF电力容易通过,由于Si基板变成低电阻,从而漏源电容Cds急剧地增加。因此,RF电力的泄漏也急剧地增加,出现即使使输入电力增加输出电力也不增加的现象。
这样,Si基GaN HEMT对于实现便宜且高输出的器件是合适的,但是存在高温时的RF动作不稳定的问题。与此相对,提出了如下技术,即,对漏极电极进行分割,将其之间隔离,由此,降低与基板的寄生电容,改善高温时的RF动作(例如,参照专利文献1)。另外,提出了如下技术,即,对漏极电极进行分割,在其之间嵌入与GaN相比介电常数低的低介电层,由此,降低漏源电容,改善高温时的RF动作(例如,参照专利文献2)。
专利文献1:日本特开2011-204984号公报
专利文献2:日本特开2015-79923号公报
发明内容
Si基GaN HEMT使用高电阻Si基板。如果变成高温,则在漏极电极之下,在氮化物半导体和Si基板的边界,在Si基板开始积存电子。那里成为RF电力的泄漏路径,泄漏的电力还产生热量,由此,进入Si基板的电阻率下降这样的循环。因此,漏源电容急剧地增加,输出电力降低。因此,在将Si基GaN HEMT用作RF高输出器件的情况下,即使在高温时使输入电力增加,输出电力也提前地饱和而减少。
在对漏极电极进行分割,将其之间隔离的现有技术中,难以降低漏极电极和Si基板的寄生电容并且难以防止电阻率降低。另外,在对漏极电极进行分割,在其之间嵌入低介电层的现有技术中,难以防止Si基板的电阻率的降低。
本发明是为了解决上述课题而提出的,其目的在于得到能够使高温时的高频特性得到改善的半导体装置。
本发明涉及的半导体装置的特征在于,具备:Si基板;氮化物半导体层,其设置于所述Si基板之上;栅极电极、源极电极及漏极电极,它们设置于所述氮化物半导体层之上;以及P型导电层,其在所述漏极电极之下设置于所述Si基板,与所述氮化物半导体层相接。
发明的效果
在本发明中,在漏极电极之下设置有P型导电层。因此,能够防止在高温时在Si基板产生的电子积存在漏极电极之下。因此,不存在泄漏高频电力的电子,在断开时高频电力不会向基板侧泄漏。由此,高温时的输出电力不会降低,能够使高温时的高频特性得到改善。
附图说明
图1是表示本发明的实施方式1涉及的半导体装置的剖面图。
图2是表示本发明的实施方式2涉及的半导体装置的剖面图。
图3是表示本发明的实施方式3涉及的半导体装置的剖面图。
图4是表示本发明的实施方式4涉及的半导体装置的剖面图。
图5是表示本发明的实施方式5涉及的半导体装置的剖面图。
图6是表示本发明的实施方式6涉及的半导体装置的剖面图。
图7是表示Si基GaN器件的输入输出特性的图。
图8是表示高电阻Si基板的电阻率的图。
图9是将Si基板的电阻率高的情况和低的情况下的断开时、即通过RF动作而使沟道被夹断的状态的输出路径进行了比较的剖面。
具体实施方式
参照附图说明本发明的实施方式涉及的半导体装置。对相同或者对应的结构要素标注相同的标号,有时省略重复的说明。
实施方式1
图1是表示本发明的实施方式1涉及的半导体装置的剖面图。该半导体装置是Si基GaN HEMT。Si基板1例如是在室温下具有10000Ωcm左右的电阻的高电阻的Si基板。
作为氮化物半导体层,在Si基板1之上通过晶体生长设置有缓冲层2、电子传输层3以及电子供给层4。缓冲层2例如是将Al浓度不同的多个AlGaN层层叠而成的。电子传输层3例如是非掺杂的GaN层。电子供给层4例如是Al成分为0.1至0.5的AlGaN层、或者在AlGaN层和电子传输层3之间形成了AlN层而成的。
在电子供给层4之上设置有栅极电极5、源极电极6以及漏极电极7。栅极电极5例如由Ni/Au类的材料构成。源极电极6以及漏极电极7例如由Ti/Al类的材料构成。为了保护这些电极,设置有下层绝缘膜8以及上层绝缘膜9。下层绝缘膜8以及上层绝缘膜9例如是氮化硅膜。在Si基板1的背面设置有背面电极10。背面电极10例如由Ti/Au类材料构成。
在漏极电极7之下,在Si基板1设置有与缓冲层2相接的P型导电层11。P型导电层11例如通过离子注入而形成,使用硼(B)、铝(Al)等作为P型掺杂剂。优选P型导电层11的杂质浓度大于或等于5E16cm-3。P型导电层11的注入深度可以小于或等于1微米。
在使用Si基GaN HEMT作为高频器件的情况下,使用高电阻的Si基板1防止RF电力向基板侧泄漏而导致输出特性恶化。但是,如果变成高温,则在Si基板1开始产生载流子。而且,就Si基GaN HEMT而言,为了有效利用GaN类材料的特征而进行高电压动作。例如,通常使用50V左右作为漏极电压。由于漏极电压是高电压,所以在Si基板1产生的载流子中,电子在与缓冲层2相接的Si基板1侧的漏极电极7之下集中。
与此相对,在本实施方式中,在漏极电极7之下设置有P型导电层11。因此,能够防止在高温时在Si基板1产生的电子积存在漏极电极7之下。因此,不存在泄漏高频电力的电子,能够防止在断开时高频电力向基板侧泄漏。由此,高温时的输出电力不会降低,能够使高温时的高频特性得到改善。其结果,能够实现与以往相比能够在高温下动作的Si基GaNHEMT。
但是,当在包含栅极电极5以及源极电极6之下在内的Si基板1的整个面形成了P型导电层11的情况下,虽然能够抑制高温时的输出降低,但是在低温时RF电力经由P型导电层11泄漏。另外,源极电极6与背面电极10是相同的电压,因此,即使在源极电极6之下形成P型导电层11,与在漏极电极7之下形成P型导电层相比,电子也难以积存,没有效果。因此,P型导电层11没有设置于栅极电极5以及源极电极6之下。
实施方式2
图2是表示本发明的实施方式2涉及的半导体装置的剖面图。如果设置P型导电层11,则有时在低温时高频电力的泄漏会增加。与此相对,在本实施方式中,P型导电层11的宽度比漏极电极7的宽度窄。由此,能够减少在低温时高频电力向基板侧泄漏,提高低温时的特性。其他结构以及效果与实施方式1相同。
实施方式3
图3是表示本发明的实施方式3涉及的半导体装置的剖面图。P型导电层11的宽度比漏极电极7的宽度宽。由此,与实施方式1相比,能够减少在高温时高频电力向基板侧泄漏。其他结构以及效果与实施方式1相同。此外,如果将P型导电层11的宽度加宽,则在低温时高频电力的泄漏增加,在重视高温时的特性的情况下本实施方式是有效的。
实施方式4
图4是表示本发明的实施方式4涉及的半导体装置的剖面图。P型导电层11具有高浓度层11a和设置于高浓度层11a的外侧并且与高浓度层11a相比杂质浓度低的低浓度层11b。高浓度层11a和低浓度层11b例如通过离子注入而形成,使用硼(B)、铝(Al)等作为P型掺杂剂。
如果如实施方式3那样加宽P型导电层11的宽度,则在低温时高频电力的泄漏增加。与此相对,通过如本实施方式那样设置高浓度层11a和低浓度层11b,由此,高温时的特性和低温时的特性的兼顾变得容易。即,防止了在高温时在Si基板1产生的电子积存在漏极电极7之下并且低温时的特性也容易调整。其结果,能够调整为最适于器件的目的的状态。其他结构以及效果与实施方式1相同。
实施方式5
图5是表示本发明的实施方式5涉及的半导体装置的剖面图。在P型导电层11之上漏极电极7被分割,在缓冲层2、电子传输层3以及电子供给层4设置有空腔12。例如使用氯类气体对缓冲层2、电子传输层3以及电子供给层4进行干蚀刻而形成空腔12,使Si基板1露出。由此,能够降低漏源电容,因此,在高温时高频电力更难以向基板侧泄漏。
实施方式6
图6是表示本发明的实施方式6涉及的半导体装置的剖面图。与缓冲层2、电子传输层3以及电子供给层4相比介电常数低的低介电常数材料13被嵌入空腔12。低介电常数材料13例如是苯并环丁烯、聚酰亚胺以及多氟烃等。由此,能够降低漏源电容,因此,在高温时高频电力更难以向基板侧泄漏。另外,在通过模塑树脂进行封装的器件的情况下,在实施方式5中介电常数稍高的模塑树脂进入空腔12,因此,效果降低。与此相对,在将与模塑树脂相比介电常数低的低介电常数材料13嵌入空腔12的本实施方式中,能够防止这一情况。
标号的说明
1Si基板,2缓冲层(氮化物半导体层),3电子传输层(氮化物半导体层),4电子供给层(氮化物半导体层),5栅极电极,6源极电极,7漏极电极,11P型导电层,11a高浓度层,11b低浓度层,12空腔,13低介电常数材料。

Claims (6)

1.一种半导体装置,其特征在于,具备:
高电阻Si基板;
氮化物半导体层,其设置于所述高电阻Si基板之上;
栅极电极、源极电极及漏极电极,它们设置于所述氮化物半导体层之上;以及
P型导电层,其在所述漏极电极之下设置于所述高电阻Si基板,与所述氮化物半导体层相接,
所述P型导电层没有设置于所述栅极电极以及所述源极电极之下。
2.一种半导体装置,其特征在于,具备:
Si基板;
氮化物半导体层,其设置于所述Si基板之上;
栅极电极、源极电极及漏极电极,它们设置于所述氮化物半导体层之上;以及
P型导电层,其在所述漏极电极之下设置于所述Si基板,与所述氮化物半导体层相接,
所述P型导电层没有设置于所述栅极电极以及所述源极电极之下,
所述P型导电层具有高浓度层和低浓度层,该低浓度层设置于所述高浓度层的外侧,与所述高浓度层相比杂质浓度低。
3.一种半导体装置,其特征在于,具备:
Si基板;
氮化物半导体层,其设置于所述Si基板之上;
栅极电极、源极电极及漏极电极,它们设置于所述氮化物半导体层之上;以及
P型导电层,其在所述漏极电极之下设置于所述Si基板,与所述氮化物半导体层相接,
所述P型导电层没有设置于所述栅极电极以及所述源极电极之下,
在所述P型导电层之上,在所述氮化物半导体层设置有空腔。
4.根据权利要求3所述的半导体装置,其特征在于,
还具备嵌入所述空腔的与所述氮化物半导体层相比介电常数低的低介电常数材料。
5.根据权利要求1至4中任一项所述的半导体装置,其特征在于,
所述P型导电层的宽度比所述漏极电极的宽度窄。
6.根据权利要求1至4中任一项所述的半导体装置,其特征在于,
所述P型导电层的宽度比所述漏极电极的宽度宽。
CN201780089939.1A 2017-04-28 2017-04-28 半导体装置 Active CN110574147B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017014 WO2018198337A1 (ja) 2017-04-28 2017-04-28 半導体装置

Publications (2)

Publication Number Publication Date
CN110574147A CN110574147A (zh) 2019-12-13
CN110574147B true CN110574147B (zh) 2023-01-10

Family

ID=60685646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780089939.1A Active CN110574147B (zh) 2017-04-28 2017-04-28 半导体装置

Country Status (6)

Country Link
US (1) US10804369B2 (zh)
JP (1) JP6249146B1 (zh)
KR (1) KR102202173B1 (zh)
CN (1) CN110574147B (zh)
DE (1) DE112017007491B4 (zh)
WO (1) WO2018198337A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158575B2 (en) * 2018-06-05 2021-10-26 Macom Technology Solutions Holdings, Inc. Parasitic capacitance reduction in GaN-on-silicon devices
US11398560B2 (en) * 2018-09-26 2022-07-26 Intel Corporation Contact electrodes and dielectric structures for thin film transistors
JP7016311B2 (ja) * 2018-11-06 2022-02-04 株式会社東芝 半導体装置
CN112840464B (zh) * 2021-01-12 2022-07-12 英诺赛科(苏州)半导体有限公司 半导体器件及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008679A1 (en) * 2007-06-26 2009-01-08 Kabushiki Kaisha Toshiba Semiconductor apparatus
CN103392225A (zh) * 2011-02-23 2013-11-13 松下电器产业株式会社 氮化物半导体装置
US20140138704A1 (en) * 2011-08-08 2014-05-22 Panasonic Corporation Semiconductor device
US20160064538A1 (en) * 2014-08-29 2016-03-03 Renesas Electronics Corporation Semiconductor device and a method for manufacturing a semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180103B2 (en) * 2004-09-24 2007-02-20 Agere Systems Inc. III-V power field effect transistors
JP2006196869A (ja) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7800097B2 (en) 2004-12-13 2010-09-21 Panasonic Corporation Semiconductor device including independent active layers and method for fabricating the same
WO2011024367A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 窒化物半導体装置
JP5658472B2 (ja) 2010-03-26 2015-01-28 ルネサスエレクトロニクス株式会社 電界効果トランジスタ
JP5853188B2 (ja) * 2011-05-30 2016-02-09 パナソニックIpマネジメント株式会社 スイッチ装置
JP5879805B2 (ja) * 2011-08-09 2016-03-08 富士通株式会社 スイッチング素子及びこれを用いた電源装置
JP5896667B2 (ja) * 2011-09-26 2016-03-30 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
WO2014061254A1 (ja) * 2012-10-16 2014-04-24 旭化成エレクトロニクス株式会社 電界効果トランジスタ及び半導体装置
CN103117294B (zh) 2013-02-07 2015-11-25 苏州晶湛半导体有限公司 氮化物高压器件及其制造方法
JP6133191B2 (ja) * 2013-10-18 2017-05-24 古河電気工業株式会社 窒化物半導体装置、ダイオード、および電界効果トランジスタ
JP2017059786A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 半導体装置
US10192980B2 (en) * 2016-06-24 2019-01-29 Cree, Inc. Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same
JP2018041933A (ja) * 2016-09-09 2018-03-15 株式会社東芝 半導体装置及び半導体基板
US11588024B2 (en) * 2017-03-17 2023-02-21 Infineon Technologies Austria Ag High voltage blocking III-V semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008679A1 (en) * 2007-06-26 2009-01-08 Kabushiki Kaisha Toshiba Semiconductor apparatus
CN103392225A (zh) * 2011-02-23 2013-11-13 松下电器产业株式会社 氮化物半导体装置
US20140138704A1 (en) * 2011-08-08 2014-05-22 Panasonic Corporation Semiconductor device
US20160064538A1 (en) * 2014-08-29 2016-03-03 Renesas Electronics Corporation Semiconductor device and a method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
DE112017007491B4 (de) 2023-04-27
JP6249146B1 (ja) 2017-12-20
KR20190126913A (ko) 2019-11-12
US10804369B2 (en) 2020-10-13
US20200144393A1 (en) 2020-05-07
CN110574147A (zh) 2019-12-13
KR102202173B1 (ko) 2021-01-12
WO2018198337A1 (ja) 2018-11-01
JPWO2018198337A1 (ja) 2019-06-27
DE112017007491T5 (de) 2020-01-09

Similar Documents

Publication Publication Date Title
US11699751B2 (en) Semiconductor device
US8507919B2 (en) Field-effect transistor
KR101922122B1 (ko) 노멀리 오프 고전자이동도 트랜지스터
CN110574147B (zh) 半导体装置
JP2008235613A (ja) 半導体装置
WO2014026018A1 (en) Iii-nitride enhancement mode transistors with tunable and high gate-source voltage rating
JP2012064900A (ja) 半導体装置
JP5200372B2 (ja) 電界効果トランジスタおよびその製造方法
JP2007180143A (ja) 窒化物半導体素子
US9076850B2 (en) High electron mobility transistor
JP6834546B2 (ja) 半導体装置及びその製造方法
KR102100928B1 (ko) 고전자 이동도 트랜지스터
US9484429B2 (en) High electron mobility transistor (HEMT) capable of absorbing a stored hole more efficiently and method for manufacturing the same
JP2015177063A (ja) 半導体装置
US20220376105A1 (en) Field effect transistor with selective channel layer doping
KR20150065005A (ko) 노멀리 오프 고전자이동도 트랜지스터
US9263533B2 (en) High-voltage normally-off field effect transistor including a channel with a plurality of adjacent sections
JP2010182924A (ja) トランジスタおよびその製造方法
JP5424128B2 (ja) 保護素子およびそれを備えた半導体装置
JP2008182158A (ja) 半導体装置
JP2018117023A (ja) 半導体素子及びその製造方法
Sullivan et al. Modeling and design of low threshold voltage D-mode GaN HEMT
KR20210158252A (ko) 고 전자 이동도 트랜지스터 및 그 제조방법
KR20220028926A (ko) 단방향 전력 스위칭 소자
CN110600548A (zh) 增强型异质结场效应晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant