CN110453156A - 铁基微纳磁粉材料及其制备方法 - Google Patents

铁基微纳磁粉材料及其制备方法 Download PDF

Info

Publication number
CN110453156A
CN110453156A CN201910744612.4A CN201910744612A CN110453156A CN 110453156 A CN110453156 A CN 110453156A CN 201910744612 A CN201910744612 A CN 201910744612A CN 110453156 A CN110453156 A CN 110453156A
Authority
CN
China
Prior art keywords
magnetic powder
content
iron
preparation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910744612.4A
Other languages
English (en)
Other versions
CN110453156B (zh
Inventor
周林
郑立宝
陈炽祥
唐俊祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Wang Yong New Mstar Technology Ltd
Original Assignee
Guangdong Wang Yong New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Wang Yong New Mstar Technology Ltd filed Critical Guangdong Wang Yong New Mstar Technology Ltd
Priority to CN201910744612.4A priority Critical patent/CN110453156B/zh
Publication of CN110453156A publication Critical patent/CN110453156A/zh
Application granted granted Critical
Publication of CN110453156B publication Critical patent/CN110453156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了铁基微纳磁粉材料,所述磁粉材料的成分按重量百分比计包括:铁含量为83~85wt%、硅含量为7.5~8.8wt%、硼含量为1.5~2.0wt%、铌含量为2.0~4.5wt%、钼含量为0.5~2.0wt%、镍含量为0.1~0.5wt%,铜含量为0.1~1.0%;本技术方案通过对合金成分进行优化,调节了合金在快淬过程中的稳定性及非晶形成能力,实现了带材制备过程中的结构调控,使得制备的铁基微纳磁粉芯具有高磁导率、低矫顽力、低损耗、稳定性高的优点,其适用范围广,如无线充电隔磁片、微电子器件、微波5G通信领域。

Description

铁基微纳磁粉材料及其制备方法
技术领域
本技术方案属于磁性功能材料领域,特别涉及铁基非晶/纳米晶合金软磁磁粉体的成分设计、磁粉体制备与处理、磁粉体磁芯研制相关工艺。
背景技术
近些年,在支撑电子、通信技术蓬勃发展的各类电子材料中,磁性材料作为磁场电场的能力耦合、转换、传输及电磁信号的接收、处理、传递的核心,也是发展极为迅速。随着交叉学科技术的发展,各种精细检测手段和科研设备的快速普及,对材料的微观研究也推进到对原子内部结构信息的探索。大量研究工作表明,在稳态与亚稳态及无序与有序结构之间调控,可以实现材料在微观组织结构及宏观磁性能的双重突破。
在此环境下,非晶/纳米晶体材料作用一种突破尺寸界限的材料,其优异的力学、机械、磁电性能引起了人们的重视,得到了很好的发展。因此,基于这一思路而设计出的铁基非晶软磁材料,在电力领域获得了广泛应用,且由此带来了空载功率损耗的降低到约原有30%,贡献着电力能源的输送、配电效率与节能减排方面不可替代的社会与经济效益。同时,在铁基非晶软磁材料基础上,调控无序结构向有序结构的可控转变,获得了非晶基体嵌入10~20nm的α-Fe相复相结构,因其磁畴单元结构略大于纳米尺度α-Fe相,使得该结构的铁基非晶/纳米材料展现出高导磁率(μi)、低矫顽力(Hc)、高饱和磁感应强度(Bs)及低损耗(W)的优异软磁特性,在电子领域获得了大规模应用。
随着无线充电、电子电路集成化、磁性器件小型化的发展趋势,铁基非晶/纳米晶磁磁粉体的应用价值越来越受到重视,相关的科研人员及企业开始并投入与加大了对这一材料领域的研发与应用探索。作为铁基非晶/纳米晶软磁材料,高饱和磁感应强度与低损耗的双重优势赋予了该材料在这一领域新的机遇,可预测,在未来几年,随着以无线充电、电子信息为主导的电子通信的发展必将带来这一领域的进一步发展。
发明内容
本发明公开了铁基微纳磁粉材料及其制备方法,所述磁粉材料具有高的磁导率、低矫顽力、低损耗、并且稳定性好的优点。
为实现上述目的,本技术方案如下所述:
铁基微纳磁粉材料,所述磁粉材料的成分按重量百分比计包括:铁含量为83~85wt%、硅含量为7.5~8.8wt%、硼含量为1.5~2.0wt%、铌含量为2.0~4.5wt%、钼含量为0.5~2.0wt%、镍含量为0.1~0.5wt%,铜含量为0.1~1.0%。
进一步地,所述磁粉材料的成分按重量百分比计包括:铁含量为83~85wt%、硅含量为7.5~8.8wt%、硼含量为1.5~1.8wt%、铌含量为2.0~4.0wt%、钼含量为0.5~1.0wt%、镍含量为0.2~0.5wt%,铜含量为0.1~1.0%。
铁基微纳磁粉材料的制备方法,包括磁芯带材的制备及热处理、球磨制备磁粉体、磁粉芯的压制。
进一步地,所述磁芯带材的制备及热处理的步骤如下所述:
a.按上述组成元素的配比配置原料,采用中频炉非真空冶炼成母合金,然后将母合金重熔,并控制钢温及冷却速度,出钢喷带,完成磁芯带材的制备;
b.对磁芯带材进行热处理:
①将磁芯带材放入热处理炉的炉膛内,启动真空系统;设置热处理程序,采用PID控制技术设置热处理工艺路线,加热程序启动;
②当炉膛达到低真空状态<10Pa时,启动第一升温加速程序,设定第一升温速率v1、加热第一目标温度T1和第一保温时间t1,对磁芯带材以均匀的第一升温速率v1加热到第一目标温度T1,并保温t1分钟;
③完成步骤②后,启动第二升温加速程序,设定第二升温速率v2、加热第二目标温度T2及第二保温时间t2,对磁芯带材以均匀的第一升温速率v2加热到第一目标温度T2,并保温t2分钟;
④完成步骤③后,启动降温程序,设置第三目标温度为T3,磁芯带材随炉冷却至第三目标温度T3,然后将磁芯带材取出,并使磁芯带材空冷至室温,即完成磁芯带材的热处理。
分两次设定不同的升温速率、目标温度和保温时间,能有效地抑制α-Fe相在整个热处理过程中析出;并且在降温过程中采取先降至目标温度T3,再空冷的降温方法,能快速大幅降低淬态带材的温度,从而降低热处理时间和热处理成本,有效解决了传统热处理方法所耗费的时间长导致生产周期长、批量处理效率低从而造成耗时耗力的问题。
进一步地,所述第一升温速率v1为所用热处理炉标定的最大功率升温;第一目标温度T1为450±10℃;第一保温时间t1为60~90min。
进一步地,所述第二升温速率v2≤1℃/min;第二目标温度T2为480±10℃;第二保温时间t2为60~90min。
进一步地,所述第三目标温度为200~250℃。
进一步地,所述球磨制备磁粉体的制备过程为:采用卧式滚筒球磨装置,并用氧化锆陶瓷罐及氧化锆陶瓷球对完成热处理后的磁芯带材进行破碎球磨处理,球磨时间为10~25h。
进一步地,所用氧化锆陶瓷球为直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球、直径5mm的氧化锆陶瓷球的混合物,且所用直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球与直径5mm的氧化锆陶瓷球的数量比为1∶5∶10。
选用氧化锆陶瓷罐、氧化锆陶瓷球、合理配比不同直径的氧化锆陶瓷球,并合理设置球磨过程中滚筒转速和球磨时间,可有效实现调控控制淬态带材α-Fe相/非晶态复相结构的材料快速脆裂成微纳磁粉体。
进一步地,所述磁粉芯的压制过程为:
(1)对磁粉体进行原位钝化处理,采用磷酸原位钝化方法,向磁粉体中加入浓度为1.0~5.0%的磷酸,并配比20~50份丙酮,然后均匀混合搅拌20~30min,制得磁粉体-磷酸混合物;
(2)待磁粉体-磷酸混合物中的丙酮挥发超过80%后,采用50~100目的筛网进行造粒筛选,待造粒筛选完成后,然后在温度为130~150℃下进行烘烤干燥,其烘烤干燥时间为120~150min;
(3)向完成步骤(2)的磁粉体中加入1.0~5.0wt%的硅树脂及0.1~2.0wt%的偶联剂,并配比20~50份的丙酮,然后均匀混合搅拌20~30min,制得磁粉体-硅树脂混合物;
(4)采用称重法测定磁粉体-硅树脂混合物中的丙酮挥发超过80%后,采用50~100目的筛网进行造粒筛选,待造粒筛选完成后,然后在温度为80~100℃下进行烘烤干燥,其烘烤干燥时间为90~120min;
(5)磁粉芯压制,向完成步骤(4)的磁粉体中加入0.1~0.5wt%脱模剂,然后用模具压制成型,然后在温度为180~200℃下烘烤1~3h,制得磁粉芯。
本技术方案的有益效果为:通过对合金成分中Mo含量的调整,降低了Nb的含量,从而降低了软磁合金的晶化温度点,这有利于在后续处理过程中对α-Fe/非晶态复相结构的快速调控,并且Nb含量的降低使得热处理温度降低,从而提高了热处理效率及整体生产效率,而对Ni含量进行了优化,能够有效地提高了软磁合金的磁性能及扩展频率特性;合理设计Si元素在铁基软磁合金中的成分不仅能够有效地对α-Fe/非晶态复相结构的调控,还能保证铁基软磁合金具有优异的饱和磁感应强度;优化了Cu含量,从而使得铁基软磁合金具有较好的热稳定性;Cr元素添加不利于制备带材及后续处理的表面钝化,因此在本发明中并没有添加Cr元素;本申请中磁粉材料的制备方法能提高生产效率,并且能有效地减小在生产过程中成分及组织结构出现的偏差,从而提高了材料的软磁性能及频率特性。
附图说明
图1为实施例1中淬态带材的制备流程图;
图2为实施例1中对淬态带材进行热处理的流程图;
图3为实施例1中磁粉芯的制备流程图;
图4为实施例1中制得淬态带材经2~50h球磨时间处理后的粒度分布曲线;
图5为实施例1中制得淬态带材经10~25h球磨时间处理后的粒度分布曲线;
图6为实施例1中磁粉体经过不同浓度磷酸钝化处理后的有效磁导率趋势图;
图7为实施例1中磁粉体经过不同浓度磷酸钝化处理后的阻抗趋势图。
具体实施例
实施例1
参照图1,淬态带材的制备过程如下所述:
101:合金成分设计,基于铁基非晶成分的原子尺寸差、混合焓、组元多样化及添加、微调元素对组织结构与宏观磁性能的影响关系作为设计准则,却确定Fe为83.79%、Si为8.6%、B为1.53%、Nb为3.99%、Mo为0.89%、Cu为0.9%、Ni为0.30%;
102:根据设计的合金成分,进行母合金材料配重,所用原材料为工业纯钛、工业硅、硼铁、铌铁、钼铁、电解铜及电解镍;
103:原材料摆放,向冶炼炉中放入工业纯钛、工业硅、硼铁、电解铜、铌铁,然后加热冶炼炉进行炼钢;
104:当钢液翻滚时,先加入钼铁,然后再加入电解镍;
105:除气除渣;
106:对熔进行净化后,静置待用;
107:当钢液温度为1150~1200℃时,进行浇钢处理,使熔液快速冷却成致密母合金;
108:然后将步骤(107)制得的致密母合金进行重熔,并采用造渣剂进行保护;
109:当钢温为1340~1380℃,出钢喷带,制得淬态带材。
参照图2,对上述制得的淬态带材进行热处理,其过程如下所述:
201:将上述制备的淬态带材放入加热炉中,开启真空泵,当加热炉达到低低真空状态<10Pa时,关闭真空泵,启动加热程序;
202:加热炉启动第一升温加速程序,其中第一升温加速程序中的第一升温速率v1为加热炉标定的最大功率、第一目标温度T1为450±10℃及第一保温时间t1为70min;
203:对淬态带材以第一升温速率v1均匀加热到第一目标温度450±10℃,然后保温70min;
204:完成第一升温加热程序后,进行第二升温加速程序,其中第二升温速率v2为1℃/min、第二目标温度T2为480±10℃及第二保温时间t2为70min;以1℃/min的第二升温速率将完成第一升温加热程序的淬态带材均匀加热到第二目标温度480±10℃,然后保温70min;
205:完成第二升温加热程序后,进行降温程序,其中降温目标温度T3为220℃,关闭加热炉的加热系统,使完成第二升温加速程序的淬态带材随炉冷却至降温目标温度220℃;
206:将完成降温程序的淬态带材取出加热炉,使其空冷至室温。
对完成上述热处理的淬态带材进行球磨处理,其具体过程为如下所述:
采用卧式滚筒球磨装置,并用氧化锆陶瓷罐及氧化锆陶瓷球对完成热处理后的磁芯带材进行破碎球磨处理,球磨时间为20h。
进一步地,所用氧化锆陶瓷球为直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球、直径5mm的氧化锆陶瓷球的混合物,且所用直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球与直径5mm的氧化锆陶瓷球的数量比为1∶5∶10。
从图4中可以看出进行球磨时间小于10h时,所得到的磁粉体的粒径分布过大,并其中有些磁粉体的粒径已经超过了100μm;而球磨时间超过25h后,继续增大球磨时间,所得到磁粉体的粒径分布变化不大。
从图5中可以看出球磨时间为20h,磁粉体的粒径分布最接近正态分布,并且粒径在10~60μm,且包含大量纳米尺度的附着粉体,这有助于增强粉体磁芯气隙间的磁电耦合,实现更高频段范围内的导磁率提升及损耗降低。
参照图3,将上述制备的微纳磁粉体制备成磁粉芯,其具体过程为:
401:将上述制备的微纳磁粉体进行磷酸原位钝化处理,向微纳磁粉体中加入浓度为1.0%的磷酸及丙酮,其中微纳磁粉体、磷酸与丙酮的质量比为100∶1∶30,然后混合搅拌30min,制得微纳磁粉体-磷酸混合物;
402:采用称重法测定微纳磁粉体-磷酸混合物中的丙酮挥发超过80%后,采用50~100目的筛网对微纳磁粉体-磷酸混合物进行造粒处理,造粒处理后,对其进行烘烤干燥处理,其中烘烤干燥温度为140℃;
403:向完成步骤(402)的微纳磁粉体中加入硅树脂、偶联剂及丙酮,添加硅树脂的量为微纳磁粉体重量的2.5%,添加偶联剂的量为微纳磁粉体重量的3.0%,丙酮的添加量为30份,其中此30份是按微纳磁粉体质量份数计,然后混合搅拌30min,制得微纳磁粉体-硅树脂混合物;
404:采用称重法测定微纳磁粉体-硅树脂混合中的丙酮挥发超过80%后,采用50~100目的筛网对微纳磁粉体-磷酸混合物进行造粒处理,造粒处理后,对其进行烘烤干燥处理,其中烘烤干燥温度为90℃;
405:向完成步骤(404)的磁粉体添加脱模剂,其中脱模剂的添加质量为磁粉体质量的0.4%,然后用模具将其压制成磁粉芯,其中压制压强为100bar(1bar=0.1MPa),压制完成后,然后对完成压制的磁粉芯进行烘烤处理,其中烘烤温度为200℃,烘烤时间为3h,最终制得所述铁基微纳磁粉芯。
从图6及图7可以看出磁铁体经过不同浓度的磷酸钝化处理,其有效磁导率变化趋势及阻抗趋势变化并不大。
对制得的所述铁基微纳磁粉芯进行相关性能测试,测得所述磁粉芯(内径为8mm、外径为14mm、高为6mm)在10~100MHz频率下的有效磁导率的数值在100~150之间(参见图6),并且从图7中可以看出,所述磁粉芯的有效磁导率与阻抗为线性变化关系,并且测得所述磁粉芯的饱和磁感应强度范围为1.0~1.2T,低损耗小于2.0A/m,直流叠加稳定性。所述磁粉芯适用范围广,如无线充电隔磁片、微电子器件、微波5G通信领域。

Claims (10)

1.铁基微纳磁粉材料,其特征在于,所述磁粉材料的成分按重量百分比计包括:铁含量为83~85wt%、硅含量为7.5~8.8wt%、硼含量为1.5~2.0wt%、铌含量为2.0~4.5wt%、钼含量为0.5~2.0wt%、镍含量为0.1~0.5wt%,铜含量为0.1~1.0%。
2.根据权利要求1所述的铁基微纳磁粉材料,其特征在于,所述磁粉材料的成分按重量百分比计包括:铁含量为83~85wt%、硅含量为7.5~8.8wt%、硼含量为1.5~1.8wt%、铌含量为2.0~4.0wt%、钼含量为0.5~1.0wt%、镍含量为0.2~0.5wt%,铜含量为0.1~1.0%。
3.权利要求1或权利要求2中所述铁基微纳磁粉材料的制备方法,其特征在于,包括磁芯带材的制备及热处理、球磨制备磁粉体、磁粉芯的压制。
4.根据权利要求3所述的铁基微纳磁粉材料的制备方法,其特征在于,所述磁芯带材的制备及热处理的步骤如下所述:
a.按所述的铁基微纳磁粉材料的组成元素的配比配置原料,采用中频炉非真空冶炼成母合金,然后将母合金重熔,并控制钢温及冷却速度,出钢喷带,完成磁芯带材的制备;
b.对磁芯带材进行热处理:
①将磁芯带材放入热处理炉的炉膛内,启动真空系统;设置热处理程序,采用PID控制技术设置热处理工艺路线,加热程序启动;
②当炉膛达到低真空状态<10Pa时,启动第一升温加速程序,设定第一升温速率v1、加热第一目标温度T1和第一保温时间t1,对磁芯带材以均匀的第一升温速率v1加热到第一目标温度T1,并保温t1分钟;
③完成步骤②后,启动第二升温加速程序,设定第二升温速率v2、加热第二目标温度T2及第二保温时间t2,对磁芯带材以均匀的第一升温速率v2加热到第一目标温度T2,并保温t2分钟;
④完成步骤③后,启动降温程序,设置第三目标温度为T3,磁芯带材随炉冷却至第三目标温度T3,然后将磁芯带材取出,并使磁芯带材空冷至室温,即完成磁芯带材的热处理。
5.根据权利要求4所述的铁基微纳磁粉材料的制备方法,其特征在于,所述第二升温速率v2≤1℃/min;第二目标温度T2为480±10℃;第二保温时间t2为60~90min。
6.根据权利要求4所述的铁基微纳磁粉材料的制备方法,其特征在于,所述第三目标温度为200~250℃。
7.根据权利要求4所述的铁基微纳磁粉材料的制备方法,其特征在于,所述第一升温速率v1为所用热处理炉标定的最大功率升温;第一目标温度T1为450±10℃;第一保温时间t1为60~90min。
8.根据权利要求3所述的铁基微纳磁粉材料的制备方法,其特征在于,所述球磨制备磁粉体的制备过程为:采用卧式滚筒球磨装置,并用氧化锆陶瓷罐及氧化锆陶瓷球对完成热处理后的磁芯带材进行破碎球磨处理,球磨时间为10~25h。
9.根据权利要求8所述的铁基微纳磁粉材料的制备方法,其特征在于,所用氧化锆陶瓷球为直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球、直径5mm的氧化锆陶瓷球的混合物,且所用直径20mm的氧化锆陶瓷球、直径10mm的氧化锆陶瓷球与直径5mm的氧化锆陶瓷球的数量比为1∶5∶10。
10.根据权利要求3所述的铁基微纳磁粉材料的制备方法,其特征在于,所述磁粉芯的压制过程为:
(1)对磁粉体进行原位钝化处理,采用磷酸原位钝化方法,向磁粉体中加入浓度为1.0~5.0%的磷酸,并配比20~50份丙酮,然后均匀混合搅拌20~30min,制得磁粉体-磷酸混合物;
(2)待磁粉体-磷酸混合物中的丙酮挥发超过80%后,采用50~100目的筛网进行造粒筛选,待造粒筛选完成后,然后在温度为130~150℃下进行烘烤干燥,其烘烤干燥时间为120~150min;
(3)向完成步骤(2)的磁粉体中加入1.0~5.0wt%的硅树脂及0.1~2.0wt%的偶联剂,并配比20~50份的丙酮,然后均匀混合搅拌20~30min,制得磁粉体-硅树脂混合物;
(4)待磁粉体-硅树脂混合物中的丙酮挥发超过80%后,采用50~100目的筛网进行造粒筛选,待造粒筛选完成后,然后在温度为80~100℃下进行烘烤干燥,其烘烤干燥时间为90~120min;
(5)磁粉芯压制,向完成步骤(4)的磁粉体中加入0.1~0.5wt%脱模剂,然后用模具压制成型,然后在温度为180~200℃下烘烤1~3h,制得磁粉芯。
CN201910744612.4A 2019-08-13 2019-08-13 铁基微纳磁粉材料及其制备方法 Active CN110453156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910744612.4A CN110453156B (zh) 2019-08-13 2019-08-13 铁基微纳磁粉材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910744612.4A CN110453156B (zh) 2019-08-13 2019-08-13 铁基微纳磁粉材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110453156A true CN110453156A (zh) 2019-11-15
CN110453156B CN110453156B (zh) 2021-10-15

Family

ID=68486259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910744612.4A Active CN110453156B (zh) 2019-08-13 2019-08-13 铁基微纳磁粉材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110453156B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549299A (zh) * 2020-05-27 2020-08-18 广东咏旺新材料科技有限公司 一种铁基纳米晶软磁母合金的冶炼工艺
CN113284690A (zh) * 2021-05-25 2021-08-20 深圳市驭能科技有限公司 一种大功率无线充电用纳米晶导磁薄片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365950A (zh) * 2017-07-24 2017-11-21 广东咏旺新材料科技有限公司 Fe‑Si‑B‑Nb‑Cu铁基非晶/纳米晶软磁合金材料及制备和热处理工艺
CN107369513A (zh) * 2017-07-17 2017-11-21 广东工业大学 一种低成本高饱和磁化强度的铁基软磁合金及其制备方法
CN108172388A (zh) * 2017-12-14 2018-06-15 安徽大学 一种非晶纳米晶制备磁粉芯的方法
CN109440022A (zh) * 2018-11-15 2019-03-08 北京航空航天大学 一种(FeaSibBcCudNbe)xMy软磁材料及其制备方法
CN109741931A (zh) * 2019-02-20 2019-05-10 广州市德珑电子器件有限公司 一种铁基纳米晶粉芯磁环的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369513A (zh) * 2017-07-17 2017-11-21 广东工业大学 一种低成本高饱和磁化强度的铁基软磁合金及其制备方法
CN107365950A (zh) * 2017-07-24 2017-11-21 广东咏旺新材料科技有限公司 Fe‑Si‑B‑Nb‑Cu铁基非晶/纳米晶软磁合金材料及制备和热处理工艺
CN108172388A (zh) * 2017-12-14 2018-06-15 安徽大学 一种非晶纳米晶制备磁粉芯的方法
CN109440022A (zh) * 2018-11-15 2019-03-08 北京航空航天大学 一种(FeaSibBcCudNbe)xMy软磁材料及其制备方法
CN109741931A (zh) * 2019-02-20 2019-05-10 广州市德珑电子器件有限公司 一种铁基纳米晶粉芯磁环的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
周林,杨元政等: "Nb对Fe-Si-B-P-Cu非晶/纳米软磁合金的非晶形成能力及磁性能的影响", 《材料热处理技术》 *
尹邦跃: "《陶瓷核燃料工艺》", 31 January 2016, 哈尔滨工程大学出版社 *
曾贵玉、聂福德等: "《微纳米含能材料》", 31 May 2015, 国防工业出版社 *
郑立宝, 杨元政等: "环境温度对铁基纳米晶磁芯磁导率的影响", 《热加工工艺》 *
陈勇、吴玉程: "《面对等离子体钨基复合材料的制备及其性能的研究》", 31 October 2009, 合肥工业大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549299A (zh) * 2020-05-27 2020-08-18 广东咏旺新材料科技有限公司 一种铁基纳米晶软磁母合金的冶炼工艺
CN111549299B (zh) * 2020-05-27 2021-11-16 广东咏旺新材料科技有限公司 一种铁基纳米晶软磁母合金的冶炼工艺
CN113284690A (zh) * 2021-05-25 2021-08-20 深圳市驭能科技有限公司 一种大功率无线充电用纳米晶导磁薄片及其制备方法
CN113284690B (zh) * 2021-05-25 2022-05-20 深圳市驭能科技有限公司 一种大功率无线充电用纳米晶导磁薄片及其制备方法
US11770022B2 (en) 2021-05-25 2023-09-26 Shenzhen Yn Tech Co., Ltd. Nanocrystalline magnetic conductive sheet for wireless charging and preparation method therefor

Also Published As

Publication number Publication date
CN110453156B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN107365950A (zh) Fe‑Si‑B‑Nb‑Cu铁基非晶/纳米晶软磁合金材料及制备和热处理工艺
US20220205071A1 (en) Fe-based amorphous alloy containing subnanometer-scale ordered clusters, and preparation method and nanocrystalline alloy derivative thereof
CN101710521A (zh) 抗电磁干扰铁基纳米晶软磁合金及其制备方法
CN100431745C (zh) 一种软磁合金粉的制造方法
CN109108238B (zh) 一种高电阻率铁基纳米晶合金薄带制备方法
CN102808140A (zh) 高饱和磁感应强度铁基纳米晶软磁合金材料及其制备方法
CN103014477B (zh) 一种冶炼铁基纳米晶母合金的方法
CN102049515B (zh) 铁硅铝软磁粉末的制造方法
CN109440023B (zh) 一种高磁感氮耦合铁基非晶纳米晶合金及其制备方法
CN110453156A (zh) 铁基微纳磁粉材料及其制备方法
CN102982955B (zh) 一种铁硅软磁粉末及其制备方法
CN104975241A (zh) 一种非晶合金带材的制造方法
CN110571009A (zh) 一种铁基球化微纳磁粉芯及其制备方法
CN102304680A (zh) 一种低成本且具有优异软磁性能的铁基非晶/纳米晶薄带及其制备方法
CN113528983A (zh) 铁基非晶软磁合金及其制备方法
CN111748755A (zh) 一种新型高饱和磁感铁基软磁非晶合金及制备方法
CN101787499A (zh) 一种铁基纳米晶薄带及其制造方法
CN104846255B (zh) 一种钇铁基永磁材料的制备方法
CN104805382A (zh) 一种非晶纳米晶合金薄带及其制备方法
CN110444387A (zh) 一种高性能烧结钕铁硼磁体的制备方法
CN111375782B (zh) 一种铁镍钼软磁粉末的制备方法
CN110205540A (zh) 一种抗应力的纳米晶软磁合金、合金制备方法以及铁芯的处理方法
CN111370194B (zh) 一种铁硅铝软磁粉末的制备方法
CN113035485A (zh) 高磁通密度低损耗铁基纳米晶软磁合金及其制备方法
CN103489556B (zh) 极异方环状烧结铁氧体转子磁石及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant