CN107516678A - 一种超结功率器件 - Google Patents

一种超结功率器件 Download PDF

Info

Publication number
CN107516678A
CN107516678A CN201710665519.5A CN201710665519A CN107516678A CN 107516678 A CN107516678 A CN 107516678A CN 201710665519 A CN201710665519 A CN 201710665519A CN 107516678 A CN107516678 A CN 107516678A
Authority
CN
China
Prior art keywords
type semiconductor
conductive type
post
source
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710665519.5A
Other languages
English (en)
Inventor
任敏
苏志恒
李佳驹
李泽宏
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710665519.5A priority Critical patent/CN107516678A/zh
Publication of CN107516678A publication Critical patent/CN107516678A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及功率半导体器件技术领域,具体涉及到一种超结功率器件。本发明提供的一种超结功率器件,其漂移区中的所述第二导电类型半导体柱4有第一导电类型半导体柱5有两种或两种以上的不同浓度,且相邻的第二导电类型半导体柱4和第一导电类型半导体柱5满足电荷平衡。由于不同浓度的超结柱耗尽所对应的漏源电压点不同,因而增加了米勒电容Cgd和漏源电容Cds骤降的源漏电压跨度,缓解了Cgd和Coss的骤降现象,减小电流电压的震荡。

Description

一种超结功率器件
技术领域
本发明涉及功率半导体器件技术领域,具体涉及到一种超结VDMOS器件。
背景技术
电容特性对于功率DMOS器件的开启和关断过程至关重要,会影响到器件的开关速度以及EMI(Electromagnetic Interference)特性。超结VDMOS由于与常规VDMOS的漂移区结构的不同,其电容特性也存在差异:超结VDMOS的输出电容(Coss)和米勒电容(Cgd) 曲线随着漏源电压的增加会呈现高度的非线性关系。因为单元密度较高,超结VDMOS的Coss初始值较高,且Coss和Cgd会在特定的漏源电压附近出现陡降,如图1所示,其原因是在该电压下N柱被完全耗尽,等效为Coss和Cgd的面积减小。当超结VDMOS应用到PFC或 DC/DC转换器时,电容的陡降现象可能造成电压和电流振荡,产生EMI噪声。
专利CN 104952928提供的一种栅漏电容缓变的超结功率器件,其特点是体区具有两种或两种以上不相等的宽度,相邻的体区之间具有两种或两种以上的不相等间距,将超结功率器件在开启或关断时的栅漏电容突变分摊到多个电压节点,从而降低由栅漏电容突变引起的电磁干扰。但是,超结器件Cgd陡降主要是由于PN柱的相互耗尽造成,而非相邻体区之间的 JFET区耗尽造成,因此该方案仅仅改变体区的间距,并不能很好地起到使Cgd缓变的效果。
发明内容
本发明针对上述问题,提供一种超结功率VDMOS器件,在不影响器件耐压的前提下,改善超结VDMOS的Cgd和Coss随漏源电压增加的陡降问题,改善器件的电容特性。
本发明所采用的技术方案:一种超结功率器件,如图2所示,包括从下至上依次层叠设置的金属化漏极1、第一导电类型重掺杂衬底2、第一导电类型轻掺杂外延层3和金属化源极 11;所述第一导电类型轻掺杂外延层3中具有由交替排列的第二导电类型半导体柱4和第一导电类型半导体柱5形成的超结结构;所述第二导电类型半导体柱4与金属化源极11的下表面之间具有第二导电类型半导体体区6,所述第一导电类型半导体柱5与金属化源极11的下表面之间具有第一导电类型轻掺杂JFET区13,且第二导电类型半导体体区6的横向宽度越靠近金属化源极11越大,所述第二导电类型半导体体区6上层具有相互独立并接触的第一导电类型半导体源区7和第二导电类型半导体重掺杂接触区12,且第二导电类型半导体重掺杂接触区12位于两侧的第一导电类型半导体源区7之间,第一导电类型半导体源区7和第二导电类型半导体重掺杂接触区12的上表面与金属化源极11接触;位于第一导电类型半导体源区7和与其相邻的第一导电类型轻掺杂JFET区13之间的第二导电类型半导体体区6为沟道区;在所述第一导电类型轻掺杂JFET区13上表面具有嵌入金属化源极11中的栅极结构,所述栅极结构包括栅氧层8和位于栅氧层8上表面的多晶硅栅9,所述栅极结构完全覆盖第一导电类型轻掺杂JFET区13的上表面并向两侧延伸至部分第二导电类型半导体体区6以及部分第一导电类型半导体源区7的上表面;所述栅极结构与金属化源极11之间通过介质层 10隔离;其特征在于,所述第二导电类型半导体柱4和第一导电类型半导体柱5均具有两种以上的不同浓度,且相邻的第二导电类型半导体柱4和第一导电类型半导体柱5满足电荷平衡。
本发明的有益效果为:超结VDMOS在特定得漏源电压附近,Coss和Cgd会迅速下降,可能造成电压和电流振荡。该振荡可能造成栅源极击穿、不良EMI、较大开关损耗、栅极控制失效,甚至可能造成器件故障。通过改变超结柱的浓度,使超结柱耗尽对Cgd的屏蔽电压点分散,可以缓解Coss和Cgd的突变,减小电流电压的震荡。
附图说明
图1是普通超结VDMOS的电容Cgd随Vds的变化曲线示意图;
图2是本发明的超结VDMOS的结构示意图;
图3是实施例1提出的超结VDMOS的结构示意图;
图4是实施例2提出的超结VDMOS的结构示意图;
1为金属化漏极,2为第一导电类型半导体衬底,3为第一导电类型半导体轻掺杂外延层, 4为第二导电类型半导体柱,5为第一导电类型半导体柱,6为第二导电类型半导体体区,7 为第一导电类型半导体,8为栅氧层,9为多晶硅栅电极,10为介质层,11为金属化源极, 12为第二导电类型半导体重掺杂接触区,13为第一导电类型半导体JFET区。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
一种超结功率器件,如图2所示,包括金属化漏极1、位于金属化漏极1之上的重掺杂第一导电类型半导体衬底2、位于第一导电类型半导体衬底2之上的轻掺杂第一导电类型外延层3;所述第一导电类型轻掺杂外延层3之上具有交替排列的第二导电类型半导体柱4和第一导电类型半导体柱5;所述第二导电类型半导体柱4的顶部具有第二导电类型半导体体区6;所述第二导电类型半导体体区6中具有第一导电类型半导体源区7和第二导电类型半导体重掺杂接触区12,所述第一导电类型半导体源区7与相邻的第一导电类型轻掺杂JFET 区13之间的第二导电类型半导体体区6为沟道区;栅氧层8覆盖在所述沟道区和第一导电类型JFET区13之上;多晶硅栅9覆盖在所述栅氧层8之上,介质层10包围所述多晶硅栅9和栅氧层8,实现所述多晶硅栅9和金属化源极11的电气隔离;所述第二导电类型半导体重掺杂接触区12的上表面和第一导电类型半导体源区7的部分上表面与金属化源极11直接接触。其特征在于,在一个重复单元内,所述第二导电类型半导体柱4有两种或两种以上的不同浓度(P1、P2……、Pn;n≥2),所述第一导电类型半导体柱5有两种或两种以上的不同浓度(Q1、Q2……、Qn;n≥2),且所述的第二导电类型半导体柱4与其临近的第一导电类型半导体柱5满足电荷平衡。器件具有两个及两个以上的上述重复单元。
以实施例1为例说明本发明的工作原理。
对于传统超结器件,由于耐压层中存在超结结构,所以其内部的pn结结面较大。因此,在漏源电压Vds很小时,超结VDMOS的源漏电容值较大。由于超结柱的耗尽层除了在纵向扩展外,还在横向上也扩展,所以在较小的漏源电压Vds下,整个柱区便完全耗尽,故而此时空间电荷区对米勒电容Cgd和漏源电容Cds产生屏蔽作用。由于传统的超结VDMOS,在同一个电压节点所有柱区被完全耗尽,使得出现米勒电容Cgd和漏源电容Cds陡然下降现象。
本发明引入了多个不同浓度的PN柱区,使得超结柱区分别在多个不同的源漏电压Vds 节点被完全耗尽。由于本发明中不同浓度的超结柱区在不同的源漏电压Vds下的耗尽程度不同,因而在一定的源漏电压Vds下,耗尽区对米勒电容Cgd和漏源电容Cds屏蔽面积减小,芯片总米勒电容Cgd和总漏源电容Cds减小幅度减小,从而相较传统的超结VDMOS,本发明能够增加米勒电容Cgd和漏源电容Cds骤降的源漏电压跨度,即减小米勒电容Cgd和漏源电容Cds变化的斜率。所以,通过此种方式,能够有效缓解米勒电容Cgd和漏源电容Cds陡降的现象。同时,由于所述的第二导电类型半导体柱4与其临近的第一导电类型轻掺杂区域满足电荷平衡,器件的耐压并不会受到超结柱浓度变化的影响。
实施例2
一种超结功率器件,如图2所示,包括金属化漏极1、位于金属化漏极1之上的重掺杂第一导电类型半导体衬底2、位于第一导电类型半导体衬底2之上的轻掺杂第一导电类型外延层3;所述第一导电类型轻掺杂外延层3之上具有交替排列的第二导电类型半导体柱4和第一导电类型半导体柱5;所述第二导电类型半导体柱4的顶部具有第二导电类型半导体体区6;所述第二导电类型半导体体区6中具有第一导电类型半导体源区7和第二导电类型半导体重掺杂接触区12,所述第一导电类型半导体源区7与相邻的第一导电类型轻掺杂JFET 区13之间的第二导电类型半导体体区6为沟道区;栅氧层8覆盖在所述沟道区和第一导电类型JFET区13之上;多晶硅栅9覆盖在所述栅氧层8之上,介质层10包围所述多晶硅栅9和栅氧层8,实现所述多晶硅栅9和金属化源极11的电气隔离;所述第二导电类型半导体重掺杂接触区12的上表面和第一导电类型半导体源区7的部分上表面与金属化源极11直接接触。其特征在于,所述第二导电类型半导体柱4有两种或两种以上的不同浓度(P1、P2……、Pn;n≥2),且所述第一导电类型半导体柱5有两种或两种以上的不同浓度(Q1、Q2……、 Qn;n≥2),第二导电类型半导体柱4及第一导电类型半导体柱5的排列方式为P1、Q1、 P1、Q1……P2、Q2、P2、Q2……Pn、Qn、Pn、Qn……,且所述的第二导电类型半导体柱4 与其相邻的第一导电类型半导体柱5满足电荷平衡。

Claims (3)

1.一种超结功率器件,包括从下至上依次层叠设置的金属化漏极(1)、第一导电类型重掺杂衬底(2)、第一导电类型轻掺杂外延层(3)和金属化源极(11);所述第一导电类型轻掺杂外延层(3)中具有由交替排列的第二导电类型半导体柱(4)和第一导电类型半导体柱(5)形成的超结结构;所述第二导电类型半导体柱(4)与金属化源极(11)的下表面之间具有第二导电类型半导体体区(6),所述第一导电类型半导体柱(5)与金属化源极(11)的下表面之间具有第一导电类型轻掺杂JFET区(13),且第二导电类型半导体体区(6)的横向宽度越靠近金属化源极(11)越大,所述第二导电类型半导体体区(6)上层具有相互独立并接触的第一导电类型半导体源区(7)和第二导电类型半导体重掺杂接触区(12),且第二导电类型半导体重掺杂接触区(12)位于两侧的第一导电类型半导体源区(7)之间,第一导电类型半导体源区(7)和第二导电类型半导体重掺杂接触区(12)的上表面与金属化源极(11)接触;位于第一导电类型半导体源区(7)和与其相邻的第一导电类型轻掺杂JFET区(13)之间的第二导电类型半导体体区(6)为沟道区;在所述第一导电类型轻掺杂JFET区(13)上表面具有嵌入金属化源极(11)中的栅极结构,所述栅极结构包括栅氧层(8)和位于栅氧层(8)上表面的多晶硅栅(9),所述栅极结构完全覆盖第一导电类型轻掺杂JFET区(13)的上表面并向两侧延伸至部分第二导电类型半导体体区(6)以及部分第一导电类型半导体源区(7)的上表面;所述栅极结构与金属化源极(11)之间通过介质层(10)隔离;其特征在于,所述第二导电类型半导体柱(4)和第一导电类型半导体柱(5)均具有至少两种以上的不同浓度,且相邻的第二导电类型半导体柱(4)和第一导电类型半导体柱(5)满足电荷平衡。
2.根据权利要求1所述的一种超结功率器件,其特征在于所述第一导电类型半导体为n型半导体,所述第二导电类型半导体为p型半导体;或者所述第一导电类型半导体为P型半导体,所述第二导电类型半导体为n型半导体。
3.根据权利要求1所述的一种超结功率器件,其特征在于所述栅氧层(8)的材质为氧化硅、氮化硅、氮氧化硅、氧化铅中的一种。
CN201710665519.5A 2017-08-07 2017-08-07 一种超结功率器件 Pending CN107516678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710665519.5A CN107516678A (zh) 2017-08-07 2017-08-07 一种超结功率器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710665519.5A CN107516678A (zh) 2017-08-07 2017-08-07 一种超结功率器件

Publications (1)

Publication Number Publication Date
CN107516678A true CN107516678A (zh) 2017-12-26

Family

ID=60721982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710665519.5A Pending CN107516678A (zh) 2017-08-07 2017-08-07 一种超结功率器件

Country Status (1)

Country Link
CN (1) CN107516678A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416285A (zh) * 2019-07-31 2019-11-05 电子科技大学 一种超结功率dmos器件
WO2023087685A1 (zh) * 2021-11-17 2023-05-25 苏州东微半导体股份有限公司 半导体超结功率器件
CN110416285B (zh) * 2019-07-31 2024-06-07 电子科技大学 一种超结功率dmos器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142335A (ja) * 2003-11-06 2005-06-02 Fuji Electric Holdings Co Ltd 半導体素子の製造方法
CN101013724A (zh) * 2006-01-31 2007-08-08 株式会社电装 具有超结结构的半导体器件及其制造方法
US20110233656A1 (en) * 2010-03-24 2011-09-29 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN102468337A (zh) * 2010-11-09 2012-05-23 富士电机株式会社 半导体器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142335A (ja) * 2003-11-06 2005-06-02 Fuji Electric Holdings Co Ltd 半導体素子の製造方法
CN101013724A (zh) * 2006-01-31 2007-08-08 株式会社电装 具有超结结构的半导体器件及其制造方法
US20110233656A1 (en) * 2010-03-24 2011-09-29 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN102468337A (zh) * 2010-11-09 2012-05-23 富士电机株式会社 半导体器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416285A (zh) * 2019-07-31 2019-11-05 电子科技大学 一种超结功率dmos器件
CN110416285B (zh) * 2019-07-31 2024-06-07 电子科技大学 一种超结功率dmos器件
WO2023087685A1 (zh) * 2021-11-17 2023-05-25 苏州东微半导体股份有限公司 半导体超结功率器件

Similar Documents

Publication Publication Date Title
CN102751329B (zh) 半导体装置
US10937870B2 (en) Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using body region extensions
CN104201206B (zh) 一种横向soi功率ldmos器件
CN103715238B (zh) 一种超低比导通电阻的横向高压器件
CN109119468B (zh) 一种屏蔽栅dmos器件
US20120168856A1 (en) Trench-type semiconductor power devices
CN108198851A (zh) 一种具有增强载流子存储效应的超结igbt
CN113130627B (zh) 一种集成沟道二极管的碳化硅鳍状栅mosfet
CN101091258A (zh) 具有减小的密勒电容的mos栅控晶体管
CN104299995A (zh) 半导体装置
CN107464837A (zh) 一种超结功率器件
CN112802906B (zh) 带浮栅的分离栅平面型mosfet器件
US20050116284A1 (en) Semiconductor devices
US8264015B2 (en) Semiconductor device wherein a first insulated gate field effect transistor is connected in series with a second field effect transistor
CN108682688B (zh) 一种具有三维沟道的复合栅igbt芯片
CN104835836B (zh) 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管
CN109166923B (zh) 一种屏蔽栅mosfet
CN106057868A (zh) 一种纵向超结增强型mis hemt器件
CN107564965A (zh) 一种横向双扩散mos器件
CN111725321B (zh) 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法
CN212659542U (zh) 一种具有掩埋导电介质沟道区分裂栅结构的半导体功率器件
CN107546274A (zh) 一种具有阶梯型沟槽的ldmos器件
CN107516678A (zh) 一种超结功率器件
CN109065629A (zh) 一种槽栅超结器件
CN108767013A (zh) 一种具有部分埋层的sj-ldmos器件

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171226