CN110480027A - 一种制备二维超薄硅片负载银纳米颗粒的方法 - Google Patents

一种制备二维超薄硅片负载银纳米颗粒的方法 Download PDF

Info

Publication number
CN110480027A
CN110480027A CN201910826447.7A CN201910826447A CN110480027A CN 110480027 A CN110480027 A CN 110480027A CN 201910826447 A CN201910826447 A CN 201910826447A CN 110480027 A CN110480027 A CN 110480027A
Authority
CN
China
Prior art keywords
dimensional ultrathin
ultrathin silicon
nanoparticles loaded
silver nanoparticles
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910826447.7A
Other languages
English (en)
Other versions
CN110480027B (zh
Inventor
孙林
谢杰
黄松超
刘涛
吴俊�
姜瑞雨
吴兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangcheng Institute of Technology
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201910826447.7A priority Critical patent/CN110480027B/zh
Publication of CN110480027A publication Critical patent/CN110480027A/zh
Application granted granted Critical
Publication of CN110480027B publication Critical patent/CN110480027B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种制备二维超薄硅片负载银纳米颗粒的方法,所述方法包括以下步骤:(1)将硅化钙置于浓盐酸中反应,过滤、洗涤、真空干燥得到Si6H6纳米片;(2)将硝酸银溶于能和Ag+形成络合作用的胺中,配成硝酸银胺溶液;(3)将Si6H6纳米片超声分散在有机溶剂中,加入硝酸银胺溶液,反应、过滤、洗涤,即得到二维超薄硅片表面负载银纳米颗粒的复合材料。该方法首先采用浓盐酸和层状化合物硅化钙反应生成Si6H6纳米片,然后加入到硝酸银和胺的络合物中,一步反应得到二维超薄硅片表面负载银纳米颗粒复合材料,步骤简洁,易于操作,制得的复合材料在高倍率锂离子电池领域有潜在的应用。

Description

一种制备二维超薄硅片负载银纳米颗粒的方法
技术领域
本发明属于材料化学领域,具体涉及一种制备二维超薄硅片负载银纳米颗粒的方法。
背景技术
自从2004年发现石墨烯材料后,由于潜在的优异的物理、化学性能,二维片状纳米材料得到了广泛的关注和研究。硅与碳同主族,而且硅在微电子和太阳能电池领域已经得到了广泛的应用,因此,二维超薄纳米硅材料受到了越来越多的重视。但由于硅是半导体材料,内在比较差的导电性阻碍了其在光电催化、高倍率性能锂离子电池等领域的应用。如何提高二维硅纳米材料的导电性和光电化学活性依然是比较棘手的问题。众所周知,银是非常好的导体以及具有优异的表面等离子共振效应,如果能开发比较简便的方法在二维纳米硅片的表面修饰上银纳米粒子,所得到的硅片/银复合材料在锂电池、光热转换等领域都有巨大的潜在的应用。
CN107460462B公开了一种硅片上银纳米颗粒致密层的制备方法,提出将单晶硅片先后置于碱洗液和酸洗液浸泡使硅片表面羟基化;再置于巯基丙基三甲氧基硅烷的甲苯溶液中反应使硅片硅烷化;再先后分别置于硝酸银溶液和硼氢化钠溶液中以生成银纳米粒子。CN102425007A公开了一种在硅片表面制备银纳米晶体的方法,包括在硅片表面制备含有醛基物质的种子层,利用银镜反应镀银。以上两种方法的主要缺点在于:(1)所使用的硅片均是商业化的单晶硅片,厚度不在纳米级,对特定的应用性能有显著的影响;(2)所使用的合成方法步骤繁琐。
发明内容
针对现有技术的不足,本发明提供一种制备二维超薄硅片负载银纳米颗粒的方法,该方法首先采用浓盐酸和层状化合物硅化钙反应生成Si6H6纳米片,然后加入到硝酸银和胺的络合物中,一步反应得到二维超薄硅片表面负载银纳米颗粒复合材料,步骤简洁,易于操作,制得的复合材料在高倍率锂离子电池领域有潜在的应用。
本发明是通过以下技术方案实现的:
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
步骤1)将硅化钙置于浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片;
步骤2)将硝酸银溶于能和Ag+形成络合作用的胺中,配成硝酸银胺溶液;
步骤3)将步骤1)制得的Si6H6纳米片超声分散在有机溶剂中,加入步骤2配制的硝酸银胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,即得到二维超薄硅片表面负载银纳米颗粒的复合材料。
优选地,步骤2)所述胺为乙二胺、三正丙胺、苯胺或对苯二胺。
优选地,步骤2)所述硝酸银胺溶液的浓度为0.1M。
优选地,步骤3)所述有机溶剂为乙腈、二氯甲烷或四氢呋喃。
上述二维超薄硅片表面负载银纳米颗粒的复合材料在锂电池方面的应用。
本发明的有益效果如下:
本发明的制备方法通过将Ag+先和胺类物质先形成络合物,再和Si6H6纳米片反应来制备二维超薄硅片表面负载银纳米颗粒复合材料,一步法直接把Si6H6表面的H拔掉,形成0价Si纳米片,并且在Si片表面负载上导电性能优异的Ag纳米颗粒,步骤简洁,同时利用络合还原法避免了AgCl副产物的形成。制得的复合材料在高倍率锂离子电池领域有潜在的应用。
附图说明
图1为二维超薄硅片表面负载银纳米颗粒复合材料的XRD图;
图2为二维超薄硅片表面负载银纳米颗粒复合材料的SEM图。
具体实施方式
下面结合附图与实施例对本发明作进一步阐述。
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
(1)将硅化钙置于浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片。
(2)将硝酸银溶于胺中,配成硝酸银胺溶液。
其中,所述胺包括乙二胺、三正丙胺、苯胺、对苯二胺等。
上述胺类物质不仅限于所列举物质,还包括能和Ag+形成络合作用的其他物质。
(3)将Si6H6纳米片超声分散在有机溶剂中,加入硝酸银胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,即得到二维超薄硅片表面负载银纳米颗粒的复合材料。
其中,所述有机溶剂包括乙腈、二氯甲烷、四氢呋喃等。
在上述步骤中,AgNO3相当于氧化剂,Si6H6相当于还原剂,但是如果直接将AgNO3和Si6H6纳米片混合反应,很容易形成AgCl副产物(因为浓盐酸处理CaSi2时氯离子很难洗干净)。因此本发明提供一种新的思路,采用络合还原的方法,即先将Ag+和胺类物质络合形成络合物,该络合物和Si6H6纳米片反应就能形成二维超薄硅片表面负载银纳米颗粒的复合材料,此过程不会生成AgCl副产物,且负载的Ag纳米颗粒大小比较均匀。
实施例1
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
(1)将3g硅化钙置于300mL浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片。
(2)将硝酸银溶于10mL乙二胺中,配成浓度为0.1M的硝酸银乙二胺溶液。
(3)将0.1g Si6H6纳米片超声分散在10mL乙腈中,加入2mL硝酸银乙二胺溶液,在60℃、常压下反应24h,过滤、洗涤,得到二维超薄硅片表面负载银纳米颗粒的复合材料。
实施例2
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
(1)将3g硅化钙置于300mL浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片。
(2)将硝酸银溶于10mL对苯二胺中,配成浓度为0.1M的硝酸银对苯二胺溶液。
(3)将0.1g Si6H6纳米片超声分散在10mL四氢呋喃中,加入2mL硝酸银对苯二胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,得到二维超薄硅片表面负载银纳米颗粒的复合材料。
实施例3
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
(1)将3g硅化钙置于300mL浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片。
(2)将硝酸银溶于10mL三正丙胺中,配成浓度为0.1M的硝酸银三正丙胺溶液。
(3)将0.1~1g Si6H6纳米片超声分散在10mL四氢呋喃中,加入1~10mL硝酸银三正丙胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,得到二维超薄硅片表面负载银纳米颗粒的复合材料。
实施例4
一种制备二维超薄硅片负载银纳米颗粒的方法,包括以下步骤:
(1)将3g硅化钙置于300mL浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片。
(2)将硝酸银溶于10mL苯胺中,配成浓度为0.1M的硝酸银苯胺溶液。
(3)将0.1g Si6H6纳米片超声分散在10mL二氯甲烷中,加入2mL硝酸银对苯二胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,得到二维超薄硅片表面负载银纳米颗粒的复合材料。
实施例1制得的复合材料的XRD图谱如图1所示,所得复合材料的X射线衍射峰全部归属于立方相的硅和银,没有检测到其它杂质的衍射峰,说明所得复合材料由硅和银组成。从图2复合材料的SEM图也可以进一步直观地看到在片状硅表面负载有很细的纳米颗粒。
Angew.Chem.Int.Ed.,222012,51:2409制备出了Ag纳米粒子掺杂多孔Si材料,并将其应用于锂电池负极材料上取得了较好的效果,因此本发明的复合材料在锂电池上也有潜在的应用。

Claims (5)

1.一种制备二维超薄硅片负载银纳米颗粒的方法,其特征在于,包括以下步骤:步骤1)将硅化钙置于浓盐酸中,-30℃反应5天,过滤、洗涤、真空干燥得到Si6H6纳米片;
步骤2)将硝酸银溶于能和Ag+形成络合作用的胺中,配成硝酸银胺溶液;
步骤3)将步骤1)制得的Si6H6纳米片超声分散在有机溶剂中,加入步骤2配制的硝酸银胺溶液,在室温至60℃范围内、常压下反应1~24h,过滤、洗涤,即得到二维超薄硅片表面负载银纳米颗粒的复合材料。
2.根据权利要求1所述的一种制备二维超薄硅片负载银纳米颗粒的方法,其特征在于,步骤2)所述胺为乙二胺、三正丙胺、苯胺或对苯二胺。
3.根据权利要求1所述的一种制备二维超薄硅片负载银纳米颗粒的方法,其特征在于,步骤2)所述硝酸银胺溶液的浓度为0.1M。
4.根据权利要求1所述的一种制备二维超薄硅片负载银纳米颗粒的方法,其特征在于,步骤3)所述有机溶剂为乙腈、二氯甲烷或四氢呋喃。
5.权利要求1~4任一项的方法制得的二维超薄硅片表面负载银纳米颗粒的复合材料在锂电池方面的应用。
CN201910826447.7A 2019-08-29 2019-08-29 一种制备二维超薄硅片负载银纳米颗粒的方法 Expired - Fee Related CN110480027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910826447.7A CN110480027B (zh) 2019-08-29 2019-08-29 一种制备二维超薄硅片负载银纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910826447.7A CN110480027B (zh) 2019-08-29 2019-08-29 一种制备二维超薄硅片负载银纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN110480027A true CN110480027A (zh) 2019-11-22
CN110480027B CN110480027B (zh) 2021-04-13

Family

ID=68556382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910826447.7A Expired - Fee Related CN110480027B (zh) 2019-08-29 2019-08-29 一种制备二维超薄硅片负载银纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN110480027B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570821A (zh) * 2020-05-06 2020-08-25 电子科技大学 一种用于锂硫电池的纳米银颗粒复合硫材料及其制备方法
CN111354940B (zh) * 2020-03-12 2021-04-30 山东大学 一种金属包覆的二维硅材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235785A (ja) * 2007-03-23 2008-10-02 Toyota Central R&D Labs Inc 非水系蓄電デバイス及びそれに用いられる電極
CN101540391A (zh) * 2008-12-12 2009-09-23 北京师范大学 一种新型锂电池负极材料
CN103861657A (zh) * 2014-02-24 2014-06-18 浙江大学 纳米银负载多孔二氧化硅的制备方法
CN105226244A (zh) * 2015-08-27 2016-01-06 西北师范大学 三维多孔硅-纳米银复合材料及其制备和作为锂离子电池负极材料的应用
CN105680012A (zh) * 2016-01-22 2016-06-15 奇瑞汽车股份有限公司 一种硅基负极材料及其制备方法、应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235785A (ja) * 2007-03-23 2008-10-02 Toyota Central R&D Labs Inc 非水系蓄電デバイス及びそれに用いられる電極
CN101540391A (zh) * 2008-12-12 2009-09-23 北京师范大学 一种新型锂电池负极材料
CN103861657A (zh) * 2014-02-24 2014-06-18 浙江大学 纳米银负载多孔二氧化硅的制备方法
CN105226244A (zh) * 2015-08-27 2016-01-06 西北师范大学 三维多孔硅-纳米银复合材料及其制备和作为锂离子电池负极材料的应用
CN105680012A (zh) * 2016-01-22 2016-06-15 奇瑞汽车股份有限公司 一种硅基负极材料及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THIRUGNANASAMBANDAN, T.等: "Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles", 《NANO-STRUCTURES & NANO-OBJECTS 》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354940B (zh) * 2020-03-12 2021-04-30 山东大学 一种金属包覆的二维硅材料及其制备方法和应用
CN111570821A (zh) * 2020-05-06 2020-08-25 电子科技大学 一种用于锂硫电池的纳米银颗粒复合硫材料及其制备方法
CN111570821B (zh) * 2020-05-06 2022-12-20 电子科技大学 一种用于锂硫电池的纳米银颗粒复合硫材料及其制备方法

Also Published As

Publication number Publication date
CN110480027B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Yang et al. Rapid room-temperature fabrication of ultrathin Ni (OH) 2 nanoflakes with abundant edge sites for efficient urea oxidation
Huang et al. Photocatalytic applications of two-dimensional Ti3C2 MXenes: a review
CN102142550B (zh) 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
Moolayadukkam et al. Role of transition metals in layered double hydroxides for differentiating the oxygen evolution and nonenzymatic glucose sensing
Xu et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea
Ahmad et al. Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells
CN102142548B (zh) 一种石墨烯与MoS2的复合纳米材料及其制备方法
Xi et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution
CN108579724B (zh) 一种透明导电基底上生长的[010]方向钒酸铋纳米管晶体阵列及其制备和应用
CN107574456A (zh) 一种超薄二硫化钼纳米片/硅纳米线异质结结构的制备方法
CN110479311A (zh) 一种杂原子掺杂多孔二硫化钼包裹石墨烯的制备方法
CN104341006A (zh) 三维MoS2@MWNTs 纳米结构及其制备方法
CN106914244A (zh) 一种石墨烯基金属化合物纳米阵列材料制备与应用
CN107651708A (zh) 一种微波水热制备1T@2H‑MoS2的方法
CN105834446A (zh) 一种超薄层状NiO-CoOx纳米片负载NiCo纳米粒子复合材料的合成方法
CN110480027A (zh) 一种制备二维超薄硅片负载银纳米颗粒的方法
Yu et al. Self-assembly of Au/MoS 2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production
Yang et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction
CN110523420A (zh) 一种Bi4O5Br2/薄层Ti3C2复合型光催化剂的制备方法及其应用
CN104785266A (zh) 一种纳米四氧化三钴/石墨烯复合材料的制备方法
CN107694580A (zh) 一种纳米复合硒化物及其制备方法
CN110212204A (zh) 一种高效的碳纳米片支撑型燃料电池正极材料及其制备方法和应用
Zhou et al. A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@ NiO electrode for high-performance supercapacitor
Lu et al. Room temperature electrochemical synthesis of CuO flower-like microspheres and their electrooxidative activity towards hydrogen peroxide
Ibrahim et al. Fabrication and characterization of highly sensitive and selective glucose biosensor based on ZnO decorated carbon nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210413

Termination date: 20210829

CF01 Termination of patent right due to non-payment of annual fee