CN111725321B - 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法 - Google Patents

一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法 Download PDF

Info

Publication number
CN111725321B
CN111725321B CN202010699364.9A CN202010699364A CN111725321B CN 111725321 B CN111725321 B CN 111725321B CN 202010699364 A CN202010699364 A CN 202010699364A CN 111725321 B CN111725321 B CN 111725321B
Authority
CN
China
Prior art keywords
layer
region
schottky
drain
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010699364.9A
Other languages
English (en)
Other versions
CN111725321A (zh
Inventor
段宝兴
王彦东
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010699364.9A priority Critical patent/CN111725321B/zh
Publication of CN111725321A publication Critical patent/CN111725321A/zh
Application granted granted Critical
Publication of CN111725321B publication Critical patent/CN111725321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法。该器件中设置积累介质层,覆盖P型基区与N+漏区之间的区域;设置硅材料的外延层覆盖所述积累介质层;肖特基栅极和肖特基漏极,分别位于外延层的左端侧面、右端侧面;欧姆栅极与肖特基栅极通过导线连接,整体作为器件的栅极;欧姆漏极与肖特基栅极通过导线连接,整体作为器件的漏极。肖特基积累层用于引入高浓度电子,使得导通不依赖掺杂浓度,大幅度降低器件的导通电阻;同时通过缓冲层调制漂移区的电场,使电场分布更均匀,可大幅度提高器件的击穿电压。

Description

一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及 其制作方法
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种横向双扩散金属氧化物半导体场效应管。
背景技术
横向双扩散金属氧化物半导体场效应管(Lateral Double-diffused MOSFET,简称LDMOS)作为压控型多子导电器件,且源、栅、漏三个电极均位于器件表面,具有易驱动、易集成、频率好等优点,得到了广泛的应用。
LDMOS在横向上的耐压主要由轻掺杂的漂移区承担,为了实现更高的耐压,需降低漂移区的掺杂浓度或增加漂移区的横向长度。LDMOS导通时,漂移区电阻由漂移区掺杂浓度直接决定,故降低漂移区掺杂浓度会增加器件的导通电阻,而增加漂移区横向长度则会增加LDMOS器件所占用的芯片面积,两者均会导致比导通电阻的大幅度增加。因此,进行器件结构的优化设计,在提高器件耐压的同时,降低器件的比导通电阻,进而实现耐压与比导通电阻特性的良好折中,成为LDMOS器件研究的热点问题。
普通横向双扩散场效应晶体管中击穿电压和比导通电阻二者呈现矛盾关系,这是由于高的击穿电压需要低的掺杂浓度,而低的掺杂浓度会导致高的导通电阻。
发明内容
本发明提出了一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,可获得更好的击穿电压与比导通电阻关系,大幅度提高器件的击穿电压并且降低导通电阻。
本发明的技术方案如下:
一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,包括:
P型硅衬底,P型硅衬底的背面设置有衬底电极;
在P型硅衬底上部左端区域形成的P型基区,在P型基区中形成相应的沟道以及N+源区和P+源区;
在P型硅衬底上部右端区域形成的N型缓冲层,所述N型缓冲层与P型基区存在间隔;N型缓冲层的上部右端区域形成N+漏区;
源极,位于P+源区与N+源区上方;
栅极介质层,覆盖N+源区右侧的沟道表面区域;
欧姆栅极,覆盖所述栅极介质层;
欧姆漏极,位于N+漏区表面;
积累介质层,覆盖P型基区与N+漏区之间的区域;
外延层,覆盖所述积累介质层;
肖特基栅极和肖特基漏极,分别位于外延层的上表面左端区域、右端区域;
所述欧姆栅极与肖特基栅极通过导线连接,整体作为器件的栅极;
所述欧姆漏极与肖特基栅极通过导线连接,整体作为器件的漏极。
所述外延层中靠近肖特基漏极的区域通过离子注入形成N+区,所述N+区与肖特基漏极保持间距,积累介质层高于欧姆栅极和欧姆漏极。
上述外延层可以为N型,也可以为P型,可以轻掺杂或者不掺杂,其浓度低于N+区的掺杂浓度。外延层的材料可以是硅材料或多晶硅。
可选地,所述P型硅衬底的掺杂浓度为1×1014cm-3~1×1015cm-3,所述N型缓冲层的掺杂浓度为5×1014cm-3~5×1015cm-3
可选地,所述N型缓冲层的长度为整个器件的1/2~1/3,深度为3-20微米。
可选地,所述积累介质层的材料为二氧化硅或高K材料。
可选地,所述积累介质层的厚度为0.05-0.2微米。
可选地,所述外延层的掺杂浓度为1×1014cm-3~1×1015cm-3,厚度为1~3微米。
可选地,所述肖特基栅极和肖特基漏极的接触势垒均为0.5-1eV(这两个接触势垒可以不相等)。
可选地,所述N+区与肖特基漏极之间的距离为0.5-2μm,N+区的左端不超出N型缓冲层左侧边界。
可选地,所述N+区的掺杂浓度为1×1017cm-3~1×1019cm-3
上述硅基肖特基积累层和缓冲层横向双扩散场效应晶体管的一种制作方法,包括以下步骤:
1)取P型硅衬底,并形成衬底电极;
2)通过离子注入和扩散形成P型基区、N+源区和P+源区,通过离子注入和扩散形成N型缓冲层和N+漏区;
3)另选取1-3微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺与P型硅衬底以及N型缓冲层相连接;在外延层上通过离子注入形成N+区;
4)在沟道上方形成栅介质层,并淀积金属形成欧姆栅极;在N+源区和P+源区上方淀积金属形成源极;在N+漏区上方淀积金属形成欧姆漏极;
5)外延层上方两侧分别淀积金属,形成肖特基栅极和肖特基漏极;
6)将欧姆栅极与肖特基栅极相连,形成栅极;将欧姆漏极与肖特基漏极相连,形成漏极;
7)在器件表面形成钝化层。
本发明技术方案的有益效果如下:
从矛盾源头出发,提出将耐压区域与导通区域分离的思想,通过消除导通电阻对掺杂浓度的依赖关系,可获得更好的击穿电压与比导通电阻关系,大幅度提高器件的击穿电压并且降低导通电阻。
通过缓冲层调制漂移区的电场,使电场分布更均匀,提高器件的击穿电压;同时通过肖特基积累层结构产生的电子可调制电导率,消除了导通对掺杂浓度的依赖关系,可大幅度降低器件的比导通电阻。新结构突破了横向器件中弱化表面电场(Reduced SurfaceField,简称RESURF)条件的限制,从而可通过降低栅极和漏极之间的掺杂浓度而大幅度提高器件的击穿电压。
由于在器件开启时,会在氧化层下方形成电子,但同时会在氧化层上方形成等量的空穴,设置N+区可阻断氧化层上方外延层中的空穴电流。
附图说明
图1为本发明的一个实施例的结构示意图。
图2是本发明的工作原理示意图。
图3是本发明实施例与普通LDMOS的击穿电压的对照示意图。
图4是本发明实施例与普通LDMOS的比导通电阻的对照示意图。
附图标号说明:
1-P型硅衬底;2-P型基区;3-P+源区;4-源极;5-N+源区;6-栅介质层;7-欧姆栅极;8-肖特基栅极;9-积累介质层;10-外延层;11-N+区;12-肖特基漏极;13-欧姆漏极;14-N+漏区;15-N型缓冲层;16-衬底电极。
具体实施方式
以下结合附图,通过实施例进一步详述本发明。
如图1所示,该硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,主要包括:
P型硅衬底1;掺杂浓度典型值为1×1014cm-3~1×1015cm-3
P型硅衬底背面形成的衬底电极16;
在P型衬底上形成的P型基区2,基区的浓度由阈值电压决定,基区中形成相应的沟道以及N+源区5和P+源区3;
在P型衬底上形成的N型缓冲层15以及N+漏区14,缓冲层的掺杂浓度及深度由器件的耐压决定;掺杂浓度的典型值为5×1014cm-3~5×1015cm-3;N型缓冲层的长度为整个器件的1/2~1/3,深度为3-20微米;
在P+源区与N+源区的表面形成的源极;
在沟道上方形成的栅极介质层;
在P型基区与N+漏区之间形成的积累介质层,介质层的厚度由工艺决定,厚度越小导通电阻越低,厚度典型值为0.05-0.2微米;介质层材料可选择二氧化硅或高K材料;
在积累介质层上方形成的外延层10,外延层的厚度在1~3微米,掺杂浓度为1×1014cm-3~1×1015cm-3
在外延层中靠近漏端通过离子注入形成N+区域11;N+区与肖特基漏极之间的距离为0.5-2μm,N+区的掺杂浓度为1×1017cm-3~1×1019cm-3
肖特基栅极8和肖特基漏极12,分别位于外延层左、右两端侧面;肖特基栅极8和肖特基漏极12的接触势垒均为0.5-1eV;
欧姆栅极7,覆盖栅极氧化层;
欧姆漏极13,位于漏区上方;
欧姆栅极7与肖特基栅极8相连,作为器件的栅极;
欧姆漏极13与肖特基漏极12相连,作为器件的漏极。
如图2所示,该器件通过肖特基积累层结构引入高浓度电子可调制电导率,消除了导通对掺杂浓度的依赖关系,可大幅度降低器件的比导通电阻;缓冲层用于调制漂移区的电场,使电场分布更均匀,从而提高器件的击穿电压。新结构突破了横向器件中弱化表面电场(Reduced Surface Field,简称RESURF)条件的限制,从而可通过降低浓度而大幅度提高器件的击穿电压。
该器件可按照以下步骤制备:
1)取P型硅衬底,并形成衬底电极;
2)通过离子注入和扩散形成P型基区、N+源区和P+源区,通过离子注入和扩散形成N型缓冲层和N+漏区;
3)另选取1-3微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺与P型硅衬底以及N型缓冲层相连接;在外延层上通过离子注入形成N+区;
4)在沟道上方形成栅介质层,并淀积金属形成欧姆栅极;在N+源区和P+源区上方淀积金属形成源极;在N+漏区上方淀积金属形成欧姆漏极;
5)外延层左右两侧分别电淀积金属,形成肖特基栅极和肖特基漏极;
6)将欧姆栅极与肖特基栅极相连,形成栅极;将欧姆漏极与肖特基漏极相连,形成漏极;
7)在器件表面形成钝化层。
经仿真试验,对于N沟道LDMOS,当漂移区长度为20μm时:如图3所示,普通LDMOS的击穿电压仅为230V左右,而本实施例可以将器件的击穿电压提高到460V,提高了98%;如图4所示,普通LDMOS的比导通电阻为30mΩ.cm2左右,而本实施例的比导通电阻降低到5mΩ.cm2,下降了83%。
当然,本发明中的LDMOS也可以为P沟道,其结构与N沟道LDMOS等同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (10)

1.一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于,包括:
P型硅衬底(1),P型硅衬底的背面设置有衬底电极(16);
在P型硅衬底上部左端区域形成的P型基区(2),在P型基区中形成相应的沟道以及N+源区(5)和P+源区(3);
在P型硅衬底上部右端区域形成的N型缓冲层(15),所述N型缓冲层(15)与P型基区(2)存在间隔;N型缓冲层(15)的上部右端区域形成N+漏区(14);
源极(4),位于P+源区与N+源区上方;
栅极介质层(6),覆盖N+源区(5)右侧的沟道表面区域;
欧姆栅极(7),覆盖所述栅极介质层(6);
欧姆漏极(13),位于N+漏区(14)表面;
积累介质层(9),覆盖P型基区(2)与N+漏区(14)之间的区域;
外延层(10),覆盖所述积累介质层(9);
肖特基栅极(8)和肖特基漏极(12),分别位于外延层(10)的上表面左端区域、右端区域;
所述欧姆栅极(7)与肖特基栅极(8)通过导线连接,整体作为器件的栅极;
所述欧姆漏极(13)与肖特基漏极(12)通过导线连接,整体作为器件的漏极;
所述外延层(10)中靠近肖特基漏极(12)的区域通过离子注入形成N+区(11),所述N+区(11)与肖特基漏极(12)保持间距,积累介质层(9)高于欧姆栅极(7)和欧姆漏极(13)。
2.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述P型硅衬底(1)的掺杂浓度为1×1014cm-3~1×1015cm-3,所述N型缓冲层(15)的掺杂浓度为5×1014cm-3~5×1015cm-3
3.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述N型缓冲层(15)的长度为整个器件的1/2~1/3, 深度为3-20微米。
4.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述积累介质层(9)的材料为二氧化硅或高K材料。
5.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述积累介质层(9)的厚度为0.05-0.2微米。
6.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述外延层(10)的掺杂浓度为1×1014cm-3~1×1015cm-3,厚度为1~3微米。
7.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述肖特基栅极(8)和肖特基漏极(12)的接触势垒均为0.5-1eV。
8.根据权利要求1所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述N+区(11)与肖特基漏极(12)之间的距离为0.5-2μm,N+区(11)的左端不超出N型缓冲层(15)左侧边界。
9.根据权利要求6所述的硅基肖特基积累层和缓冲层横向双扩散场效应晶体管,其特征在于:所述N+区(11)的掺杂浓度为1×1017cm-3~1×1019cm-3
10.权利要求1所述硅基肖特基积累层和缓冲层横向双扩散场效应晶体管的制作方法,其特征在于,包括以下步骤:
1)取P型硅衬底,并形成衬底电极;
2)通过离子注入和扩散形成P型基区、N+源区和P+源区,通过离子注入和扩散形成N型缓冲层和N+漏区;
3)另选取1-3微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺与P型硅衬底以及N型缓冲层相连接;在外延层上通过离子注入形成N+区;
4)在沟道上方形成栅介质层,并淀积金属形成欧姆栅极;在N+源区和P+源区上方淀积金属形成源极;在N+漏区上方淀积金属形成欧姆漏极;
5)外延层上方两侧分别淀积金属,形成肖特基栅极和肖特基漏极;
6)将欧姆栅极与肖特基栅极相连,形成栅极;将欧姆漏极与肖特基漏极相连,形成漏极;
7)在器件表面形成钝化层。
CN202010699364.9A 2020-07-20 2020-07-20 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法 Active CN111725321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010699364.9A CN111725321B (zh) 2020-07-20 2020-07-20 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010699364.9A CN111725321B (zh) 2020-07-20 2020-07-20 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法

Publications (2)

Publication Number Publication Date
CN111725321A CN111725321A (zh) 2020-09-29
CN111725321B true CN111725321B (zh) 2021-06-18

Family

ID=72572891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010699364.9A Active CN111725321B (zh) 2020-07-20 2020-07-20 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法

Country Status (1)

Country Link
CN (1) CN111725321B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270477A (zh) * 2021-04-08 2021-08-17 西安电子科技大学 一种降低主结体电场的积累场效应晶体管及其制作方法
CN116779688A (zh) * 2023-07-28 2023-09-19 合肥安芯睿创半导体有限公司 一种具有结型p+保护的沟槽结构的碳化硅肖特基二极管及制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062788B2 (en) * 2008-07-30 2018-08-28 Maxpower Semiconductor Inc. Semiconductor on insulator devices containing permanent charge
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN104201206B (zh) * 2014-08-29 2016-09-21 电子科技大学 一种横向soi功率ldmos器件
US20160260704A1 (en) * 2015-03-04 2016-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. High Voltage Device with a Parallel Resistor
JP6509665B2 (ja) * 2015-07-23 2019-05-08 ルネサスエレクトロニクス株式会社 半導体装置
WO2017114235A1 (zh) * 2015-12-28 2017-07-06 电子科技大学 横向绝缘栅双极型晶体管以及消除晶体管拖尾电流的方法
US9799764B2 (en) * 2015-12-31 2017-10-24 Sk Hynix System Ic Inc. Lateral power integrated devices having low on-resistance
CN107680996A (zh) * 2017-09-14 2018-02-09 电子科技大学 横向功率器件

Also Published As

Publication number Publication date
CN111725321A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
US10157983B2 (en) Vertical power MOS-gated device with high dopant concentration N-well below P-well and with floating P-islands
US9093522B1 (en) Vertical power MOSFET with planar channel and vertical field plate
US9842917B2 (en) Methods of operating power semiconductor devices and structures
US9318547B2 (en) Wide bandgap insulated gate semiconductor device
US9461127B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
JP3964819B2 (ja) 絶縁ゲート型半導体装置
US20080303088A1 (en) Lateral dmos device structure and fabrication method therefor
JP2004537162A (ja) パワーデバイスとその製造方法
JP2005510059A (ja) 電界効果トランジスタ半導体デバイス
US11316021B2 (en) High density power device with selectively shielded recessed field plate
CN111725071B (zh) 一种硅基结型积累层和缓冲层横向双扩散场效应晶体管及其制作方法
CN112802906B (zh) 带浮栅的分离栅平面型mosfet器件
WO2019157819A1 (zh) 一种具有三维沟道的复合栅igbt芯片
CN111725321B (zh) 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法
KR20000029577A (ko) 선형전류-전압특성을가지는반도체부품
CN117766566A (zh) 集成高k介质三沟槽型碳化硅纵向功率器件及制备方法
WO2018034818A1 (en) Power mosfet having planar channel, vertical current path, and top drain electrode
US10355132B2 (en) Power MOSFETs with superior high frequency figure-of-merit
CN111755524B (zh) 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法
JP7505523B2 (ja) 半導体装置
US11610987B2 (en) NPNP layered MOS-gated trench device having lowered operating voltage
KR100763310B1 (ko) 전력 반도체 소자
TW202329459A (zh) 具有降低的操作電壓之NPNP分層的金氧半閘控(MOS-gated)溝槽裝置
CN118538607A (zh) 半导体结构元件和用于制造半导体结构元件的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant