CN111725320A - 一种结型积累层碳化硅横向场效应晶体管及其制作方法 - Google Patents

一种结型积累层碳化硅横向场效应晶体管及其制作方法 Download PDF

Info

Publication number
CN111725320A
CN111725320A CN202010698288.XA CN202010698288A CN111725320A CN 111725320 A CN111725320 A CN 111725320A CN 202010698288 A CN202010698288 A CN 202010698288A CN 111725320 A CN111725320 A CN 111725320A
Authority
CN
China
Prior art keywords
region
type
layer
silicon carbide
accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010698288.XA
Other languages
English (en)
Inventor
段宝兴
王彦东
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010698288.XA priority Critical patent/CN111725320A/zh
Publication of CN111725320A publication Critical patent/CN111725320A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种结型积累层碳化硅横向场效应晶体管及其制作方法。该器件设置积累介质层,覆盖N型漂移区表面以及N+漏区表面左端区域,在积累介质层上设置碳化硅材料的外延层;在外延层的左侧端部、右侧端部分别通过离子注入形成两处P型区,并在所述外延层中邻接右端P型区通过离子注入形成N+区;在栅极介质层表面形成栅极,栅极与左端P型区邻接;在N+漏区表面的右端区域形成漏极,漏极14与右端P型区邻接。该器件在导通时,可以通过结型积累层在漂移区中产生浓度较高的电子,大幅度降低器件的导通电阻;器件关断时,结型积累层可起到场板的作用,有效地降低栅极边缘的电场峰值,从而提高器件的击穿电压。

Description

一种结型积累层碳化硅横向场效应晶体管及其制作方法
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种横向金属氧化物半导体场效应管。
背景技术
碳化硅(SiC)是第三代半导体材料代表之一,是C元素和Si元素形成的化合物。跟传统半导体材料硅相比,它具有高临界击穿电场、高热导率等优势,是制造高压、高温、抗辐照功率半导体器件的优良半导体材料,也是目前商品化程度最高、技术最成熟的第三代半导体材料。碳化硅与硅材料的物理性能对比主要为:(1)临界击穿电场强度是硅材料近10倍;(2)热导率高,超过硅材料的3倍;(3)饱和电子漂移速度高,是硅材料的2倍;(4)抗辐照和化学稳定性好;(5)与硅材料一样,可以直接采用热氧化工艺在表面生长二氧化硅绝缘层。
碳化硅材料由于禁带宽度比较宽,临界击穿电场比较大,很容易获得高的击穿电压。然而对于横向器件,漂移区的掺杂浓度受到弱化表面电场(Reduced Surface Field,简称RESURF)条件的限制,无法简单的通过增大掺杂浓度来获得较低的电阻。
发明内容
本发明提出了一种结型积累层碳化硅横向场效应晶体管,能够进一步提高器件的击穿电压、同时降低比导通电阻。
本发明的技术方案如下:
一种结型积累层碳化硅横向场效应晶体管,包括:
碳化硅材料的P型衬底,以及衬底电极;
在P型衬底上分别形成的P型屏蔽层和N型漂移区,所述P型屏蔽层与N型漂移区相接;
在屏蔽层上分别形成的P型基区、P+源区和N+源区;其中P型基区与N型漂移区邻接,P+源区位于远离N型漂移区的一端,N+源区左、右两侧分别与P+源区、P型基区邻接;
在N型漂移区上部的右端区域形成的N+漏区;
栅极介质层,覆盖P型基区表面;
源极,位于P+源区和N+源区表面;
其特征在于,还包括:
积累介质层,覆盖N型漂移区表面以及N+漏区表面左端区域;
碳化硅材料的外延层,覆盖所述积累介质层;
在所述外延层的左侧端部、右侧端部分别通过离子注入形成第一P型区和第二P型区,并在所述外延层中邻接所述第二P型区通过离子注入形成N+区;所述N+区的左端不超出N+漏区左端对应的边界;
在栅极介质层表面形成栅极,栅极的右侧邻接第一P型区的左侧;
在N+漏区表面的右端区域形成漏极,漏极的左侧邻接第二P型区以及积累介质层的右侧。
本发明中,P型衬底、P型屏蔽层、N型漂移区、P型基区、P+源区、N+源区、N+漏区、外延层、N+区以及两处P型区均可采用碳化硅材料。
上述外延层可以为N型,也可以为P型,可以不掺杂或者掺杂浓度低于N+区、两处P型区。
可选地,所述P型衬底的掺杂浓度为1×1015cm-3~1×1016cm-3,所述N型漂移区的掺杂浓度为3×1016cm-3~8×1016cm-3,所述P型屏蔽层的掺杂浓度为6×1016cm-3~6×1017cm-3,所述P型基区的掺杂浓度5×1015cm-3~5×1016cm-3
可选地,所述N型漂移区的深度为1-4微米。
可选地,所述积累介质层的材料为二氧化硅或氮化铝。
可选地,所述积累介质层的厚度为0.05-0.2微米。
可选地,所述外延层的掺杂浓度为1×1014cm-3~1×1016cm-3
可选地,所述外延层的厚度为1~2微米。
可选地,所述第一P型区和第二P型区的掺杂浓度为1×1017cm-3~1×1018cm-3
可选地,所述N+区的掺杂浓度为1×1017cm-3~1×1019cm-3
上述结型积累层碳化硅横向场效应晶体管的一种制作方法,包括以下步骤:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1-2微米的外延层材料,在其底面生长积累介质层,然后通过键合工艺将积累介质层与N型漂移区以及部分N+漏区相连接;在外延层上通过离子注入形成左、右两端的P型区以及N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成栅极,使得金属与外延层的左端P型区相连接;
5)在N+漏区上方淀积金属,形成漏极,使得金属与外延层的右端P型区相连接;
6)在器件表面形成钝化层。
本发明技术方案的有益效果如下:
器件导通时,通过结型积累层结构,在漂移区中产生浓度较高的积累层电子,弱化了导通对掺杂浓度的依赖关系,可大幅度降低器件的导通电阻;器件关断时,结型积累层可起到场板的作用,有效降低栅极边缘的电场峰值,从而提高器件的击穿电压。
本发明中设置两处P型区,使金属与半导体形成良好的欧姆接触。
由于在器件开启时,会在氧化层下方形成电子,但同时会在氧化层上方形成等量的空穴,设置N+区域用于阻断氧化层上方外延层中的空穴电流。
附图说明
图1为本发明的一个实施例的结构示意图。
图2是本发明的工作原理示意图。
图3是本发明实施例与常规碳化硅晶体管的击穿电压的对照示意图。
图4是本发明实施例与常规碳化硅晶体管的比导通电阻的对照示意图。
附图标号说明:
1-P型衬底;2-P型屏蔽层;3-P型基区;4-P+源区;5-源极;6-N+源极;7-栅极;8-栅介质层;9-P型区;10-积累介质层;11-外延层;12-N+区;13-P型区;14-漏极;15-N+漏区;16-N型漂移区;17-衬底电极。
具体实施方式
以下结合附图,通过实施例进一步详述本发明。
如图1所示,该结型积累层碳化硅横向场效应晶体管,包括:
碳化硅材料的P型衬底1,其背面形成衬底电极17;衬底掺杂浓度的典型值为1×1015cm-3~1×1016cm-3
在P型衬底上形成的P型屏蔽层2,在屏蔽层上方形成N+源区6、P+源区4和P型基区3,基区的浓度由阈值电压决定;基区的典型掺杂浓度5×1015cm-3~5×1016cm-3
在P型衬底上形成的N型漂移区16以及N+漏区15;漂移区的典型掺杂浓度3×1016cm-3~8×1016cm-3;漂移区的深度典型值为1-4微米;
在沟道上方形成的栅极介质层;
覆盖N型漂移区16表面以及N+漏区15表面左端区域的积累介质层10,积累介质层的厚度越小,导通电阻越低,典型值为0.05-0.2微米;介质材料可为二氧化硅、氮化铝等可与碳化硅材料具有良好界面特性的介质材料;
在积累介质层上方形成的外延层10,外延层的厚度在1~2微米;外延层的典型掺杂浓度1×1015cm-3~1×1016cm-3
在外延层上分别进行通过注入形成左、右两端P型区9、13以及N+区12;外延层中P型区的典型掺杂浓度1×1017cm-3~1×1018cm-3
在P+源区与N+源区的上方形成源极;
栅极7,覆盖栅极氧化层且与P型区9相接;
漏极13,位于漏区上方且与P型区13相接。
如图2所示,器件导通时,通过结型积累层结构(主要涉及栅极7、P型区9、积累介质层10、外延层11、N+区12、P型区13以及漏极14等),引入了积累层电子,大幅度降低了器件的导通电阻;器件关断时,结型积累层可起到场板的作用,有效的降低栅极边缘的电场,从而提高器件的击穿电压。
该器件可按照以下步骤制备:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1-2微米的外延层材料,在其底面生长积累介质层,然后通过键合工艺将积累介质层与N型漂移区以及部分N+漏区相连接;在外延层上通过离子注入形成左、右两端的P型区以及N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成栅极,使得金属与外延层的左端P型区相连接;
5)在N+漏区上方淀积金属,形成漏极,使得金属与外延层的右端P型区相连接;
6)在器件表面形成钝化层。
经仿真试验,对于N沟道碳化硅横向场效应晶体管,当漂移区长度为6μm时:如图3所示,常规的碳化硅晶体管的击穿电压为1000V左右,而采用本发明的结构,可以将器件的击穿电压提高到1300V左右,提高了30%;如图4所示,常规的碳化硅横向场效应晶体管的比导通电阻为14mΩ.cm2左右,而本发明可以将器件的比导通电阻降低到6mΩ.cm2,下降了57%。
当然,本发明中的结型积累层碳化硅横向场效应晶体管也可以为P沟道,其结构与N沟道结型积累层碳化硅场效应横向晶体管等同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (10)

1.一种结型积累层碳化硅横向场效应晶体管,包括:
碳化硅材料的P型衬底(1),以及衬底电极(17);
在P型衬底上分别形成的P型屏蔽层(2)和N型漂移区(16),所述P型屏蔽层(2)与N型漂移区(16)相接;
在屏蔽层上分别形成的P型基区(3)、P+源区(4)和N+源区(6);其中P型基区(3)与N型漂移区(16)邻接,P+源区(4)位于远离N型漂移区(16)的一端,N+源区(6)左、右两侧分别与P+源区(4)、P型基区(3)邻接;
在N型漂移区(16)上部的右端区域形成的N+漏区(15);
栅极介质层(8),覆盖P型基区(3)表面;
源极(5),位于P+源区(4)和N+源区(6)表面;
其特征在于,还包括:
积累介质层(10),覆盖N型漂移区(16)表面以及N+漏区(15)表面左端区域;
碳化硅材料的外延层(11),覆盖所述积累介质层(10);
在所述外延层的左侧端部、右侧端部分别通过离子注入形成第一P型区(9)和第二P型区(13),并在所述外延层中邻接所述第二P型区(13)通过离子注入形成N+区(12);所述N+区(12)的左端不超出N+漏区(15)左端对应的边界;
在栅极介质层(8)表面形成栅极(7),栅极(7)的右侧邻接第一P型区(9)的左侧;
在N+漏区(15)表面的右端区域形成漏极(14),漏极(14)的左侧邻接第二P型区(13)以及积累介质层(10)的右侧。
2.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述P型衬底(1)的掺杂浓度为1×1015cm-3~1×1016cm-3,所述N型漂移区(16)的掺杂浓度为3×1016cm-3~8×1016cm-3,所述P型屏蔽层(2)的掺杂浓度为6×1016cm-3~6×1017cm-3,所述P型基区(3)的掺杂浓度5×1015cm-3~5×1016cm-3
3.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述N型漂移区(16)的深度为1-4微米。
4.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述积累介质层(10)的材料为二氧化硅或氮化铝。
5.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述积累介质层(10)的厚度为0.05-0.2微米。
6.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述外延层(11)的掺杂浓度为1×1014cm-3~1×1016cm-3
7.根据权利要求1所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述外延层(11)的厚度为1~2微米。
8.根据权利要求1或6所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述第一P型区(9)和第二P型区(13)的掺杂浓度为1×1017cm-3~1×1018cm-3
9.根据权利要求1或6所述的结型积累层碳化硅横向场效应晶体管,其特征在于:所述N+区(12)的掺杂浓度为1×1017cm-3~1×1019cm-3
10.权利要求1所述结型积累层碳化硅横向场效应晶体管的制作方法,其特征在于,包括以下步骤:
1)取碳化硅材料的P型衬底,并在其背面形成衬底电极;
2)通过离子注入分别形成P型屏蔽层、N+源区、P+源区、P型基区、N型漂移区和N+漏区;
3)另选取1-2微米的外延层材料,在其底面生长积累介质层,然后通过键合工艺将积累介质层与N型漂移区以及部分N+漏区相连接;在外延层上通过离子注入形成左、右两端的P型区以及N+区;
4)在P型基区上方形成栅介质层,并淀积金属形成栅极,使得金属与外延层的左端P型区相连接;
5)在N+漏区上方淀积金属,形成漏极,使得金属与外延层的右端P型区相连接;
6)在器件表面形成钝化层。
CN202010698288.XA 2020-07-20 2020-07-20 一种结型积累层碳化硅横向场效应晶体管及其制作方法 Pending CN111725320A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010698288.XA CN111725320A (zh) 2020-07-20 2020-07-20 一种结型积累层碳化硅横向场效应晶体管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010698288.XA CN111725320A (zh) 2020-07-20 2020-07-20 一种结型积累层碳化硅横向场效应晶体管及其制作方法

Publications (1)

Publication Number Publication Date
CN111725320A true CN111725320A (zh) 2020-09-29

Family

ID=72572832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010698288.XA Pending CN111725320A (zh) 2020-07-20 2020-07-20 一种结型积累层碳化硅横向场效应晶体管及其制作方法

Country Status (1)

Country Link
CN (1) CN111725320A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707709A (zh) * 2021-07-26 2021-11-26 西安电子科技大学 具有积累层外延栅极MIS结构AlGaN/GaN高电子迁移率晶体管及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130996A (ja) * 1993-06-30 1995-05-19 Toshiba Corp 高耐圧半導体素子
CN1231770A (zh) * 1996-07-26 1999-10-13 艾利森电话股份有限公司 高压半导体元件
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN110350019A (zh) * 2018-04-02 2019-10-18 无锡华润上华科技有限公司 一种半导体器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130996A (ja) * 1993-06-30 1995-05-19 Toshiba Corp 高耐圧半導体素子
CN1231770A (zh) * 1996-07-26 1999-10-13 艾利森电话股份有限公司 高压半导体元件
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN110350019A (zh) * 2018-04-02 2019-10-18 无锡华润上华科技有限公司 一种半导体器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵逸涵等: "具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707709A (zh) * 2021-07-26 2021-11-26 西安电子科技大学 具有积累层外延栅极MIS结构AlGaN/GaN高电子迁移率晶体管及其制作方法
CN113707709B (zh) * 2021-07-26 2023-03-14 西安电子科技大学 具有积累层外延栅极MIS结构AlGaN/GaN高电子迁移率晶体管及其制作方法

Similar Documents

Publication Publication Date Title
JP7182594B2 (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
JP7190144B2 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
TWI441340B (zh) 無需利用附加遮罩來製造的積體有肖特基二極體的平面mosfet及其佈局方法
JP5781191B2 (ja) 炭化珪素半導体装置
JP4564510B2 (ja) 電力用半導体素子
JP2021182639A (ja) 半導体装置および電力変換装置
JP5433352B2 (ja) 半導体装置の製造方法
JP2019021931A (ja) 逆導通型絶縁ゲートバイポーラトランジスタの製造方法および逆導通型絶縁ゲートバイポーラトランジスタ
JP5592997B2 (ja) 半導体素子およびその製造方法
JP2018186270A (ja) トレンチ下部にオフセットを有するSiC半導体デバイス
JP2008016747A (ja) トレンチmos型炭化珪素半導体装置およびその製造方法
JP6802454B2 (ja) 半導体装置およびその製造方法
JP2018107168A (ja) 半導体装置および半導体装置の製造方法
JP2004259934A (ja) 高耐圧電界効果型半導体装置
WO2014083771A1 (ja) 半導体素子及びその製造方法
JP7367341B2 (ja) 半導体装置及び半導体装置の製造方法
JP4948784B2 (ja) 半導体装置及びその製造方法
JP6183087B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6799515B2 (ja) 半導体装置
JP5556862B2 (ja) トレンチmos型炭化珪素半導体装置の製造方法
CN116759461A (zh) 一种高温稳定性的功率mosfet器件及其制备方法
JP2022060802A (ja) 炭化珪素半導体装置
CN111725320A (zh) 一种结型积累层碳化硅横向场效应晶体管及其制作方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
US20220246744A1 (en) Transistor device and method of manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200929

WD01 Invention patent application deemed withdrawn after publication