CN110416285A - 一种超结功率dmos器件 - Google Patents

一种超结功率dmos器件 Download PDF

Info

Publication number
CN110416285A
CN110416285A CN201910702933.8A CN201910702933A CN110416285A CN 110416285 A CN110416285 A CN 110416285A CN 201910702933 A CN201910702933 A CN 201910702933A CN 110416285 A CN110416285 A CN 110416285A
Authority
CN
China
Prior art keywords
conductive type
conduction type
type semiconductor
column area
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910702933.8A
Other languages
English (en)
Other versions
CN110416285B (zh
Inventor
任敏
胡玉芳
马怡宁
李泽宏
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN201910702933.8A priority Critical patent/CN110416285B/zh
Priority claimed from CN201910702933.8A external-priority patent/CN110416285B/zh
Publication of CN110416285A publication Critical patent/CN110416285A/zh
Application granted granted Critical
Publication of CN110416285B publication Critical patent/CN110416285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种超结功率DMOS器件,包括金属化漏电极、第一导电类型重掺杂半导体衬底、第一导电类型半导体柱区、第二导电类型半导体柱区、第二导电类型半导体体区、第一导电类型重掺杂半导体源区、第二导电类型重掺杂半导体接触区、多晶硅栅电极、栅介质层、金属化源电极,本发明通过在常规超结功率DMOS器件的基础上,将第一导电类型重掺杂半导体衬底由均匀掺杂改变为非均匀掺杂,避免了高掺杂衬底与低掺杂漂移区层的电场尖峰,缓解了SEB效应,从而提高其器件的可靠性。

Description

一种超结功率DMOS器件
技术领域
本发明属于功率半导体器件技术领域,涉及一种超结功率DMOS器件。
背景技术
具有超结结构的DMOS器件是近年来出现的一种重要的功率器件,它的基本原理是电荷平衡原理,通过在普通功率DMOS的漂移区中引入彼此间隔的P柱和n柱的超结结构,打破了常规器件中漂移区的比导通电阻与耐压间的2.5次方的关系,从而在高压应用的情况下,大大降低器件的导通电阻,提高了高压功率器件的转化效率,是电力电子领域理想的功率开关器件,应用前景十分广阔。
随着战略武器技术、空间技术和核技术的快速发展,越来越多的电子设备要工作在核辐射和空间辐射等恶劣的辐射环境之中。辐射使得电子系统的性能发生退化,大大降低其可靠性和寿命,甚至导致整个电子系统瘫痪,造成巨大的安全隐患和成本浪费。其中,单粒子效应是影响宇宙空间中航天器正常运行所面临的主要威胁之一,而重离子和高能质子是诱发航天器内电子元器件发生单粒子效应的重要粒子源。当单个重粒子或高能质子突然穿入到半导体器件中时,沿材料入射径迹产生大量电荷将引发诸如单粒子烧毁(SEB)、单粒子栅穿(SEGR)等瞬发性效应,这给元器件带来致命性损伤,影响整个电学系统的正常运行。超结MOSFET作为一款性能较VDMOS有极大提升的功率器件,在航空航天领域的前景非常广阔。提高超结功率DMOS器件的抗SEB辐射能力,目前除了普遍采用一些像普通超结功率DMOS器件一样降低源区掺杂浓度之外,还可以在衬底与漂移区之间增加buffer层。但是降低器件源区掺杂浓度,会使其导通电阻增大;增加buffer层的方法可以降低N+衬底与N-漂移区之间的电场峰值,但是在buffer层和N-漂移区之间的界面仍然有电场峰值存在,缓解SEB能力有限。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种超结功率DMOS器件。
为实现上述发明目的,本发明技术方案如下:
一种超结功率DMOS器件,从下至上依次包括包括金属化漏电极1、第一导电类型重掺杂半导体衬底2、第一导电类型半导体柱区3,第一导电类型半导体柱区3和第二导电类型半导体柱区4交替设置,所述第二导电类型半导体柱区4顶部具有第二导电类型半导体体区5,所述第二导电类型半导体体区5的侧面与第一导电类型半导体柱区3相接触;所述第二导电类型半导体体区5内部设有具有第一导电类型重掺杂半导体源区6和第二导电类型重掺杂半导体接触区7;多晶硅栅电极8覆盖全部的第一导电类型半导体柱区3和部分的第二导电类型半导体体区5,并与第一导电类型半导体柱区3和第二导电类型半导体体区5之间通过栅介质层9相隔离;金属化源电极10位于器件的最上层,金属化源电极10的下表面与第二导电类型重掺杂半导体接触区7的上表面和第一导电类型重掺杂半导体源区6的部分上表面直接接触,其特征在于:所述的第一导电类型重掺杂半导体衬底2采用非均匀掺杂,其掺杂浓度满足:从靠近金属化漏电极1到靠近第一导电类型半导体柱区3的方向上,掺杂浓度逐渐降低;第一导电类型重掺杂半导体衬底2的掺杂浓度还满足:靠近金属化漏电极1的掺杂浓度使其能够与金属形成欧姆接触,靠近第一导电类型半导体柱区3底部1-3um处的浓度与第一导电类型半导体柱区3的掺杂浓度相同。
作为优选方式,所述器件采用硅、锗、锗硅、碳化硅、砷化镓、磷化铟、氮化镓半导体材料制作。
作为优选方式,第一导电类型重掺杂半导体衬底2和金属化漏电极1之间设有第一导电类型半导体buffer层21。
作为优选方式,所述第一导电类型为N型,所述第二导电类型为P型;或者所述第一导电类型为P型,所述第二导电类型为N型。
本发明的有益效果为:通过在常规超结功率DMOS器件的基础上,将第一导电类型重掺杂半导体衬底由均匀掺杂改变为非均匀掺杂,避免了高掺杂衬底与低掺杂漂移区层的电场尖峰,缓解了SEB效应,从而提高其器件的可靠性。
附图说明
图1是本发明实施例1的一种超结功率DMOS器件结构及其寄生BJT管的示意图;
图2是常规超结功率DMOS器件纵向上的掺杂浓度示意图;
图3是本发明实施例2的超结功率DMOS器件结构示意图;
图4是本发明实施例2的超结功率DMOS器件纵向上的掺杂浓度示意图;
图5是本发明实施例1的一种超结功率DMOS器件纵向上的掺杂浓度示意图。
图中:1是金属化漏电极、21是第一导电类型半导体buffer层、2是第一导电类型重掺杂半导体衬底、3是第一导电类型半导体柱区、4是第二导电类型半导体柱区、5是第二导电类型半导体体区、6是第一导电类型重掺杂半导体源区、7是第二导电类型重掺杂半导体接触区、8是多晶硅栅电极、9是栅介质层、10是金属化源电极。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
一种超结功率DMOS器件,从下至上依次包括包括金属化漏电极1、第一导电类型重掺杂半导体衬底2、第一导电类型半导体柱区3,第一导电类型半导体柱区3和第二导电类型半导体柱区4交替设置,所述第二导电类型半导体柱区4顶部具有第二导电类型半导体体区5,所述第二导电类型半导体体区5的侧面与第一导电类型半导体柱区3相接触;所述第二导电类型半导体体区5内部设有具有第一导电类型重掺杂半导体源区6和第二导电类型重掺杂半导体接触区7;多晶硅栅电极8覆盖全部的第一导电类型半导体柱区3和部分的第二导电类型半导体体区5,并与第一导电类型半导体柱区3和第二导电类型半导体体区5之间通过栅介质层9相隔离;金属化源电极10位于器件的最上层,金属化源电极10的下表面与第二导电类型重掺杂半导体接触区7的上表面和第一导电类型重掺杂半导体源区6的部分上表面直接接触,其特征在于:所述的第一导电类型重掺杂半导体衬底2采用非均匀掺杂,其掺杂浓度满足:从靠近金属化漏电极1到靠近第一导电类型半导体柱区3的方向上,掺杂浓度逐渐降低;第一导电类型重掺杂半导体衬底2的掺杂浓度还满足:靠近金属化漏电极1的掺杂浓度使其能够与金属形成欧姆接触,靠近第一导电类型半导体柱区3底部1-3um处的浓度与第一导电类型半导体柱区3的掺杂浓度相同,能够实现杂质浓度的平滑过渡。
基于上述技术方案,当第一导电类型半导体为N型半导体而第二导电类型半导体为P型时,本发明提供的超结功率DMOS器件为N沟道超结功率DMOS器件;当第一导电类型半导体为P型半导体而第二导电类型半导体为N型时,本发明提供的超结功率DMOS器件为P沟道超结功率DMOS器件。
以N沟道超结功率DMOS器件为例说明本发明的工作原理:
图2为常规超结功率DMOS器件纵向上的掺杂浓度示意图。超结功率DMOS器件在金属化漏电极1偏压低于正常击穿电压的情况下,辐射产生的电子空穴对漂移电流可以改变外延层的电场分布,造成第一导电类型重掺杂半导体衬底2和第一导电类型半导体柱区3的界面发生雪崩击穿。重离子入射和雪崩击穿产生的电子空穴对在金属化漏电极1偏压的作用下形成漂移电流。其中空穴越过第一导电类型半导体柱区3成为寄生三极管的基极电流,使处于关断状态的寄生三极管导通,引起发射结的载流子注入效应,进一步促进了雪崩倍增效应的发生。其中超结功率DMOS器件内部的寄生三极管,如图1所示。超结功率DMOS器件的第一导电类型重掺杂半导体源区6为寄生三极管的发射极,第一导电类型半导体柱区3为寄生三极管的集电极,第二导电类型半导体体区5为寄生三极管的基极。这一正反馈机制将使漏极电流持续上升直至造成器件温度过高烧毁就是超结功率DMOS器件发生SEB失效。
通过常规超结功率DMOS器件的SEB失效机理,防止电场峰值向N+衬底和N-柱区之间的界面转移,降低雪崩倍增效应的发生,可以提高器件的抗SEB辐射能力。
本发明提出的一种抗辐射加固的超结功率DMOS器件,第一导电类型重掺杂半导体衬底2采用非均匀掺杂。图5为本发明提供的一种超结功率DMOS器件纵向上的掺杂浓度示意图。本发明提出的超结功率DMOS器件能够加固其抗辐射能力的原因是:由于第一导电类型重掺杂半导体衬底2采用非均匀掺杂,使第一导电类型重掺杂半导体衬底2到第一导电类型半导体柱区3掺杂浓度缓慢变化,不存在明显的结区,因此电场峰值能够被拉平,降低雪崩倍增效应的发生,则寄生三极管更难被开启,能够更有效的缓解SEB效应,提高器件可靠性。
优选的,所述器件采用硅、锗、锗硅、碳化硅、砷化镓、磷化铟、氮化镓半导体材料制作。
实施例2
本实施例和实施例1的区别在于:第一导电类型重掺杂半导体衬底2和金属化漏电极1之间设有第一导电类型半导体buffer层21。
图3是具有N-buffer层的超结功率DMOS器件结构示意图,图4是具有buffer层的超结功率DMOS器件纵向上的掺杂浓度示意图。此结构将电场峰值转移到N-buffer层和N-柱区之间的界面,一定程度上缓解了SEB效应,但是N-buffer/N-柱区结仍存在电场峰,因此缓解能力有限。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (4)

1.一种超结功率DMOS器件,从下至上依次包括包括金属化漏电极(1)、第一导电类型重掺杂半导体衬底(2)、第一导电类型半导体柱区(3),第一导电类型半导体柱区(3)和第二导电类型半导体柱区(4)交替设置,所述第二导电类型半导体柱区(4)顶部具有第二导电类型半导体体区(5),所述第二导电类型半导体体区(5)的侧面与第一导电类型半导体柱区(3)相接触;所述第二导电类型半导体体区(5)内部设有具有第一导电类型重掺杂半导体源区(6)和第二导电类型重掺杂半导体接触区(7);多晶硅栅电极(8)覆盖全部的第一导电类型半导体柱区(3)和部分的第二导电类型半导体体区(5),并与第一导电类型半导体柱区(3)和第二导电类型半导体体区(5)之间通过栅介质层(9)相隔离;金属化源电极(10)位于器件的最上层,金属化源电极(10)的下表面与第二导电类型重掺杂半导体接触区(7)的上表面和第一导电类型重掺杂半导体源区(6)的部分上表面直接接触,其特征在于:所述的第一导电类型重掺杂半导体衬底(2)采用非均匀掺杂,其掺杂浓度满足:从靠近金属化漏电极(1)到靠近第一导电类型半导体柱区(3)的方向上,掺杂浓度逐渐降低;第一导电类型重掺杂半导体衬底(2)的掺杂浓度还满足:靠近金属化漏电极(1)的掺杂浓度使其能够与金属形成欧姆接触,靠近第一导电类型半导体柱区(3)底部1-3um处的浓度与第一导电类型半导体柱区(3)的掺杂浓度相同。
2.根据权利要求1所述的一种超结功率DMOS器件,其特征在于:所述器件采用硅、锗、锗硅、碳化硅、砷化镓、磷化铟、氮化镓半导体材料制作。
3.根据权利要求1所述的一种超结功率DMOS器件,其特征在于:第一导电类型重掺杂半导体衬底(2)和金属化漏电极(1)之间设有第一导电类型半导体buffer层(21)。
4.根据权利要求1所述的一种超结功率DMOS器件,其特征在于:所述第一导电类型为N型,所述第二导电类型为P型;或者所述第一导电类型为P型,所述第二导电类型为N型。
CN201910702933.8A 2019-07-31 一种超结功率dmos器件 Active CN110416285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910702933.8A CN110416285B (zh) 2019-07-31 一种超结功率dmos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910702933.8A CN110416285B (zh) 2019-07-31 一种超结功率dmos器件

Publications (2)

Publication Number Publication Date
CN110416285A true CN110416285A (zh) 2019-11-05
CN110416285B CN110416285B (zh) 2024-06-07

Family

ID=

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224164A (zh) * 2021-04-21 2021-08-06 电子科技大学 一种超结mos器件
CN114464671A (zh) * 2022-04-11 2022-05-10 江苏长晶浦联功率半导体有限公司 一种改善栅电容特性的超结mosfet
CN114497184A (zh) * 2021-12-23 2022-05-13 杭州士兰微电子股份有限公司 功率半导体器件元胞结构、功率半导体器件及其制造方法
CN114551574A (zh) * 2022-02-28 2022-05-27 电子科技大学 一种高压单粒子加固ldmos器件
CN114597251A (zh) * 2022-03-03 2022-06-07 电子科技大学 一种抗总剂量辐射加固的屏蔽栅vdmos
CN116741812A (zh) * 2023-08-11 2023-09-12 深圳天狼芯半导体有限公司 一种基于n-bal提高电流密度的超结肖特基二极管及制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503990A (zh) * 2001-03-28 2004-06-09 通用半导体公司 具有减小导通电阻的双扩散场效应晶体管
US20050221547A1 (en) * 2004-03-31 2005-10-06 Denso Corporation Method for manufacturing semiconductor device
US20080246086A1 (en) * 2005-07-13 2008-10-09 Ciclon Semiconductor Device Corp. Semiconductor devices having charge balanced structure
US20100187604A1 (en) * 2009-01-23 2010-07-29 Kabushiki Kaisha Toshiba Semiconductor device
CN102184859A (zh) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 冷mos超结结构的制造方法以及冷mos超结结构
CN102208414A (zh) * 2010-03-31 2011-10-05 力士科技股份有限公司 一种超结沟槽金属氧化物半导体场效应管及其制造方法
US9093522B1 (en) * 2014-02-04 2015-07-28 Maxpower Semiconductor, Inc. Vertical power MOSFET with planar channel and vertical field plate
CN106887466A (zh) * 2017-01-11 2017-06-23 南京邮电大学 一种二维类超结ldmos器件及其制备方法
CN106981519A (zh) * 2017-06-08 2017-07-25 电子科技大学 一种高雪崩耐量的超结dmos器件
US20170288047A1 (en) * 2014-10-15 2017-10-05 Wuxi China Resources Huajing Microeletronics Co., Ltd Shallow-Trench Semi-Super-Junction VDMOS Device and Manufacturing Method Therefor
CN107516678A (zh) * 2017-08-07 2017-12-26 电子科技大学 一种超结功率器件
CN109119460A (zh) * 2018-08-28 2019-01-01 电子科技大学 一种超结功率器件终端结构及其制备方法
CN109786464A (zh) * 2017-11-15 2019-05-21 英飞凌科技德累斯顿公司 具有缓冲区的半导体器件
CN110021655A (zh) * 2019-04-19 2019-07-16 西安电子科技大学 一种具有阶梯n型重掺杂埋层的半超结横向双扩散金属氧化物半导体场效应管
CN209896067U (zh) * 2019-07-31 2020-01-03 电子科技大学 一种超结功率dmos器件

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503990A (zh) * 2001-03-28 2004-06-09 通用半导体公司 具有减小导通电阻的双扩散场效应晶体管
US20050221547A1 (en) * 2004-03-31 2005-10-06 Denso Corporation Method for manufacturing semiconductor device
US20080246086A1 (en) * 2005-07-13 2008-10-09 Ciclon Semiconductor Device Corp. Semiconductor devices having charge balanced structure
US20100187604A1 (en) * 2009-01-23 2010-07-29 Kabushiki Kaisha Toshiba Semiconductor device
CN102208414A (zh) * 2010-03-31 2011-10-05 力士科技股份有限公司 一种超结沟槽金属氧化物半导体场效应管及其制造方法
CN102184859A (zh) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 冷mos超结结构的制造方法以及冷mos超结结构
US9093522B1 (en) * 2014-02-04 2015-07-28 Maxpower Semiconductor, Inc. Vertical power MOSFET with planar channel and vertical field plate
US20170288047A1 (en) * 2014-10-15 2017-10-05 Wuxi China Resources Huajing Microeletronics Co., Ltd Shallow-Trench Semi-Super-Junction VDMOS Device and Manufacturing Method Therefor
CN106887466A (zh) * 2017-01-11 2017-06-23 南京邮电大学 一种二维类超结ldmos器件及其制备方法
CN106981519A (zh) * 2017-06-08 2017-07-25 电子科技大学 一种高雪崩耐量的超结dmos器件
CN107516678A (zh) * 2017-08-07 2017-12-26 电子科技大学 一种超结功率器件
CN109786464A (zh) * 2017-11-15 2019-05-21 英飞凌科技德累斯顿公司 具有缓冲区的半导体器件
CN109119460A (zh) * 2018-08-28 2019-01-01 电子科技大学 一种超结功率器件终端结构及其制备方法
CN110021655A (zh) * 2019-04-19 2019-07-16 西安电子科技大学 一种具有阶梯n型重掺杂埋层的半超结横向双扩散金属氧化物半导体场效应管
CN209896067U (zh) * 2019-07-31 2020-01-03 电子科技大学 一种超结功率dmos器件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224164A (zh) * 2021-04-21 2021-08-06 电子科技大学 一种超结mos器件
CN113224164B (zh) * 2021-04-21 2022-03-29 电子科技大学 一种超结mos器件
CN114497184A (zh) * 2021-12-23 2022-05-13 杭州士兰微电子股份有限公司 功率半导体器件元胞结构、功率半导体器件及其制造方法
CN114497184B (zh) * 2021-12-23 2024-03-29 杭州士兰微电子股份有限公司 功率半导体器件元胞结构、功率半导体器件及其制造方法
CN114551574A (zh) * 2022-02-28 2022-05-27 电子科技大学 一种高压单粒子加固ldmos器件
CN114551574B (zh) * 2022-02-28 2023-09-15 电子科技大学 一种高压单粒子加固ldmos器件
CN114597251A (zh) * 2022-03-03 2022-06-07 电子科技大学 一种抗总剂量辐射加固的屏蔽栅vdmos
CN114597251B (zh) * 2022-03-03 2023-05-26 电子科技大学 一种抗总剂量辐射加固的屏蔽栅vdmos
CN114464671A (zh) * 2022-04-11 2022-05-10 江苏长晶浦联功率半导体有限公司 一种改善栅电容特性的超结mosfet
CN116741812A (zh) * 2023-08-11 2023-09-12 深圳天狼芯半导体有限公司 一种基于n-bal提高电流密度的超结肖特基二极管及制备方法

Similar Documents

Publication Publication Date Title
CN104299995A (zh) 半导体装置
JP5781383B2 (ja) パワー半導体デバイス
CN110459598A (zh) 一种超结mos型功率半导体器件及其制备方法
CN107331707A (zh) 具有抗单粒子效应的vdmos器件
CN110310983B (zh) 一种超结vdmos器件
CN111969063B (zh) 一种具有漏端肖特基接触的超结mosfet
CN109166923B (zh) 一种屏蔽栅mosfet
CN109449202A (zh) 一种逆导双极型晶体管
CN104103691B (zh) 具有补偿区的半导体器件
CN109713041A (zh) 一种适用于超结dmos器件的改良结构
CN109065628A (zh) 一种体区变掺杂的槽栅dmos器件
CN107170801B (zh) 一种提高雪崩耐量的屏蔽栅vdmos器件
CN105993076A (zh) 一种双向mos型器件及其制造方法
CN113394278A (zh) 逆导型igbt及其制备方法
CN104253152A (zh) 一种igbt及其制造方法
CN106981519B (zh) 一种高雪崩耐量的超结dmos器件
CN113823679A (zh) 栅控二极管整流器
CN107516679B (zh) 一种深槽超结dmos器件
CN107170827A (zh) 一种限定雪崩击穿点的屏蔽栅vdmos器件
CN104253154A (zh) 一种具有内置二极管的igbt及其制造方法
CN107546273B (zh) 一种具有抗seb能力的vdmos器件
CN109065629B (zh) 一种槽栅超结器件
CN209896067U (zh) 一种超结功率dmos器件
CN112993007A (zh) 超结结构及超结器件
CN109119489A (zh) 一种复合结构的金属氧化物半导体二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant