CN110429084A - 存储器的结构及其形成方法 - Google Patents

存储器的结构及其形成方法 Download PDF

Info

Publication number
CN110429084A
CN110429084A CN201910744048.6A CN201910744048A CN110429084A CN 110429084 A CN110429084 A CN 110429084A CN 201910744048 A CN201910744048 A CN 201910744048A CN 110429084 A CN110429084 A CN 110429084A
Authority
CN
China
Prior art keywords
layer
groove
well region
depth
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910744048.6A
Other languages
English (en)
Other versions
CN110429084B (zh
Inventor
朱鹏
王永耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaian Xide Industrial Design Co ltd
Original Assignee
Huaian Imaging Device Manufacturer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaian Imaging Device Manufacturer Corp filed Critical Huaian Imaging Device Manufacturer Corp
Priority to CN201910744048.6A priority Critical patent/CN110429084B/zh
Publication of CN110429084A publication Critical patent/CN110429084A/zh
Application granted granted Critical
Publication of CN110429084B publication Critical patent/CN110429084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/20Programmable ROM [PROM] devices comprising field-effect components

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一种存储器及其形成方法,结构包括:衬底,所述衬底内具有相邻的第一阱区和第二阱区,所述第一阱区和第二阱区的掺杂类型相反;位于第一阱区和第二阱区内的第一沟槽,且所述第一沟槽自第一阱区延伸至第二阱区;位于所述第一沟槽内的字线栅极结构;位于所述字线栅极结构表面的第一隔离层,所述第一隔离层填充满所述第一沟槽;位于第一阱区内的第二隔离层;位于第一阱区内的源线掺杂区,所述源线掺杂区位于所述第一隔离层和第二隔离层之间;位于第二阱区表面的位线栅极结构。所述存储器的占用面积得到改善。

Description

存储器的结构及其形成方法
技术领域
本发明涉及半导体制造领域,尤其涉及一种存储器的结构及其形成方法。
背景技术
一次可编程(One Time Programmable,简称OTP)存储器是一种支持一次编程的非易失性存储器,广泛应用于模拟电路、数字芯片或系统级芯片、静态随机存取存储器或动态随机存取存储器等领域。
目前,OTP存储器主要分为熔丝型(e-Fuse)、反熔丝型(Anti-fuse)和浮栅电荷存储型。其中,反熔丝存储器是一种常用的存储器,具有广泛的应用场合。
然而,现有的反熔丝存储器所占用的面积较大,不利于半导体技术的微小化和集成化的发展需求。
发明内容
本发明解决的技术问题是提供一种存储器的结构及其形成方法,以改善存储器的占用面积。
为解决上述技术问题,本发明技术方案提供一种存储器,包括:衬底,所述衬底内具有相邻的第一阱区和第二阱区,所述第一阱区和第二阱区的掺杂类型相反;位于第一阱区和第二阱区内的第一沟槽,且所述第一沟槽自第一阱区延伸至第二阱区;位于所述第一沟槽内的字线栅极结构,位于所述字线栅极结构表面的第一隔离层,所述第一隔离层填充满所述第一沟槽;位于第一阱区内的第二隔离层;位于第一阱区内的源线掺杂区,所述源线掺杂区位于所述第一隔离层和第二隔离层之间;位于第二阱区表面的位线栅极结构。
可选的,所述字线栅极结构包括:位于第一沟槽侧壁和底部表面的第一介质层;位于第一介质层表面的字线栅极层。
可选的,所述字线栅极层在沿衬底表面方向的宽度小于所述第一沟槽的底部宽度。
可选的,所述第一隔离层还位于所述第一沟槽底部的部分第二阱区表面。
可选的,所述第一沟槽的深度为第一深度;所述第二隔离层位于第二沟槽内,所述第二沟槽的深度为第二深度,所述第一深度大于或等于所述第二深度。
可选的,所述第一深度的范围为150nm~400nm,所述第二深度的范围为200nm~400nm。
可选的,所述字线栅极结构与所述源线掺杂区部分相邻;所述源线掺杂区的掺杂深度为第三深度,所述字线栅极结构顶部至所述第一沟槽顶部的距离为第四深度,所述第三深度大于所述第四深度,且所述第三深度小于所述第一深度。
可选的,所述第三深度的范围为30nm~150nm,所述第四深度的范围为30nm~150nm;所述第三深度与所述第四深度的深度差为0nm~5nm。
可选的,还包括:位于第二阱区内的第三隔离层;所述位线栅极结构位于所述第三隔离层和第二隔离层之间的第二阱区表面。
可选的,还包括:位于第一阱区内的体掺杂区,所述体掺杂区和源线掺杂区之间由所述第二隔离层相互隔离。
可选的,所述位线栅极结构包括:位于第二阱区表面的第二介质层;位于第二介质层表面的位线栅极层。
可选的,所述第一介质层的厚度大于所述第二介质层的厚度。
可选的,所述第一介质层的厚度范围为大于2nm;所述第二介质层的厚度范围为0nm~5nm。
可选的,所述第一介质层的材料包括氧化硅;所述第二介质层的材料包括氧化硅。
可选的,还包括:位于所述衬底表面的第四隔离层,所述第四隔离层内具有字线结构、源线结构以及位线结构,所述字线结构与所述字线栅极结构电连接,所述位线结构与所述位线栅极结构电连接,所述源线结构与所述源线掺杂区电连接。
可选的,所述第一阱区的掺杂类型为P型,所述第二阱区的掺杂类型为N型。
可选的,所述体掺杂区的掺杂类型为P型,所述源线掺杂区的掺杂类型为N型。
相应的,本发明技术方案还提供一种形成上述任一存储器的方法,包括:提供衬底,所述衬底内具有相邻的第一阱区和第二阱区,所述第一阱区和第二阱区的掺杂类型相反;在所述第一阱区内和第二阱区内形成第一沟槽和位于第一沟槽内的字线栅极结构,且所述第一沟槽自第一阱区延伸至第二阱区;在所述字线栅极结构表面形成第一隔离层;在所述第一阱区内形成第二隔离层;在所述第一阱区内形成源线掺杂区,所述源线掺杂区位于所述第一隔离层和第二隔离层之间;在所述第二阱区表面形成位线栅极结构。
可选的,所述第一沟槽和字线栅极结构的形成方法包括:在所述衬底表面形成第一掩膜层,所述第一掩膜层暴露出部分第一阱区和第二阱区表面;以所述第一掩膜层为掩膜刻蚀所述衬底,在所述第一阱区内和第二阱区内形成初始第一沟槽;在所述衬底表面和初始第一沟槽内形成第一介质层;在所述第一介质层表面形成初始字线栅极材料层;平坦化所述初始字线栅极材料层,直至暴露出所述衬底表面,在所述初始第一沟槽内形成字线栅极材料层;回刻蚀所述字线栅极材料层至所述第四深度,在所述初始第一沟槽内形成初始字线栅极层;在所述初始字线栅极层表面形成第二掩膜层,所述第二掩膜层暴露出所述初始第一沟槽内的部分初始字线栅极层表面;以所述第二掩膜层为掩膜刻蚀暴露出的部分所述初始字线栅极层,直至暴露出所述初始第一沟槽底部的第一介质层表面,形成所述第一沟槽和位于第一沟槽内的字线栅极结构。
可选的,在所述初始字线栅极层表面形成第二掩膜层后,还包括:以所述第二掩膜层为掩膜刻蚀暴露出的部分所述初始字线栅极层,暴露出所述初始第一沟槽底部的第一介质层表面后,去除所述暴露出的第一介质层,刻蚀所述初始第一沟槽底部的第二阱区,形成所述第一沟槽和位于第一沟槽内的字线栅极结构。
可选的,形成所述第一介质层的工艺包括化学气相沉积、原子层沉积工艺或者原位水汽生长工艺。
可选的,所述位线栅极结构的形成方法包括:在所述衬底表面形成第二介质层;在所述第二介质层表面形成位线栅极材料层;在所述位线栅极材料层表面形成第三掩膜层,所述第三掩膜层暴露出部分位线栅极材料层表面;以所述第三掩膜层为掩膜刻蚀所述位线栅极材料层,直至暴露出所述第二介质层表面,形成所述位线栅极结构。
可选的,形成所述第二介质层的工艺包括化学气相沉积、原子层沉积工艺或者原位水汽生长工艺。
可选的,所述第一隔离层和所述第二隔离层同时形成。
与现有技术相比,本发明的技术方案具有以下有益效果:
本发明技术方案中的存储器,所述字线栅极结构位于所述第一沟槽内,所述第一隔离层位于所述字线栅极结构表面且填充满所述第一沟槽,使得所述衬底在平行于衬底表面方向上的利用率提高,节省了所述存储器在平行于衬底表面方向上的空间,所形成的存储器结构占用的面积缩小,提高了器件的集成度。
进一步,所述第一深度大于所述第二深度,所述第一深度较大,则所述存储器在垂直方向上的沟道变短,使得所述存储器的电流增大;同时,所述第一深度较大,则电子在所述第二阱区的运动距离变长,所述第二阱区内的电路的电阻变大,则所述第二阱区内的电路的分压变大,使得位于第一阱区和第二阱区之间的PN结分压变小,从而不易被击穿。综上,提升了所述存储器的性能。
附图说明
图1至图11是本发明一实施例中存储器的形成过程的截面结构示意图;
图12至图15是本发明另一实施例中存储器的形成过程的截面结构示意图;
图16至图17是本发明另一实施例中存储器的形成过程的截面结构示意图;
图18至图19是本发明另一实施例中存储器的形成过程的截面结构示意图。
具体实施方式
如背景技术所述,现有的反熔丝存储器所占用的面积较大。
具体的,所述反熔丝存储器的字线栅极结构与位线栅极结构处于同一个平面,而所述字线栅极结构与所述位线栅极结构之间需要隔离结构进行隔离,则所述隔离结构与所述字线栅极结构和所述位线栅极结构都位于所述衬底表面,从而使得所述反熔丝存储器整体的占用面积较大。
为了解决上述问题,本发明技术方案提供一种存储器的结构及其形成方法,通过在所述第一沟槽内形成所述字线栅极结构,在所述第一沟槽内形成所述第一隔离层,且所述第一隔离层填充满所述第一沟槽,可以使得所述衬底在平行于衬底表面方向上的利用率提高,节省了所述存储器在平行于衬底表面方向上的空间,所形成的存储器结构占用的面积缩小,提高了器件的集成度。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1至图11是本发明一实施例中存储器的形成过程的截面结构示意图。
请参考图1,提供衬底100,所述衬底100内具有相邻的第一阱区101和第二阱区102,所述第一阱区101和第二阱区102的掺杂类型相反。
在本实施例中,所述第一阱区101的掺杂类型为P型,所述第二阱区102的掺杂类型为N型。
所述N型的掺杂离子包括磷离子或砷离子;所述P型的掺杂离子包括硼离子或铟离子。
本实施例中,所述衬底100的材料为单晶硅;所述衬底100还可以是多晶硅或非晶硅;所述衬底100的材料还可以为锗、锗化硅、砷化镓等半导体材料。
接下来,在所述第一阱区101内和第二阱区102内形成第一沟槽和位于第一沟槽内的字线栅极结构,且所述第一沟槽自第一阱区延伸至第二阱区。
所述字线栅极结构包括:位于第一沟槽侧壁和底部表面的第一介质层;位于第一介质层表面的字线栅极层。
请参考图2,在所述衬底100表面形成保护层103;在所述保护层103表面形成第一掩膜层104,所述第一掩膜层104暴露出部分第一阱区101和第二阱区102表面。
所述保护层103用于保护所述衬底100表面,避免在以所述第一掩膜层104刻蚀所述衬底100时,所述刻蚀工艺对所述衬底100造成损伤;同时,所述第一掩膜层104为硬掩膜层,所述硬掩膜层结构较为致密从而具有较高的应力,而所述衬底100的材质偏软具有较低的应力,从而所述硬掩膜层直接形成在所述衬底100表面时膜层容易破裂和脱落,图形的精确度会受到影响。所述保护层103应用于所述衬底100表面和所述第一掩膜层104之间,能够起到缓冲的作用,有利于所述第一掩膜层104的图形精确度提高。
在本实施例中,所述保护层103的材料包括氧化硅。
形成所述保护层103的工艺包括原位水汽生成工艺、化学气相沉积工艺或原子层沉积工艺。在本实施例中,形成所述保护层103的工艺包括原位水汽生成工艺(In SituSteam Generation,简称ISSG)。
所述原位水汽生成工艺能够形成厚度均匀的保护层103,且所述保护层103的厚度能够精确控制。
在其他实施例中,能够不形成所述保护层103。
所述第一掩膜层104的材料包括硬掩膜层或光刻胶,所述硬掩膜层的材料包括氧化硅或氮化硅。在本实施例中,所述第一掩膜层104的材料包括硬掩膜层,所述硬掩膜层包括氮化硅。
所述第一掩膜层104的材料选用氮化硅,所述氮化硅的材质较硬,则在刻蚀所述衬底100时以及后续刻蚀所述栅极材料层时,所述氮化硅的损伤较小,从而所述氮化硅能够对所述衬底100的表面提供保护,避免被刻蚀工艺损伤。
所述第一掩膜层104的形成工艺包括化学气相沉积工艺或原子层沉积工艺。在本实施例中,所述第一掩膜层104的形成工艺包括化学气相沉积工艺。
请参考图3,以所述第一掩膜层104为掩膜刻蚀所述保护层103和所述衬底100,在所述第一阱区101内和第二阱区102内形成初始第一沟槽105,在所述第一阱区101内形成第二沟槽106,在所述第二阱区102内形成第三沟槽107。
所述初始第一沟槽105用于后续在初始第一沟槽105内形成字线栅极结构和第一隔离层。
所述第二沟槽106用于后续在第二沟槽106内形成第二隔离层。
所述第三沟槽107用于后续在第三沟槽107内形成第三隔离层。
所述初始第一沟槽105、第二沟槽106和第三沟槽107同时形成,所述初始第一沟槽105、第二沟槽106和第三沟槽107具有第二深度。
在本实施例中,所述第二深度的范围为200nm~400nm。
在本实施例中,刻蚀所述保护层103和所述衬底100的工艺包括干法刻蚀工艺。
形成所述初始第一沟槽105、第二沟槽106和第三沟槽107之后,在所述初始第一沟槽105、第二沟槽106和第三沟槽107底部表面和侧壁表面形成第一介质层108。
所述第一介质层108后续用作所述字线栅极结构的栅介质层。
在本实施例中,所述第一介质层108的材料包括氧化硅。在其他实施例中,所述第一介质层的材料包括高K(大于3.9)材料。
所述第一介质层108的形成工艺包括原位水汽生成工艺、化学气相沉积工艺或原子层沉积工艺。在本实施例中,所述第一介质层108的形成工艺包括原位水汽生成工艺(InSitu Steam Generation,简称ISSG)。
所述原位水汽生成工艺能够形成厚度均匀的第一介质层108,且所述第一介质层108的厚度能够精确控制。
在本实施例中,所述第一介质层108的厚度范围为大于2nm。
所述第一介质层108的厚度较厚,则后续形成的字线栅极结构耐压能力较高,从而能够增加所述存储器的读取速度和读取的可靠度,提升了存储器的性能。
请参考图4,在所述初始第一沟槽105、第二沟槽106和第三沟槽107内形成字线栅极材料层109。
所述字线栅极材料层109的形成方法包括:在所述初始第一沟槽105、第二沟槽106、第三沟槽107内和所述第一掩膜层104表面形成初始字线栅极材料层(未图示);平坦化所述初始字线栅极材料层,直至暴露出所述第一掩膜层104表面,在所述初始第一沟槽105、第二沟槽106和第三沟槽107内形成字线栅极材料层109。
在本实施例中,形成所述初始字线栅极材料层的形成工艺包括物理气相沉积工艺。
所述初始字线栅极材料层的材料包括多晶硅或金属。在本实施例中,所述初始字线栅极材料层的材料包括多晶硅。
在本实施例中,平坦化所述初始字线栅极材料层的工艺包括化学机械抛光工艺。
请参考图5,回刻蚀所述字线栅极材料层109,在所述初始第一沟槽105内形成初始字线栅极层110。
在本实施例中,回刻蚀所述字线栅极材料层109后,所述字线栅极材料层109顶部表面至所述初始有第一沟槽105顶部的深度为第四深度,所述第四深度的范围为30nm~150nm。
所述字线栅极结构顶部到衬底表面的深度为30nm~150nm,若所述深度小于30nm,则后续在所述第一阱区内形成源线掺杂区之后,所述源线掺杂区与所述字线栅极结构的相邻面积太大,使得所述存储器的沟道过短,不利于所述存储器的性能;若所述深度大于150nm,则后续形成的源线掺杂区与所述字线栅极结构的相邻面积太小,使得所述存储器的沟道电阻较大,不利与存储器电路的迅速导通。
在所述初始第一沟槽105内形成所述初始字线栅极层110之后,在所述初始第一沟槽105内的初始字线栅极层110表面形成第二掩膜层111,所述第二掩膜层111暴露出所述初始第一沟槽105内的部分初始字线栅极层110表面。
所述第二掩膜层111也同时暴露出位于第二沟槽106和第三沟槽107内的字线栅极材料层109表面。
在本实施例中,所述第二掩膜层111的材料包括光刻胶。
请参考图6,以所述第二掩膜层111为掩膜刻蚀暴露出的部分所述初始字线栅极层110,直至暴露出所述初始第一沟槽105底部的第一介质层108表面,形成所述第一沟槽112和位于第一沟槽112内的字线栅极层113。
所述字线栅极结构包括:位于第一沟槽112侧壁和底部表面的第一介质层108;位于第一介质层108表面的字线栅极层113。
所述字线栅极结构顶部至所述第一沟槽112顶部的距离即为第四深度,所述第四深度的范围为30nm~150nm。
在本实施例中,刻蚀所述初始字线栅极层110的工艺包括干法刻蚀工艺。
在本实施例中,所述字线栅极层113在沿衬底100表面方向的宽度小于所述第一沟槽112的底部宽度。
所述第一沟槽112的深度为第一深度,所述第一深度大于所述第四深度。
在本实施例中,所述第一深度等于所述第二深度,则所述第一沟槽112的深度等于所述初始第一沟槽105的深度。
在本实施例中,所述第一深度的范围为200nm~400nm。
在其他实施例中,所述第一深度大于所述第二深度。
形成所述字线栅极层113之后,去除所述第二掩膜层111。
在本实施例中,去除所述第二掩膜层111的工艺包括灰化工艺。
请参考图7,在所述字线栅极结构表面形成第一隔离层114,在所述第一阱区101内形成第二隔离层115,在所述第二阱区102内形成第三隔离层116。
在本实施例中,所述第一隔离层114、第二隔离层115和第三隔离层116同时形成。
所述第一隔离层114、第二隔离层115和第三隔离层116的形成方法包括:在所述第一沟槽112内、第二沟槽106内、第三沟槽107内以及衬底100表面形成隔离材料层(未图示);平坦化所述隔离材料层,直至暴露出所述第一掩膜层104表面,形成初始隔离层(未图示);回刻蚀所述初始隔离层,直至完全暴露出所述第一掩膜层104侧壁表面,在所述第一沟槽112内形成第一隔离层114,在所述第二沟槽106内形成第二隔离层115,在所述第三沟槽107内形成第三隔离层116。
回刻蚀所述初始隔离层直至完全暴露出所述第一掩膜层104侧壁表面的意义在于:所述第一掩膜层104和所述保护层103具有一定的厚度,若不去除这样厚度的初始隔离层,则后续去除所述第一掩膜层104和所述保护层103之后,在所述第二阱区102表面形成位线栅极结构时,所述初始隔离层的厚度会使得所述位线栅极结构的厚度无法精确控制。
在本实施例中,所述第一隔离层114还位于所述第一沟槽112底部的部分第二阱区102表面。
在本实施例中,所述第一隔离层114、第二隔离层115和第三隔离层116的材料包括氧化硅。
在本实施例中,形成所述隔离材料层的工艺包括化学气相沉积工艺。在其他实施例中,形成所述隔离材料层的工艺包括原子层沉积工艺。
所述化学气相沉积工艺能够快速形成结构致密的隔离材料层。
在本实施例中,平坦化所述隔离材料层的工艺包括化学机械抛光工艺。
请参考图8,去除所述第一掩膜层104;去除所述第一阱区101表面和所述第二阱区102表面的保护层103。
去除所述第一阱区101表面和所述第二阱区102表面的保护层103之后,暴露出所述第一阱区101表面和所述第二阱区102表面,以便于后续在第一阱区101内形成源线掺杂区和体掺杂区、在第二阱区102表面形成位线栅极结构。
去除所述第一掩膜层104的工艺包括湿法刻蚀工艺或干法刻蚀工艺。在本实施例中,去除所述第一掩膜层104的工艺包括湿法刻蚀工艺。
所述湿法刻蚀工艺的刻蚀液对所述第一掩膜层104和所述保护层103具有较高的刻蚀选择比,且有较高的刻蚀速率,从而能够将所述第一掩膜层104去除干净。
去除所述保护层103的工艺包括湿法刻蚀工艺或干法刻蚀工艺。在本实施例中,去除所述保护层103的工艺包括湿法刻蚀工艺。
所述湿法刻蚀工艺的刻蚀液对所述保护层103和所述衬底100具有较高的刻蚀选择比,且有较高的刻蚀速率,从而能够将所述保护层103去除干净,并不会对所述衬底100表面造成损伤。
请参考图9,在所述第一阱区101内形成源线掺杂区117和体掺杂区118。
所述源线掺杂区117位于所述第一隔离层114和第二隔离层115之间。
所述体掺杂区118和源线掺杂区117之间由所述第二隔离层115相互隔离。
在本实施例中,所述体掺杂区118的掺杂类型为P型,所述源线掺杂区117的掺杂类型为N型。
所述N型的掺杂离子包括磷离子或砷离子;所述P型的掺杂离子包括硼离子或铟离子。
在本实施例中,形成所述源线掺杂区117和所述体掺杂区118的工艺包括离子注入工艺。
在本实施例中,所述字线栅极结构与所述源线掺杂区117部分相邻。
所述字线栅极结构与所述源线掺杂区117部分相邻,则所述存储器的电路导通时,所述沟道的距离较短,则所述沟道电阻较小,从而能够快速形成沟道从而导通电路。
所述源线掺杂区117的掺杂深度为第三深度,所述第三深度小于所述第一深度,则所述源线掺杂区117的掺杂深度小于所述第一沟槽的深度;所述第三深度大于所述第四深度,则所述源线掺杂区117的掺杂深度大于所述字线栅极结构顶部至所述第一沟槽112顶部的距离。
所述第三深度大于所述第四深度,则所述存储器的电路导通时,所述沟道的距离较短,从而所述沟道电阻较小,从而在对所述存储器通电时所述存储器的电路能够迅速导通,有利于所述存储器性能的提升。
在本实施例中,所述第三深度的范围为30nm~150nm。
在本实施例中,所述第三深度与所述第四深度的深度差为0nm~5nm。
所述第三深度与所述第四深度的深度差为0nm~5nm,若所述第三深度小于所述第四深度,则所述存储器的电路导通时,所述沟道的距离较长,则所述沟道电阻较大,从而不能快速形成沟道从而导通电路,影响了所述存储器的性能;若所述第三深度与所述第四深度的深度差大于5nm,则所述源线掺杂区与所述字线栅极结构的相邻面积太大,使得所述存储器的沟道过短,不利于所述存储器的性能。
请参考图10,在所述第二阱区102表面形成位线栅极结构。
所述位线栅极结构包括:位于第二阱区102表面的第二介质层119;位于第二介质层119表面的位线栅极层120。
在本实施例中,所述位线栅极结构位于所述第三隔离层116和第一隔离层114之间的第二阱区102表面。
所述位线栅极结构的形成方法包括:在所述衬底100表面形成第二介质层119;在所述第二介质层119表面形成位线栅极材料层(未图示);在所述位线栅极材料层表面形成第三掩膜层121,所述第三掩膜层121暴露出部分位线栅极材料层表面;以所述第三掩膜层121为掩膜刻蚀所述位线栅极材料层,直至暴露出所述第二介质层119表面,形成所述位线栅极结构。
在本实施例中,所述第二介质层119的材料包括氧化硅。
形成所述第二介质层119的工艺包括原位水汽生成工艺、化学气相沉积工艺或原子层沉积工艺。在本实施例中,形成所述第二介质层119的工艺包括原位水汽生成工艺(InSitu Steam Generation,简称ISSG)。
所述原位水汽生成工艺能够形成厚度均匀的第二介质层119,且所述第二介质层119的厚度能够精确控制。
在本实施例中,所述第二介质层119的厚度小于所述第一介质层108的厚度。
所述第二介质层119的厚度较小,则易于对所述位线栅极结构编程,且不需要较高的开启电压,从而使得所述存储器编写的可靠性高。
在本实施例中,所述第二介质层的厚度范围为0nm~5nm。
在本实施例中,刻蚀所述位线栅极材料层的工艺包括干法刻蚀工艺。
在本实施例中,所述第三掩膜层121的材料包括光刻胶。
请参考图11,形成所述位线栅极层120之后,去除所述第三掩膜层121。
在本实施例中,去除所述第三掩膜层121的工艺包括灰化工艺。
去除所述第三掩膜层121之后,在所述位线栅极层120侧壁形成侧墙(未标示)。
请继续参考图11,在所述衬底100表面形成第四隔离层122,所述第四隔离层122位于所述位线栅极结构的顶部表面和侧壁表面;在所述第四隔离层122内形成字线结构124、源线结构123以及位线结构125,所述字线结构124与所述字线栅极结构电连接,所述位线结构125与所述位线栅极结构电连接,所述源线结构123与所述源线掺杂区117电连接。
至此,形成的所述存储器,所述字线栅极结构位于所述第一沟槽内,所述第一隔离层位于所述字线栅极结构表面且填充满所述第一沟槽,使得所述衬底在平行于衬底表面方向上的利用率提高,节省了所述存储器在平行于衬底表面方向上的空间,所形成的存储器结构占用的面积缩小,提高了器件的集成度。
相应的,本发明实施例还提供一种采用上述方法形成的存储器,请继续参考图11,包括:
衬底100,所述衬底100内具有相邻的第一阱区101和第二阱区102,所述第一阱区101和第二阱区102的掺杂类型相反,所述第一阱区101的掺杂类型为P型,所述第二阱区102掺杂类型为N型;
位于第一阱区101和第二阱区102内的第一沟槽,且所述第一沟槽自第一阱区延伸至第二阱区;
位于所述第一沟槽内的字线栅极结构,所述字线栅极结构包括:位于第一沟槽侧壁和底部表面的第一介质层108和位于第一介质层108表面的字线栅极层113;
位于所述字线栅极结构表面的第一隔离层114,所述第一隔离层114填充满所述第一沟槽,所述第一隔离层114位于所述第一沟槽底部的部分第二阱区102表面;
位于第一阱区101内的第二隔离层115,位于第二阱区102内的第三隔离层116;
位于第一阱区101内的源线掺杂区117,所述源线掺杂区117的掺杂类型为N型,所述源线掺杂区117位于所述第一隔离层114和第二隔离层115之间;
位于第一阱区内的体掺杂区118,所述体掺杂区118的掺杂类型为P型,所述体掺杂区118和源线掺杂区117之间由所述第二隔离层115相互隔离;
位于第二阱区102表面的位线栅极结构,所述位线栅极结构包括:位于第二阱区102表面的第二介质层119和位于第二介质层119表面的位线栅极层120,所述位线栅极结构位于所述第三隔离层116和第一隔离层114之间的第二阱区102表面;
位于所述衬底100表面的第四隔离层122,所述第四隔离层122内具有字线结构124、源线结构123以及位线结构125,所述字线结构124与所述字线栅极结构电连接,所述位线结构125与所述位线栅极结构电连接,所述源线结构123与所述源线掺杂区117电连接。
所述第一沟槽的深度为第一深度;所述第二隔离层115位于第二沟槽内,所述第二沟槽的深度为第二深度,所述第一深度等于所述第二深度。
所述第一介质层108的厚度大于所述第二介质层119的厚度。
所述字线栅极结构与所述源线掺杂区117部分相邻;所述源线掺杂区117的掺杂深度为第三深度,所述字线栅极结构顶部至所述第一沟槽顶部的距离为第四深度,所述第三深度大于所述第四深度,且所述第三深度小于所述第一深度。
图12至图15是本发明另一实施例中存储器的形成过程的截面结构示意图。
请参考图12,图12是在图1基础上的结构示意图,在所述衬底100表面形成保护层203;在所述保护层203表面形成第一掩膜层204,所述第一掩膜层204暴露出部分第一阱区101和第二阱区102表面。
所述第一掩膜层204暴露出部分第一阱区101和第二阱区102表面的图形为后续在所述衬底100内形成所述字线栅极结构的图形。
所述保护层203用于保护所述衬底100表面,避免在以所述第一掩膜层204刻蚀所述衬底100时,所述刻蚀工艺对所述衬底100造成损伤。
在本实施例中,所述保护层203的材料包括氧化硅。
形成所述保护层203的工艺包括原位水汽生成工艺、化学气相沉积工艺或原子层沉积工艺。在本实施例中,形成所述保护层203的工艺包括原位水汽生成工艺(In SituSteam Generation,简称ISSG)。
所述原位水汽生成工艺能够形成厚度均匀的保护层203,且所述保护层203的厚度能够精确控制。
在其他实施例中,能够不形成所述保护层。
所述第一掩膜层204的材料包括硬掩膜层或光刻胶,所述硬掩膜层的材料包括氧化硅或氮化硅。在本实施例中,所述第一掩膜层204的材料包括光刻胶。
请参考图13,以所述第一掩膜层204为掩膜刻蚀所述衬底100,在所述衬底100内形成第一沟槽(未标示);在所述第一沟槽内形成字线栅极结构。
所述字线栅极结构包括:位于第一沟槽底部和侧壁表面的第一介质层205;位于所述第一介质层205表面的字线栅极层206。
在形成第一沟槽之后,去除所述第一掩膜层204。
在本实施例中,去除所述第一掩膜层204的工艺包括灰化工艺。
在本实施例中,所述第一介质层205的材料包括氧化硅。在其他实施例中,所述第一介质层的材料包括高K(大于3.9)材料。
所述第一介质层205的形成工艺包括原位水汽生成工艺、化学气相沉积工艺或原子层沉积工艺。在本实施例中,所述第一介质层205的形成工艺包括原位水汽生成工艺(InSitu Steam Generation,简称ISSG)。
所述原位水汽生成工艺能够形成厚度均匀的第一介质层205,且所述第一介质层205的厚度能够精确控制。
在本实施例中,所述第一介质层205的厚度范围为大于2nm。
所述字线栅极层206的形成方法包括:在所述第一沟槽内和衬底100表面形成字线栅极材料层(未图示);平坦化所述字线栅极材料层,直至暴露出所述保护层203表面,在所述第一沟槽内形成初始字线栅极层(未图示);回刻蚀所述初始字线栅极层,在所述第一沟槽内形成字线栅极层206。
在本实施例中,形成所述字线栅极材料层的形成工艺包括物理气相沉积工艺。
所述字线栅极材料层的材料包括多晶硅或金属。在本实施例中,所述字线栅极材料层的材料包括多晶硅。
在本实施例中,平坦化所述字线栅极材料层的工艺包括化学机械抛光工艺。
在本实施例中,回刻蚀所述字线栅极材料层后,所述字线栅极材料层顶部表面至所述有第一沟槽顶部的深度为第四深度,所述第四深度的范围为30nm~150nm。
所述第一沟槽的深度为第二深度。
在本实施例中,所述第二深度的范围为200nm~400nm。
请参考图14,在所述第一阱区101内形成第二沟槽208,在所述第二阱区102内形成第三沟槽209和第四沟槽210。
所述第二沟槽208、第三沟槽209和第四沟槽210的形成方法包括:在所述衬底100表面形成第二掩膜层207,所述第二掩膜层207暴露出部分第一阱区101表面和部分第二阱区102表面;以所述第二掩膜层207为掩膜刻蚀所述衬底100,在所述第一阱区101内形成第二沟槽208,在所述第二阱区102内形成第三沟槽209和第四沟槽210。
在本实施例中,所述第三沟槽209和所述第一介质层205相邻。
所述第二沟槽208用于后续在第二沟槽208内形成第二隔离层。
所述第三沟槽209用于后续在第三沟槽209内形成第三隔离层。
所述第四沟槽210用于后续在第四沟槽210内形成第四隔离层。
所述第二沟槽208、第三沟槽209和第四沟槽210具有第一深度。
在本实施例中,所述第一深度等于所述第二深度,即所述第二沟槽208的深度、第三沟槽209的深度和第四沟槽210的深度与所述第一沟槽的深度相等。
在本实施例中,所述第一深度的范围为200nm~400nm。
在其他实施例中,所述第一深度大于所述第二深度。
在本实施例中,刻蚀所述衬底100的工艺包括干法刻蚀工艺。
所述第二掩膜层207的材料包括硬掩膜层或光刻胶,所述硬掩膜层的材料包括氧化硅或氮化硅。在本实施例中,所述第二掩膜层207的材料包括光刻胶。
请参考图15,在所述字线栅极层206表面形成第一隔离层212,在所述第二沟槽208内形成第二隔离层211,在所述第三沟槽209内形成第三隔离层213,在所述第四沟槽210内形成第四隔离层214。
在本实施例中,所述第一隔离层212、第二隔离层211、第三隔离层213和第四隔离层214同时形成。
所述第一隔离层212、第二隔离层211、第三隔离层213和第四隔离层214的形成方法包括:去除所述第二掩膜层207;在所述字线栅极层206表面、第二沟槽208内、第三沟槽209内以及第四沟槽210内形成隔离材料层(未图示);平坦化所述隔离材料层,直至暴露出所述衬底100表面,形成所述第一隔离层212、第二隔离层211、第三隔离层213和第四隔离层214。
在本实施例中,平坦化所述隔离材料层的同时,所述保护层203也被去除。
在本实施例中,所述第一隔离层212、第二隔离层211、第三隔离层213和第四隔离层214的材料包括氧化硅。
在本实施例中,形成所述隔离材料层的工艺包括化学气相沉积工艺。在其他实施例中,形成所述隔离材料层的工艺包括原子层沉积工艺。
所述化学气相沉积工艺能够快速形成结构致密的隔离材料层。
在本实施例中,平坦化所述隔离材料层的工艺包括化学机械抛光工艺。
接下来,在所述第一阱区101内形成源线掺杂区和体掺杂区;在所述第二阱区102表面形成位线栅极结构;在所述衬底100表面形成第四隔离层,在所述第四隔离层内形成字线结构、源线结构以及位线结构,所述字线结构与所述字线栅极结构电连接,所述位线结构与所述位线栅极结构电连接,所述源线结构与所述源线掺杂区电连接。具体的形成过程、工艺和材料的详细说明请参考图9至图11,在此不再赘述。
图16至图17是本发明另一实施例中存储器的形成过程的截面结构示意图。
请参考图16,图16是在图5基础上的结构示意图,以所述第二掩膜层111为掩膜刻蚀暴露出的部分所述初始字线栅极层110,暴露出所述初始第一沟槽底部的第一介质层108表面后,去除所述暴露出的第一介质层108,刻蚀所述初始第一沟槽105底部的第二阱区102,形成所述第一沟槽312和位于第一沟槽312内的字线栅极层113。
所述字线栅极结构包括:位于第一沟槽312侧壁和底部表面的第一介质层108;位于第一介质层108表面的字线栅极层113。
所述字线栅极结构顶部至所述第一沟槽312顶部的距离即为第四深度,所述第四深度的范围为30nm~150nm。
在本实施例中,刻蚀所述初始字线栅极层110和所述第一介质层108的工艺包括干法刻蚀工艺;刻蚀所述第一介质层108的工艺包括干法刻蚀工艺;刻蚀所述第二阱区102的工艺包括干法刻蚀工艺。
在本实施例中,所述字线栅极层113在沿衬底100表面方向的宽度小于所述第一沟槽312的底部宽度。
所述第一沟槽312的深度为第一深度,所述第一深度大于所述第四深度。
在本实施例中,所述第一深度大于所述第二深度,则所述第一沟槽312的深度大于所述初始第一沟槽105的深度。
所述第一深度大于所述第二深度,所述第一深度较大,则所述存储器在垂直方向上的沟道变短,使得所述存储器的电流增大;同时,所述第一深度较大,则电子在所述第二阱区102的运动距离变长,所述第二阱区102内的电路的电阻变大,则所述第二阱区102内的电路的分压变大,使得位于第一阱区101和第二阱区102之间的PN结分压变小,从而不易被击穿
在本实施例中,所述第一深度的范围为150nm~400nm。
在其他实施例中,所述第一深度等于所述第二深度。
形成所述字线栅极层113之后,去除所述第二掩膜层111。
在本实施例中,去除所述第二掩膜层111的工艺包括灰化工艺。
请参考图17,在所述字线栅极结构表面形成第一隔离层314,在所述第一阱区101内形成第二隔离层315,在所述第二阱区102内形成第三隔离层316。
在本实施例中,所述第一隔离层314、第二隔离层315和第三隔离层316同时形成。
所述第一隔离层314、第二隔离层315和第三隔离层316的形成方法包括:在所述第一沟槽312内、第二沟槽106内、第三沟槽107内以及衬底100表面形成隔离材料层(未图示);平坦化所述隔离材料层,直至暴露出所述第一掩膜层104表面,形成初始隔离层(未图示);回刻蚀所述初始隔离层,直至完全暴露出所述第一掩膜层104侧壁表面,在所述第一沟槽312内形成第一隔离层314,在所述第二沟槽106内形成第二隔离层315,在所述第三沟槽107内形成第三隔离层316。
回刻蚀所述初始隔离层直至完全暴露出所述第一掩膜层104侧壁表面的意义在于:所述第一掩膜层104和所述保护层103具有一定的厚度,若不去除这样厚度的初始隔离层,则后续去除所述第一掩膜层104和所述保护层103之后,在所述第二阱区102表面形成位线栅极结构时,所述初始隔离层的厚度会使得所述位线栅极结构的厚度无法精确控制。
在本实施例中,所述第一隔离层314还位于所述第一沟槽312底部的部分第二阱区102内。
在本实施例中,所述第一隔离层314、第二隔离层315和第三隔离层316的材料包括氧化硅。
在本实施例中,形成所述隔离材料层的工艺包括化学气相沉积工艺。在其他实施例中,形成所述隔离材料层的工艺包括原子层沉积工艺。
所述化学气相沉积工艺能够快速形成结构致密的隔离材料层。
在本实施例中,平坦化所述隔离材料层的工艺包括化学机械抛光工艺。
接下来,在所述第一阱区101内形成源线掺杂区和体掺杂区;在所述第二阱区102表面形成位线栅极结构;在所述衬底100表面形成第四隔离层,在所述第四隔离层内形成字线结构、源线结构以及位线结构,所述字线结构与所述字线栅极结构电连接,所述位线结构与所述位线栅极结构电连接,所述源线结构与所述源线掺杂区电连接。具体的形成过程、工艺和材料的详细说明请参考图8至图11,在此不再赘述。
图18至图19是本发明另一实施例中存储器的形成过程的截面结构示意图。
请参考图18,图18是在图13基础上的结构示意图,在所述第一阱区101内形成第二沟槽408,在所述第二阱区102内形成第三沟槽409和第四沟槽410。
所述第二沟槽408、第三沟槽409和第四沟槽410的形成方法包括:在所述衬底100表面形成第二掩膜层407,所述第二掩膜层407暴露出部分第一阱区101表面和部分第二阱区102表面;以所述第二掩膜层407为掩膜刻蚀所述衬底100,在所述第一阱区101内形成第二沟槽408,在所述第二阱区102内形成第三沟槽409和第四沟槽410。
在本实施例中,所述第三沟槽409和所述第一介质层205相邻。
所述第二沟槽408用于后续在第二沟槽408内形成第二隔离层。
所述第三沟槽409用于后续在第三沟槽409内形成第三隔离层。
所述第四沟槽410用于后续在第四沟槽410内形成第四隔离层。
所述第二沟槽408、第三沟槽409和第四沟槽410具有第一深度。
在本实施例中,所述第一深度大于所述第二深度,即所述第二沟槽408的深度、第三沟槽409的深度和第四沟槽410的深度大于所述第一沟槽的深度。
所述第一深度大于所述第二深度,所述第一深度较大,则所述存储器在垂直方向上的沟道变短,使得所述存储器的电流增大;同时,所述第一深度较大,则电子在所述第二阱区102的运动距离变长,所述第二阱区102内的电路的电阻变大,则所述第二阱区102内的电路的分压变大,使得位于第一阱区101和第二阱区102之间的PN结分压变小,从而不易被击穿
在本实施例中,所述第一深度的范围为150nm~400nm。
在其他实施例中,所述第一深度等于所述第二深度。
在本实施例中,刻蚀所述衬底100的工艺包括干法刻蚀工艺。
所述第二掩膜层407的材料包括硬掩膜层或光刻胶,所述硬掩膜层的材料包括氧化硅或氮化硅。在本实施例中,所述第二掩膜层407的材料包括光刻胶。
请参考图19,在所述字线栅极层206表面形成第一隔离层412,在所述第二沟槽408内形成第二隔离层411,在所述第三沟槽409内形成第三隔离层413,在所述第四沟槽410内形成第四隔离层414。
在本实施例中,所述第一隔离层412、第二隔离层411、第三隔离层413和第四隔离层414同时形成。
所述第一隔离层412、第二隔离层411、第三隔离层413和第四隔离层414的形成方法包括:去除所述第二掩膜层407;在所述字线栅极层206表面、第二沟槽408内、第三沟槽409内以及第四沟槽410内形成隔离材料层(未图示);平坦化所述隔离材料层,直至暴露出所述衬底100表面,形成所述第一隔离层412、第二隔离层411、第三隔离层413和第四隔离层414。
在本实施例中,平坦化所述隔离材料层的同时,所述保护层203也被去除。
在本实施例中,所述第一隔离层412、第二隔离层411、第三隔离层413和第四隔离层414的材料包括氧化硅。
在本实施例中,形成所述隔离材料层的工艺包括化学气相沉积工艺。在其他实施例中,形成所述隔离材料层的工艺包括原子层沉积工艺。
所述化学气相沉积工艺能够快速形成结构致密的隔离材料层。
在本实施例中,平坦化所述隔离材料层的工艺包括化学机械抛光工艺。
接下来,在所述第一阱区101内形成源线掺杂区和体掺杂区;在所述第二阱区102表面形成位线栅极结构;在所述衬底100表面形成第四隔离层,在所述第四隔离层内形成字线结构、源线结构以及位线结构,所述字线结构与所述字线栅极结构电连接,所述位线结构与所述位线栅极结构电连接,所述源线结构与所述源线掺杂区电连接。具体的形成过程、工艺和材料的详细说明请参考图9至图11,在此不再赘述。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (24)

1.一种存储器,其特征在于,包括:
衬底,所述衬底内具有相邻的第一阱区和第二阱区,所述第一阱区和第二阱区的掺杂类型相反;
位于第一阱区和第二阱区内的第一沟槽,且所述第一沟槽自第一阱区延伸至第二阱区;
位于所述第一沟槽内的字线栅极结构;
位于所述字线栅极结构表面的第一隔离层,所述第一隔离层填充满所述第一沟槽;
位于第一阱区内的第二隔离层;
位于第一阱区内的源线掺杂区,所述源线掺杂区位于所述第一隔离层和第二隔离层之间;
位于第二阱区表面的位线栅极结构。
2.如权利要求1所述的存储器,其特征在于,所述字线栅极结构包括:位于第一沟槽侧壁和底部表面的第一介质层;位于第一介质层表面的字线栅极层。
3.如权利要求2所述的存储器,其特征在于,所述字线栅极层在沿衬底表面方向的宽度小于所述第一沟槽的底部宽度。
4.如权利要求3所述的存储器,其特征在于,所述第一隔离层还位于所述第一沟槽底部的部分第二阱区表面。
5.如权利要求1所述的存储器,其特征在于,所述第一沟槽的深度为第一深度;所述第二隔离层位于第二沟槽内,所述第二沟槽的深度为第二深度,所述第一深度大于或等于所述第二深度。
6.如权利要求5所述的存储器,其特征在于,所述第一深度的范围为150nm~400nm,所述第二深度的范围为200nm~400nm。
7.如权利要求5所述的存储器,其特征在于,所述字线栅极结构与所述源线掺杂区部分相邻;所述源线掺杂区的掺杂深度为第三深度,所述字线栅极结构顶部至所述第一沟槽顶部的距离为第四深度,所述第三深度大于所述第四深度,且所述第三深度小于所述第一深度。
8.如权利要求7所述的存储器,其特征在于,所述第三深度的范围为30nm~150nm,所述第四深度的范围为30nm~150nm;所述第三深度与所述第四深度的深度差为0nm~5nm。
9.如权利要求1所述的存储器,其特征在于,还包括:位于第二阱区内的第三隔离层;所述位线栅极结构位于所述第三隔离层和第二隔离层之间的第二阱区表面。
10.如权利要求1所述的存储器,其特征在于,还包括:位于第一阱区内的体掺杂区,所述体掺杂区和源线掺杂区之间由所述第二隔离层相互隔离。
11.如权利要求2所述的存储器,其特征在于,所述位线栅极结构包括:位于第二阱区表面的第二介质层;位于第二介质层表面的位线栅极层。
12.如权利要求11所述的存储器,其特征在于,所述第一介质层的厚度大于所述第二介质层的厚度。
13.如权利要求12所述的存储器,其特征在于,所述第一介质层的厚度范围为大于2nm;所述第二介质层的厚度范围为0nm~5nm。
14.如权利要求12所述的反熔丝存储器,其特征在于,所述第一介质层的材料包括氧化硅;所述第二介质层的材料包括氧化硅。
15.如权利要求1所述的存储器,其特征在于,还包括:位于所述衬底表面的第四隔离层,所述第四隔离层内具有字线结构、源线结构以及位线结构,所述字线结构与所述字线栅极结构电连接,所述位线结构与所述位线栅极结构电连接,所述源线结构与所述源线掺杂区电连接。
16.如权利要求1所述的存储器,其特征在于,所述第一阱区的掺杂类型为P型,所述第二阱区的掺杂类型为N型。
17.如权利要求16所述的存储器,其特征在于,所述体掺杂区的掺杂类型为P型,所述源线掺杂区的掺杂类型为N型。
18.一种形成如权利要求1至17任一项存储器的方法,其特征在于,包括:
提供衬底,所述衬底内具有相邻的第一阱区和第二阱区,所述第一阱区和第二阱区的掺杂类型相反;
在所述第一阱区内和第二阱区内形成第一沟槽和位于第一沟槽内的字线栅极结构,且所述第一沟槽自第一阱区延伸至第二阱区;
在所述字线栅极结构表面形成第一隔离层;
在所述第一阱区内形成第二隔离层;
在所述第一阱区内形成源线掺杂区,所述源线掺杂区位于所述第一隔离层和第二隔离层之间;
在所述第二阱区表面形成位线栅极结构。
19.如权利要求18所述的存储器的形成方法,其特征在于,所述第一沟槽和字线栅极结构的形成方法包括:在所述衬底表面形成第一掩膜层,所述第一掩膜层暴露出部分第一阱区和第二阱区表面;以所述第一掩膜层为掩膜刻蚀所述衬底,在所述第一阱区内和第二阱区内形成初始第一沟槽;在所述衬底表面和初始第一沟槽内形成第一介质层;在所述第一介质层表面形成初始字线栅极材料层;平坦化所述初始字线栅极材料层,直至暴露出所述衬底表面,在所述初始第一沟槽内形成字线栅极材料层;回刻蚀所述字线栅极材料层至所述第四深度,在所述初始第一沟槽内形成初始字线栅极层;在所述初始字线栅极层表面形成第二掩膜层,所述第二掩膜层暴露出所述初始第一沟槽内的部分初始字线栅极层表面;以所述第二掩膜层为掩膜刻蚀暴露出的部分所述初始字线栅极层,直至暴露出所述初始第一沟槽底部的第一介质层表面,形成所述第一沟槽和位于第一沟槽内的字线栅极结构。
20.如权利要求19所述的存储器的形成方法,其特征在于,在所述初始字线栅极层表面形成第二掩膜层后,还包括:以所述第二掩膜层为掩膜刻蚀暴露出的部分所述初始字线栅极层,暴露出所述初始第一沟槽底部的第一介质层表面后,去除所述暴露出的第一介质层,刻蚀所述初始第一沟槽底部的第二阱区,形成所述第一沟槽和位于第一沟槽内的字线栅极结构。
21.如权利要求19所述的存储器的形成方法,其特征在于,形成所述第一介质层的工艺包括化学气相沉积、原子层沉积工艺或者原位水汽生长工艺。
22.如权利要求18所述的存储器的形成方法,其特征在于,所述位线栅极结构的形成方法包括:在所述衬底表面形成第二介质层;在所述第二介质层表面形成位线栅极材料层;在所述位线栅极材料层表面形成第三掩膜层,所述第三掩膜层暴露出部分位线栅极材料层表面;以所述第三掩膜层为掩膜刻蚀所述位线栅极材料层,直至暴露出所述第二介质层表面,形成所述位线栅极结构。
23.如权利要求22所述的存储器的形成方法,其特征在于,形成所述第二介质层的工艺包括化学气相沉积、原子层沉积工艺或者原位水汽生长工艺。
24.如权利要求18所述的存储器的形成方法,其特征在于,所述第一隔离层和所述第二隔离层同时形成。
CN201910744048.6A 2019-08-13 2019-08-13 存储器的结构及其形成方法 Active CN110429084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910744048.6A CN110429084B (zh) 2019-08-13 2019-08-13 存储器的结构及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910744048.6A CN110429084B (zh) 2019-08-13 2019-08-13 存储器的结构及其形成方法

Publications (2)

Publication Number Publication Date
CN110429084A true CN110429084A (zh) 2019-11-08
CN110429084B CN110429084B (zh) 2022-04-26

Family

ID=68415874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910744048.6A Active CN110429084B (zh) 2019-08-13 2019-08-13 存储器的结构及其形成方法

Country Status (1)

Country Link
CN (1) CN110429084B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224058A (zh) * 2021-04-07 2021-08-06 芯盟科技有限公司 半导体结构及半导体结构的形成方法
US11189565B2 (en) 2020-02-19 2021-11-30 Nanya Technology Corporation Semiconductor device with programmable anti-fuse feature and method for fabricating the same
CN115346986A (zh) * 2022-09-20 2022-11-15 芯盟科技有限公司 动态随机存取存储器及其形成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391705B1 (en) * 2000-04-12 2002-05-21 Promos Technologies, Inc. Fabrication method of high-density semiconductor memory cell structure having a trench
US20050189582A1 (en) * 2004-02-10 2005-09-01 Thomas Mikolajick Charge trapping memory cell and fabrication method
CN105336622A (zh) * 2014-07-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 半浮栅器件及其形成方法
CN106504985A (zh) * 2015-09-04 2017-03-15 爱思开海力士有限公司 半导体结构及其制造方法
CN108336087A (zh) * 2018-01-23 2018-07-27 上海华力微电子有限公司 闪存及其制造方法
CN108666312A (zh) * 2017-03-30 2018-10-16 联华电子股份有限公司 具有嵌入闪存存储器的动态随机存储器元件及其制作方法
CN109411444A (zh) * 2017-08-16 2019-03-01 联华电子股份有限公司 逆熔丝元件及其操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391705B1 (en) * 2000-04-12 2002-05-21 Promos Technologies, Inc. Fabrication method of high-density semiconductor memory cell structure having a trench
US20050189582A1 (en) * 2004-02-10 2005-09-01 Thomas Mikolajick Charge trapping memory cell and fabrication method
CN105336622A (zh) * 2014-07-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 半浮栅器件及其形成方法
CN106504985A (zh) * 2015-09-04 2017-03-15 爱思开海力士有限公司 半导体结构及其制造方法
CN108666312A (zh) * 2017-03-30 2018-10-16 联华电子股份有限公司 具有嵌入闪存存储器的动态随机存储器元件及其制作方法
CN109411444A (zh) * 2017-08-16 2019-03-01 联华电子股份有限公司 逆熔丝元件及其操作方法
CN108336087A (zh) * 2018-01-23 2018-07-27 上海华力微电子有限公司 闪存及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189565B2 (en) 2020-02-19 2021-11-30 Nanya Technology Corporation Semiconductor device with programmable anti-fuse feature and method for fabricating the same
US11735520B2 (en) 2020-02-19 2023-08-22 Nanya Technology Corporation Method for fabricating semiconductor device with programmable anti-fuse feature
CN113224058A (zh) * 2021-04-07 2021-08-06 芯盟科技有限公司 半导体结构及半导体结构的形成方法
CN115346986A (zh) * 2022-09-20 2022-11-15 芯盟科技有限公司 动态随机存取存储器及其形成方法
CN115346986B (zh) * 2022-09-20 2024-05-14 芯盟科技有限公司 动态随机存取存储器及其形成方法

Also Published As

Publication number Publication date
CN110429084B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
US9941299B1 (en) Three-dimensional ferroelectric memory device and method of making thereof
US7531367B2 (en) Utilizing sidewall spacer features to form magnetic tunnel junctions in an integrated circuit
EP3619752A1 (en) Resistive random access memory device containing replacement word lines and method of making thereof
CN110429084A (zh) 存储器的结构及其形成方法
US7018863B2 (en) Method of manufacture of a resistance variable memory cell
US10950626B2 (en) Three-dimensional memory device containing alternating stack of source layers and drain layers and vertical gate electrodes
CN105336695B (zh) 半导体器件的形成方法
US20160126292A1 (en) Concave word line and convex interlayer dielectric for protecting a read/write layer
JP2004228561A (ja) デュアルトレンチで隔離されたクロスポイントメモリアレイとその製造方法
WO2021029916A1 (en) Three-dimensional memory device containing alternating stack of source layers and drain layers and vertical gate electrodes
CN104752361B (zh) 半导体结构的形成方法
CN105448840B (zh) 半导体结构的形成方法
US20210050359A1 (en) Three-dimensional memory device containing alternating stack of source layers and drain layers and vertical gate electrodes
CN103872244A (zh) 阻变存储器件及其制造方法
CN109935683B (zh) 半导体器件
CN112466888A (zh) 半导体器件结构中多晶硅材料填充及3d nand存储器制备方法
CN109686755A (zh) 高密度相变存储器及其制备方法
CN115188760A (zh) 半导体结构的形成方法
CN103187523B (zh) 半导体器件及其制造方法
US10957370B1 (en) Integration of epitaxially grown channel selector with two terminal resistive switching memory element
CN110021520A (zh) 制造集成电路器件的方法
US20200312704A1 (en) Airgap isolation for backend embedded memory stack pillar arrays
CN102446806B (zh) 相变存储器沟槽隔离结构的制作方法
TW202137507A (zh) 三維記憶體元件以及其製作方法
US7935608B2 (en) Storage cell having a T-shaped gate electrode and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230719

Address after: 223001 Room 318, Building 6, east of Zhenda Steel Pipe Company, south of Qianjiang Road, Huaiyin District, Huai'an City, Jiangsu Province

Patentee after: Huaian Xide Industrial Design Co.,Ltd.

Address before: No. 599, East Changjiang Road, Huaiyin District, Huai'an City, Jiangsu Province

Patentee before: HUAIAN IMAGING DEVICE MANUFACTURER Corp.

TR01 Transfer of patent right