CN111755524B - 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 - Google Patents
一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 Download PDFInfo
- Publication number
- CN111755524B CN111755524B CN202010698250.2A CN202010698250A CN111755524B CN 111755524 B CN111755524 B CN 111755524B CN 202010698250 A CN202010698250 A CN 202010698250A CN 111755524 B CN111755524 B CN 111755524B
- Authority
- CN
- China
- Prior art keywords
- region
- schottky
- layer
- drain
- accumulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009825 accumulation Methods 0.000 title claims abstract description 47
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 238000002353 field-effect transistor method Methods 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 24
- 230000005669 field effect Effects 0.000 claims abstract description 22
- 238000005468 ion implantation Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 29
- 238000000151 deposition Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 230000005684 electric field Effects 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66681—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开一种肖特基积累层碳化硅横向场效应晶体管及其制作方法。该器件的特点在于:设置积累介质层,覆盖N型漂移区表面以及N+漏区表面左端区域,相应分别与欧姆栅极、欧姆漏极相接,积累介质层高于欧姆栅极和欧姆漏极;在积累介质层上形成碳化硅材料的外延层,并在外延层表面的左端和右端分别形成肖特基栅极和肖特基漏极,相应分别与欧姆栅极和欧姆漏极连接;所述外延层中在肖特基漏极下方区域的左侧通过离子注入形成N+区,N+区的左端不超出N+漏区左端对应的边界。本发明可以在漂移区中产生浓度较高的电子,大幅度降低器件的导通电阻;器件关断时,通过场板的作用能够有效降低栅极边缘的电场峰值,从而提高器件的击穿电压。
Description
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种横向金属氧化物半导体场效应管。
背景技术
功率金属-氧化物-半导体场效应管(MOSFET)具有高输入阻抗、低驱动功率、高开关速度、优越的频率特性以及很好的热稳定性等特点,自最初诞生以来得到了迅速发展。如今功率MOSFET广泛应用于开关电源、汽车电子、马达驱动、工业控制、电机调速、音频放大、高频振荡器、不间断电源、节能灯、逆变器等各种领域。为了减小器件的导通电阻,利用在硅片上进行沟槽刻蚀的技术,发展出了沟槽式栅极结构的功率MOSFET,其栅极沟槽深入硅片内部,利用积累电子大幅度减小了器件的导通电阻。
近年来由于碳化硅功率器件可以有效实现电力电子系统的高效率、小型化和轻量化得到了广泛的应用和发展。目前,碳化硅材料应用于横向场效应晶体管,主要是器件的衬底和缓冲层等采用碳化硅材料,利用其宽禁带特性一定程度上提高了器件的耐压。然而对于横向器件,漂移区的掺杂浓度受到弱化表面电场(Reduced Surface Field,简称RESURF)条件的限制,无法简单地通过增大掺杂浓度来获得较低的电阻。
发明内容
本发明提出了一种肖特基积累层碳化硅横向场效应晶体管,能够进一步提高器件的击穿电压、同时降低比导通电阻。
本发明的技术方案如下:
一种肖特基积累层碳化硅横向场效应晶体管,包括:
碳化硅材料的P型衬底,P型衬底的背面设置有衬底电极;
在P型衬底上分别形成的P型屏蔽层和N型漂移区,所述P型屏蔽层与N型漂移区相接;
在屏蔽层上分别形成的P型基区、P+源区和N+源区;其中P型基区与N型漂移区邻接,P+源区位于远离N型漂移区的一端,N+源区左、右两侧分别与P+源区、P型基区邻接;
在N型漂移区上的右端区域形成的N+漏区;
栅极介质层,覆盖P型基区表面;
源极,位于P+源区和N+源区表面;
欧姆栅极,覆盖栅极介质层表面;
欧姆漏极,位于N+漏区表面右端区域;
其特殊之处在于,还包括:
积累介质层,覆盖N型漂移区表面以及N+漏区表面左端区域,所述积累介质层的左、右两侧分别与欧姆栅极、欧姆漏极相接,积累介质层高于欧姆栅极和欧姆漏极;
碳化硅材料的外延层,覆盖所述积累介质层;
肖特基栅极和肖特基漏极,分别位于所述外延层表面的左端和右端;
所述欧姆栅极与肖特基栅极通过导线连接,整体作为器件的栅极;
所述欧姆漏极与肖特基漏极通过导线连接,整体作为器件的漏极;
所述外延层中在肖特基漏极下方区域的左侧通过离子注入形成N+区;所述N+区的左端不超出N+漏区左端对应的边界。
本发明中,P型衬底、P型屏蔽层、N型漂移区、P型基区、P+源区、N+源区、N+漏区、外延层以及N+区均可采用碳化硅材料。
外延层可以为N型,也可以为P型,可以轻掺杂或者不掺杂,其浓度低于N+区的掺杂浓度。
可选地,所述碳化硅材料的P型衬底的掺杂浓度为1×1015cm-3~1×1016cm-3,所述N型漂移区的掺杂浓度为3×1016cm-3~8×1016cm-3,所述P型屏蔽层的掺杂浓度6×1016cm-3~6×1017cm-3,所述P型基区的掺杂浓度5×1015cm-3~5×1016cm-3。
可选地,所述N型漂移区的厚度为1~4微米。
可选地,所述积累介质层的材料为二氧化硅或氮化铝。
可选地,所述积累介质层的厚度为0.05-0.2微米。
可选地,所述外延层的厚度为1~2微米。
可选地,所述外延层的掺杂浓度1×1015cm-3~1×1016cm-3。
可选地,位于外延层中的所述N+区的掺杂浓度为1×1017cm-3~1×1018cm-3。
可选地,所述肖特基栅极和肖特基漏极的接触势垒均为0.9-1.5eV(这两个接触势垒可不相等)。
上述的肖特基积累层碳化硅横向场效应晶体管的制作方法,包括以下步骤:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1~2微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺将积累氧化层与N型漂移区相连接,在外延层中对应于N+漏区左端的区域通过离子注入形成N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成欧姆栅极,在未被积累介质层覆盖的N+漏区上方淀积金属,形成欧姆漏极,在P+源区和N+源区上方淀积金属形成源极;
5)在外延层上方左、右两端分别淀积金属,形成肖特基栅极并与欧姆栅极相连、形成肖特基漏极并与欧姆漏极相连;
6)在器件表面形成钝化层。
本发明技术方案的有益效果如下:
本发明通过肖特基积累层结构,在漂移区中引入电子,弱化了导通对掺杂浓度的依赖关系,大幅度降低器件的导通电阻;此外,积累层可充当场板,在器件关断时有效地降低栅极边缘的电场峰值,从而提高器件的击穿电压。
由于在器件开启时,会在氧化层下方形成电子,但同时会在氧化层上方形成等量的空穴,设置N+区域可阻断氧化层上方外延层中的空穴电流。
附图说明
图1是本发明的一个实施例的结构示意图。
图2是本发明的工作原理示意图。
图3是本发明实施例与普通LDMOS的击穿电压的对照示意图。
图4是本发明实施例与普通LDMOS的比导通电阻的对照示意图。
附图标号说明:
1-P型衬底;2-P型屏蔽层;3-P型基区;4-P+源区;5-源极;6-N+源区;7-欧姆栅极;8-栅介质层;9-肖特基栅极;10-积累介质层;11-外延层;12-N+区;13-肖特基漏极;14-欧姆漏极;15-N+漏区;16-N型漂移区;17-衬底电极。
具体实施方式
以下结合附图,通过实施例进一步详述本发明。
如图1所示,一种肖特基积累层碳化硅横向场效应晶体管,主要包括:
碳化硅材料的P型衬底1,掺杂浓度为1×1015cm-3~1×1016cm-3;
P型衬底背面形成的衬底电极17;
在P型衬底上形成的P型屏蔽层2,在屏蔽层上方形成N+源区6、P+源区4和P型基区3,基区的浓度由阈值电压决定;P型屏蔽层2的掺杂浓度6×1016cm-3~6×1017cm-3,P型基区(3)的掺杂浓度5×1015cm-3~5×1016cm-3;
在P型衬底上形成的N型漂移区16以及N+漏区15;N型漂移区的深度为1~4微米,掺杂浓度为3×1016cm-3~8×1016cm-3;
在沟道上方形成的栅极介质层;
在P型基区与N+漏区之间形成的积累介质层10,积累介质层的厚度由工艺决定,厚度越小导通电阻越低;积累介质层选择与碳化硅材料具有良好界面特性的介质材料,如二氧化硅、氮化铝等;积累介质层的厚度为0.05-0.2微米;
在积累介质层上方形成的外延层11,外延层的厚度在1~2微米,掺杂浓度1×1015cm-3~1×1016cm-3;
在外延层上通过离子注入形成的N+区12,N+区12的掺杂浓度为1×1017cm-3~1×1018cm-3;
源极,位于P+源区和N+源区的表面;
欧姆栅极7,覆盖栅极氧化层;
欧姆漏极14,位于N+漏区上方未被积累层介质覆盖的区域;
位于外延层11表面左端的肖特基栅极9,通过导线与欧姆栅极7相连;
位于外延层11表面右端的肖特基漏极13,通过导线与欧姆漏极14相连;
肖特基栅极9和肖特基漏极13的接触势垒均为0.9-1.5eV。
该器件可按照以下步骤制备:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1~2微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺将积累氧化层与N型漂移区相连接,在外延层中对应于N+漏区左端的区域通过离子注入形成N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成欧姆栅极,在未被积累介质层覆盖的N+漏区上方淀积金属,形成欧姆漏极,在P+源区和N+源区上方淀积金属形成源极;
5)在外延层上方左、右两端分别淀积金属,形成肖特基栅极并与欧姆栅极相连、形成肖特基漏极并与欧姆漏极相连;
6)在器件表面形成钝化层。
如图2所示,器件导通时,通过肖特基积累层结构(主要涉及肖特基栅极9、积累介质层10、外延层11、肖特基漏极13以及N+区12等),可以在漂移区中产生浓度较高的电子,可大幅度降低器件的导通电阻;器件关断时,肖特基积累层可起到场板的作用,有效地降低栅极边缘的电场峰值,从而提高器件的击穿电压。
经仿真试验,对于N沟道横向碳化硅场效应晶体管,当漂移区长度为6μm时,如图3所示,常规碳化硅晶体管的击穿电压为1000V左右,而本发明的击穿电压可提高到1300V左右,提高了30%;如图4所示,常规碳化硅晶体管的比导通电阻为14mΩ.cm2左右,而本发明可以将器件的比导通电阻降低到5.2mΩ.cm2,下降了63%。
当然,本发明中的肖特基积累层碳化硅横向场效应晶体管也可以为P沟道,其结构与N沟道肖特基积累层碳化硅横向场效应晶体管等同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。
Claims (10)
1.一种肖特基积累层碳化硅横向场效应晶体管,包括:
碳化硅材料的P型衬底(1),P型衬底(1)的背面设置有衬底电极(17);
在P型衬底上分别形成的P型屏蔽层(2)和N型漂移区(16),所述P型屏蔽层(2)与N型漂移区(16)相接;
在屏蔽层上分别形成的P型基区(3)、P+源区(4)和N+源区(6);其中P型基区(3)与N型漂移区(16)邻接,P+源区(4)位于远离N型漂移区(16)的一端,N+源区(6)左、右两侧分别与P+源区(4)、P型基区(3)邻接;
在N型漂移区(16)上的右端区域形成的N+漏区(15);
栅极介质层(8),覆盖P型基区(3)表面;
源极(5),位于P+源区(4)和N+源区(6)表面;
欧姆栅极(7),覆盖栅极介质层(8)表面;
欧姆漏极(14),位于N+漏区(15)表面右端区域;
其特征在于,还包括:
积累介质层(10),覆盖N型漂移区(16)表面以及N+漏区(15)表面左端区域,所述积累介质层(10)的左、右两侧分别与欧姆栅极(7)、欧姆漏极(14)相接,积累介质层(10)高于欧姆栅极(7)和欧姆漏极(14);
碳化硅材料的外延层(11),覆盖所述积累介质层(10);
肖特基栅极(9)和肖特基漏极(13),分别位于所述外延层(11)表面的左端和右端;
所述欧姆栅极(7)与肖特基栅极(9)通过导线连接,整体作为器件的栅极;
所述欧姆漏极(14 )与肖特基漏极(13)通过导线连接,整体作为器件的漏极;
所述外延层(11)中在肖特基漏极(13)下方区域的左侧通过离子注入形成N+区(12);所述N+区(12)的左端不超出N+漏区(15)左端对应的边界。
2.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述碳化硅材料的P型衬底(1)的掺杂浓度为1×1015cm-3~1×1016cm-3,所述N型漂移区(16)的掺杂浓度为3×1016cm-3~8×1016cm-3,所述P型屏蔽层(2)的掺杂浓度6×1016cm-3~6×1017cm-3,所述P型基区(3)的掺杂浓度5×1015cm-3~5×1016cm-3。
3.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述N型漂移区(16)的厚度为1~4微米。
4.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述积累介质层(10)的材料为二氧化硅或氮化铝。
5.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述积累介质层(10)的厚度为0.05-0.2微米。
6.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述外延层(11)的厚度为1~2微米。
7.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述外延层(11)的掺杂浓度1×1015cm-3~1×1016cm-3。
8.根据权利要求1所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:位于外延层(11)中的所述N+区(12)的掺杂浓度为1×1017cm-3~1×1018cm-3。
9.根据权利要求1或8所述的肖特基积累层碳化硅横向场效应晶体管,其特征在于:所述肖特基栅极(9)和肖特基漏极(13)的接触势垒均为0.9-1.5eV。
10.权利要求1所述的肖特基积累层碳化硅横向场效应晶体管的制作方法,其特征在于,包括以下步骤:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1~2微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺将积累氧化层与N型漂移区相连接,在外延层中对应于N+漏区左端的区域通过离子注入形成N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成欧姆栅极,在未被积累介质层覆盖的N+漏区上方淀积金属,形成欧姆漏极,在P+源区和N+源区上方淀积金属形成源极;
5)在外延层上方左、右两端分别淀积金属,形成肖特基栅极并与欧姆栅极相连、形成肖特基漏极并与欧姆漏极相连;
6)在器件表面形成钝化层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010698250.2A CN111755524B (zh) | 2020-07-20 | 2020-07-20 | 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010698250.2A CN111755524B (zh) | 2020-07-20 | 2020-07-20 | 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111755524A CN111755524A (zh) | 2020-10-09 |
CN111755524B true CN111755524B (zh) | 2022-06-07 |
Family
ID=72711517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010698250.2A Active CN111755524B (zh) | 2020-07-20 | 2020-07-20 | 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111755524B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113707708B (zh) * | 2021-07-26 | 2023-03-14 | 西安电子科技大学 | 结型积累层增强型AlGaN/GaN高电子迁移率晶体管及其制作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4902635A (en) * | 1987-12-18 | 1990-02-20 | The Agency Of Industrial Science And Technology | Method for production of compound semicondutor devices |
CN1231770A (zh) * | 1996-07-26 | 1999-10-13 | 艾利森电话股份有限公司 | 高压半导体元件 |
JP2010278137A (ja) * | 2009-05-27 | 2010-12-09 | Sharp Corp | 半導体装置 |
CN104183646A (zh) * | 2014-08-29 | 2014-12-03 | 电子科技大学 | 一种具有延伸栅结构的soi ldmos器件 |
CN107170671A (zh) * | 2017-06-22 | 2017-09-15 | 广东省半导体产业技术研究院 | 一种基于离子注入的GaN功率器件及其制造方法 |
CN110299407A (zh) * | 2019-06-29 | 2019-10-01 | 厦门市三安集成电路有限公司 | 功率器件及其制备方法 |
CN110544722A (zh) * | 2019-08-14 | 2019-12-06 | 西安电子科技大学 | 一种栅控双极-场效应复合氮化镓横向双扩散金属氧化物半导体晶体管 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130004707A (ko) * | 2011-07-04 | 2013-01-14 | 삼성전기주식회사 | 질화물 반도체 소자, 질화물 반도체 소자의 제조방법 및 질화물 반도체 파워소자 |
CN110337725B (zh) * | 2017-02-24 | 2022-08-05 | 三菱电机株式会社 | 碳化硅半导体装置以及电力变换装置 |
-
2020
- 2020-07-20 CN CN202010698250.2A patent/CN111755524B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4902635A (en) * | 1987-12-18 | 1990-02-20 | The Agency Of Industrial Science And Technology | Method for production of compound semicondutor devices |
CN1231770A (zh) * | 1996-07-26 | 1999-10-13 | 艾利森电话股份有限公司 | 高压半导体元件 |
JP2010278137A (ja) * | 2009-05-27 | 2010-12-09 | Sharp Corp | 半導体装置 |
CN104183646A (zh) * | 2014-08-29 | 2014-12-03 | 电子科技大学 | 一种具有延伸栅结构的soi ldmos器件 |
CN107170671A (zh) * | 2017-06-22 | 2017-09-15 | 广东省半导体产业技术研究院 | 一种基于离子注入的GaN功率器件及其制造方法 |
CN110299407A (zh) * | 2019-06-29 | 2019-10-01 | 厦门市三安集成电路有限公司 | 功率器件及其制备方法 |
CN110544722A (zh) * | 2019-08-14 | 2019-12-06 | 西安电子科技大学 | 一种栅控双极-场效应复合氮化镓横向双扩散金属氧化物半导体晶体管 |
Also Published As
Publication number | Publication date |
---|---|
CN111755524A (zh) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3964819B2 (ja) | 絶縁ゲート型半導体装置 | |
US7719053B2 (en) | Semiconductor device having increased gate-source capacity provided by protruding electrode disposed between gate electrodes formed in a trench | |
JP5613995B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP5586887B2 (ja) | 半導体装置及びその製造方法 | |
WO2010021099A1 (ja) | 電界効果トランジスタ | |
KR100840667B1 (ko) | 수평형 디모스 소자 및 그 제조방법 | |
JP2942732B2 (ja) | 短絡アノード水平型絶縁ゲートバイポーラトランジスタ | |
JP2004537162A (ja) | パワーデバイスとその製造方法 | |
JP2013089700A (ja) | 半導体装置 | |
JP2003092405A (ja) | 半導体装置及びその製造方法 | |
US10573731B2 (en) | Semiconductor transistor and method for forming the semiconductor transistor | |
JP2023550032A (ja) | 複数のゲート・トレンチを有する半導体パワー・デバイス及びそのようなデバイスを形成する方法 | |
CN112563321B (zh) | 半导体装置及其制造方法 | |
US20230106654A1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP5630552B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
CN110729356A (zh) | 一种具有内嵌沟道二极管的SiC MOSFET结构 | |
CN111755524B (zh) | 一种肖特基积累层碳化硅横向场效应晶体管及其制作方法 | |
CN111725321B (zh) | 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法 | |
CN111009575A (zh) | 半导体器件及其制造方法 | |
JP7512920B2 (ja) | 半導体装置およびその製造方法 | |
CN114141627A (zh) | 碳化硅半导体器件及其制作方法 | |
JP7486571B2 (ja) | 炭化珪素トランジスタデバイス | |
JPWO2013035300A1 (ja) | 半導体素子、半導体装置、およびその製造方法 | |
CN111725320A (zh) | 一种结型积累层碳化硅横向场效应晶体管及其制作方法 | |
CN107579109B (zh) | 半导体器件及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |