JP2022060802A - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
JP2022060802A
JP2022060802A JP2020168495A JP2020168495A JP2022060802A JP 2022060802 A JP2022060802 A JP 2022060802A JP 2020168495 A JP2020168495 A JP 2020168495A JP 2020168495 A JP2020168495 A JP 2020168495A JP 2022060802 A JP2022060802 A JP 2022060802A
Authority
JP
Japan
Prior art keywords
silicon carbide
type
semiconductor layer
region
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020168495A
Other languages
English (en)
Inventor
真樹 宮里
Maki Miyasato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020168495A priority Critical patent/JP2022060802A/ja
Priority to US17/463,020 priority patent/US11824093B2/en
Publication of JP2022060802A publication Critical patent/JP2022060802A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】キャリア寿命のばらつきを抑え、粒子線照射等により、素子毎に求められるキャリア寿命に制御することができる炭化珪素半導体装置を提供する。【解決手段】炭化珪素半導体装置70は、第1導電型の炭化珪素半導体基板1と、第1導電型の第1半導体層20と、第1導電型の第2半導体層2と、第2導電型の第3半導体層6と、第1導電型の第1半導体領域7と、トレンチ16と、ゲート絶縁膜9と、ゲート電極10と、層間絶縁膜11と、を備える。第1半導体層20および第2半導体層2から構成される第1導電型半導体層22の第3半導体層6との界面より1μm以上深い領域では、アルミニウムの濃度の最大値は、3.0×1013/cm3未満である。第1導電型半導体層22の前記領域では、ホウ素の濃度の最大値は、1.0×1014/cm3未満である。【選択図】図1

Description

この発明は、炭化珪素半導体装置に関する。
炭化珪素(SiC)は、シリコン(Si)に代わる次世代の半導体材料として期待されている。炭化珪素を半導体材料に用いた半導体素子(以下、炭化珪素半導体装置とする)は、シリコンを半導体材料に用いた従来の半導体素子と比較して、オン状態における素子の抵抗を数百分の1に低減可能であることや、より高温(200℃以上)の環境下で使用可能なこと等、様々な利点がある。これは、炭化珪素のバンドギャップがシリコンに対して3倍程度大きく、シリコンよりも絶縁破壊電界強度が1桁近く大きいという材料自体の特長による。
炭化珪素半導体装置としては、現在までに、ショットキーバリアダイオード(SBD:Schottky Barrier Diode)、プレーナゲート構造やトレンチゲート構造の縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)が製品化されている。
図15は、従来の炭化珪素半導体装置の炭化珪素半導体基体の構造を示す断面図である。炭化珪素半導体基体118は、不純物濃度が5×1018/cm3程度のn+型炭化珪素基板101のおもて面に、n+型バッファ層120、不純物濃度が8×1015/cm3程度のn-型炭化珪素エピタキシャル層102およびp型ベース層106が順に堆積されている。
トレンチゲート構造の縦型MOSFETは、炭化珪素半導体基体118にトレンチゲート構造のMOSゲートを有する。トレンチゲート構造のMOSゲートは、p型ベース層106、n+型ソース領域(不図示)、p+型コンタクト領域(不図示)、トレンチ(不図示)、ゲート絶縁膜(不図示)およびゲート電極(不図示)で構成される。なお、p+型コンタクト領域は設けられなくてもよい。また、n+型ソース領域およびp+型コンタクト領域と接するソース電極が設けられる。n+型炭化珪素基板101の裏面にドレイン電極となる裏面電極が設けられる。
このような構造の縦型MOSFETは、ソース-ドレイン間にボディーダイオードとしてp型ベース層106とn-型炭化珪素エピタキシャル層102とで形成される寄生pnダイオードを内蔵する。この寄生pnダイオードは、ソース電極に高電位を印加することで動作させることができ、p+型コンタクト領域からp型ベース層106とn-型炭化珪素エピタキシャル層102とを経由してn+型炭化珪素半導体基板101への方向に電流が流れる。このように、MOSFETではIGBTと異なり、寄生pnダイオードを内蔵しているため、インバータに用いる還流ダイオード(FWD:Free Wheeling Diode)を省略することができ、低コスト化および小型化に貢献する。これ以降、MOSFETの寄生pnダイオードを内蔵ダイオードと称する。
ここで、p+型コンタクト領域は少数キャリアであるホール(正孔)が存在し、n+型炭化珪素半導体基板101とn-型炭化珪素エピタキシャル層102には電子が存在する。このため、内蔵ダイオードに電流が流れると、p+型コンタクト領域からホールが注入され、n-型炭化珪素エピタキシャル層102またはn+型炭化珪素半導体基板101中で電子およびホールの再結合が発生する。このとき、n+型炭化珪素半導体基板101の結晶に欠陥があると、発生するバンドギャップ相当の再結合エネルギー(3eV)により、n+型炭化珪素半導体基板101に存在する結晶欠陥の一種である基底面転位(BPD:Basal Plane Dislocation)が移動し、2つの基底面転位に挟まれるシングルショックレー型積層欠陥(1SSF:Shockley Stacking Faults)が拡張する。
積層欠陥が拡張すると、積層欠陥は電流を流しにくいため、MOSFETのオン抵抗および内蔵ダイオードの順方向電圧が上昇する。このような動作が継続すると積層欠陥は累積的に拡張するため、インバータ回路に発生する損失は経時的に増加し、発熱量も大きくなるため、装置故障の原因となる。
このため、図15のように、n-型炭化珪素エピタキシャル層102とn+型炭化珪素半導体基板101との間にn+型バッファ層120を設けている。例えば窒素(N)が1×1018/cm3程度の高濃度でドーピングされ、膜厚が1μm程度のn+型バッファ層120のような高ドーピング層を形成することで、ライフタイムキラーを導入し、n-型炭化珪素エピタキシャル層102からのホールの再結合を促し、n+型炭化珪素半導体基板101に到達するホール濃度を制御して、積層欠陥の発生およびその面積拡大を抑制している。
また、n-型ドリフト領域中へのボロンのオートドープを抑制して、n-型ドリフト領域中のボロン濃度がn型不純物濃度よりも十分に低く、かつ例えば1×1014/cm3以下程度となるようにし、バイポーラ動作時(ダイオードの順方向動作時)に、n-型ドリフト領域の少数キャリア(ホール)の減少を抑制することができる炭化珪素半導体装置が公知である(下記、特許文献1参照)。
特開2019-67982号公報
しかしながら、炭化珪素半導体基体118では、DLTS(Deep Level Transient Spectroscopy)測定の結果、n+型炭化珪素半導体基板101のおもて面から5μm程度までのn-型炭化珪素エピタキシャル層102およびn+型バッファ層120では、欠陥密度が高くなっている。これにより、多数キャリア(電子)、少数キャリア(ホール)の寿命(ライフタイム)が短くなっている。
このように、従来の炭化珪素半導体基体118では、欠陥密度を制御できていないため、n-型炭化珪素エピタキシャル層102およびn+型バッファ層120の欠陥密度にばらつきがある。このため、粒子線照射等により、素子毎に求められるキャリア寿命に制御することができないという課題がある。特に、欠陥やキャリア寿命に依存する逆回復特性にばらつきが生じるという課題がある。
この発明は、上述した従来技術による課題を解消するため、キャリア寿命のばらつきを抑え、粒子線照射等により、素子毎に求められるキャリア寿命に制御することができる炭化珪素半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1導電型の炭化珪素半導体基板のおもて面に、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層が設けられる。前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に第1導電型の第2半導体層が設けられる。前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に第2導電型の第3半導体層が設けられる。前記第3半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第1導電型の第1半導体領域が設けられる。前記第1半導体領域と前記第2半導体層との間に位置する前記第3半導体層の表面上の少なくとも一部にゲート絶縁膜を介してゲート電極が設けられる。前記第3半導体層および前記第1半導体領域の表面に第1電極が設けられる。前記炭化珪素半導体基板の裏面に第2電極が設けられる。前記第1半導体層および第2半導体層から構成される第1導電型半導体層の前記第3半導体層との界面より1μm以上深い領域では、アルミニウムの濃度の最大値は、3.0×1013/cm3未満である。前記第1導電型半導体層の前記領域では、ホウ素の濃度の最大値は、1.0×1014/cm3未満である。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に設けられた、前記第1半導体層より高不純物濃度の第1導電型の第4半導体層をさらに備えることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第4半導体層の不純物濃度は、前記第1半導体層の不純物濃度の3倍以上であり、前記第4半導体層の膜厚は、前記第1半導体層の膜厚の3倍以上であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1導電型半導体層の前記領域では、アルミニウムの濃度の最大値は、2.0×1013/cm3未満であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1導電型半導体層の前記領域では、アルミニウムの濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であり、前記第1導電型半導体層の前記領域では、ホウ素の濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であることを特徴とする。
上述した発明によれば、n型エピタキシャル層(第1導電型半導体層)の深い領域では、膜厚方向のプロファイルにおいて、Alの濃度の最大値は3.0×1013/cm3未満であり、Bの濃度の最大値は1.0×1014/cm3未満である。これにより、ドリフト層であるn-型炭化珪素エピタキシャル層(第1導電型の第2半導体層)のキャリア寿命を長くしている。このため、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスに有効である。また、キャリア寿命のばらつきを抑えることができ、粒子線照射等により、素子毎に求められるキャリア寿命に制御することが可能になる。また、n+型高濃度バッファ層(第1導電型の第4半導体層)を設けることで、さらに多数キャリアの寿命および少数キャリアの寿命を長くすることができる。
本発明にかかる炭化珪素半導体装置によれば、キャリア寿命のばらつきを抑え、粒子線照射等により、素子毎に求められるキャリア寿命に制御することができるという効果を奏する。
実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その1)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その2)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その3)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その4)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その5)。 実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のAl濃度を示すグラフである。 実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のB濃度を示すグラフである。 実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のAl、B濃度を示す表である。 実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の多数キャリア寿命、少数キャリア寿命、欠陥密度を示す表である。 実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の少数キャリア寿命の測定結果を示すグラフである。 実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の逆回復特性を示す表である。 実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の分析結果を示す表である。 従来の炭化珪素半導体装置の炭化珪素半導体基体の構造を示す断面図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数をあらわしている。そして、同じまたは同等との記載は製造におけるばらつきを考慮して5%以内まで含むとするのがよい。
(実施の形態1)
本発明にかかる半導体装置は、ワイドバンドギャップ半導体を用いて構成される。実施の形態1においては、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いて作製(製造)された炭化珪素半導体装置について、トレンチ型MOSFET70を例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。図1では、トレンチ型MOSFET70の主電流が流れる活性領域のみを示している。
図1に示すように、実施の形態1にかかる炭化珪素半導体装置は、不純物濃度が5×1018/cm3程度のn+型炭化珪素基板(第1導電型の炭化珪素半導体基板)1の第1主面(おもて面)、例えば(0001)面(Si面)に、n+型バッファ層(第1導電型の第1半導体層)20と、n-型炭化珪素エピタキシャル層(第1導電型の第2半導体層)2、p型ベース層(第2導電型の第3半導体層)6と、を順に積層してなる炭化珪素半導体基体18を用いて構成される。
-型炭化珪素エピタキシャル層2の、n+型炭化珪素基板1側に対して反対側の表面には、n型高濃度領域5が設けられていてもよい。n型高濃度領域5は、n+型炭化珪素基板1よりも低くn-型炭化珪素エピタキシャル層2よりも高い不純物濃度の高濃度n型ドリフト層である。
+型バッファ層20は、例えば膜厚が1μm以上5μm以下で、窒素が1×1017/cm3以上1×1018/cm3以下の高濃度でドーピングされた高ドーピング層である。n+型バッファ層20は、n-型炭化珪素エピタキシャル層2からのホールの再結合を促し、n+型炭化珪素半導体基板1に到達するホール濃度を制御して、積層欠陥の発生およびその面積拡大を抑制している。
-型炭化珪素エピタキシャル層2は、例えば窒素が8×1015/cm3程度の濃度でドーピングされた低濃度ドリフト層である。
従来のn型エピタキシャル層(n-型炭化珪素エピタキシャル層102およびn+型バッファ層120)では、膜厚方向のプロファイルにおいて、Al(アルミニウム)の濃度の最大値は2.0×1013/cm3以上であり、B(ホウ素)の濃度の最大値は1.0×1014/cm3以上である。
これに対して、実施の形態1のn型エピタキシャル層(第1導電型半導体層)22では、膜厚方向のプロファイルにおいて、p型ベース層6との界面より1μm以上深い領域(以下、深い領域)では、Alの濃度の最大値は3.0×1013/cm3未満であり、Bの濃度の最大値は1.0×1014/cm3未満である。好ましくは、深い領域でAlの濃度の最大値は2.0×1013/cm3未満である。n型エピタキシャル層22は、n-型炭化珪素エピタキシャル層2およびn+型バッファ層20を含み、n型高濃度領域5を設ける場合、n型高濃度領域5も含む。ここで、p型ベース層6は、形成する際AlやBがイオン注入されるため、p型ベース層6との界面より1μmより浅い領域は、このイオン注入に影響される。このため、n型エピタキシャル層22のAl,Bの濃度を上記のように低くしても、p型ベース層6との界面より1μmより浅い領域では、AlやBの濃度が上記の値より高くなっている。
例えば、n型エピタキシャル層22は、後述するようにエピタキシャル成長により形成される。この際、エピタキシャル成長装置内のAlとBの濃度を下げることにより、実施の形態1のn型エピタキシャル層22を形成することができる。また、n型エピタキシャル層22を形成後、AlおよびBの濃度を測定して、上記の範囲を満たすもののみを選別することで実施の形態1のn型エピタキシャル層22を形成することができる。
また、n型エピタキシャル層22の深い領域では、Alの濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であり、ホウ素の濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であることが好ましい。
このように、実施の形態1では、n型エピタキシャル層22中のAlとBの濃度を上記の値のように低くしている。これにより、DLTS測定によるZ1/2センターおよびEH6/7センターの欠陥密度が低くなっている。Z1/2センターおよびEH6/7センターは、n型炭化珪素で観測される代表的な深い順位である。
このため、ドリフト層であるn-型炭化珪素エピタキシャル層2のキャリア寿命が長くなっている。例えば、μPCD(Microwave Photo Conductivity Decay)法による測定で、室温(25℃程度)における多数キャリアの寿命は0.5μs以上であり、TRPL(Time Resolved Photo Luminescence)法による測定で、室温における少数キャリアの寿命は500ns以上となっている。
ここで、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスを作製するためには、約5μs以上のキャリア寿命が必要であり、実施の形態1の炭化珪素半導体基体18は、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスに有効である。また、実施の形態1では、キャリア寿命を長くすることで、キャリア寿命のばらつきを抑えることができる。このため、粒子線照射等により、素子毎に求められるキャリア寿命に制御することが可能になる。
また、n+型炭化珪素基板1の第2主面(裏面、すなわち炭化珪素半導体基体18の裏面)には、ドレイン電極となる裏面電極(第2電極)13が設けられている。裏面電極13の表面には、ドレイン電極パッド(不図示)が設けられている。
炭化珪素半導体基体18の第1主面側(p型ベース層6側)には、トレンチ構造が形成されている。具体的には、トレンチ16は、p型ベース層6のn+型炭化珪素基板1側に対して反対側(炭化珪素半導体基体18の第1主面側)の表面からp型ベース層6を貫通してn型高濃度領域5(n型高濃度領域5を設けない場合にはn-型炭化珪素エピタキシャル層2、以下単に(2)と記載する)に達する。トレンチ16の内壁に沿って、トレンチ16の底部および側壁にゲート絶縁膜9が形成されており、トレンチ16内のゲート絶縁膜9の内側にゲート電極10が形成されている。ゲート絶縁膜9によりゲート電極10が、n型高濃度領域5(2)およびp型ベース層6と絶縁されている。ゲート電極10の一部は、トレンチ16の上方(後述するソース電極12が設けられている側)からソース電極12側に突出していてもよい。
n型高濃度領域5(2)のn+型炭化珪素基板1側に対して反対側(炭化珪素半導体基体18の第1主面側)の表面層には、トレンチ16の間に、第1p+型ベース領域3が設けられている。また、n型高濃度領域5(2)内に、トレンチ16の底部と接する第2p+型ベース領域4が設けられている。第2p+型ベース領域4は、トレンチ16の底部と深さ方向(ソース電極12からドレイン電極13への方向)に対向する位置に設けられる。第2p+型ベース領域4の幅は、トレンチ16の幅と同じかそれよりも広い。トレンチ16の底部は、第2p+型ベース領域4に達してもよいし、p型ベース層6と第2p+型ベース領域4に挟まれたn型高濃度領域5(2)内に位置していてもよい。
また、n-型炭化珪素エピタキシャル層2内に、トレンチ16間の第1p+型ベース領域3よりも深い位置にn型高濃度領域5(2)よりピーク不純物濃度が高いn+型領域17が設けられる。なお、深い位置とは、第1p+型ベース領域3よりも裏面電極13に近い位置のことである。
p型ベース層6の内部には、炭化珪素半導体基体18の第1主面側にn+型ソース領域(第1導電型の第1半導体領域)7が選択的に設けられている。また、p+型コンタクト領域8が選択的に設けられていてもよい。また、n+型ソース領域7およびp+型コンタクト領域8は互いに接する。
層間絶縁膜11は、炭化珪素半導体基体18の第1主面側の全面に、トレンチ16に埋め込まれたゲート電極10を覆うように設けられている。ソース電極(第1電極)12は、層間絶縁膜11に開口されたコンタクトホールを介して、n+型ソース領域7およびp型ベース層6に接する。また、p+型コンタクト領域8が設けられる場合、ソース電極12は、n+型ソース領域7およびp+型コンタクト領域8に接する。ソース電極12は、層間絶縁膜11によって、ゲート電極10と電気的に絶縁されている。ソース電極12上には、ソース電極パッド(不図示)が設けられている。ソース電極12と層間絶縁膜11との間に、例えばソース電極12からゲート電極10側への金属原子の拡散を防止するバリアメタル14が設けられていてもよい。
(実施の形態1にかかる炭化珪素半導体装置の製造方法)
次に、実施の形態1にかかる炭化珪素半導体装置の製造方法について説明する。図2~図6は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。
まず、n型の炭化珪素でできたn+型炭化珪素基板1を用意する。n+型炭化珪素基板1は、例えば、不純物濃度が5.0×1018/cm3程度である。そして、このn+型炭化珪素基板1の第1主面上に、n型の不純物、例えば窒素原子(N)をドーピングしながら炭化珪素でできたn+型バッファ層20を、例えば1μm以上5μm以下の厚さまでエピタキシャル成長させる。n+型バッファ層20の不純物濃度は例えば1.0×1017/cm3以上1.0×1018/cm3以下となるように設定してもよい。
次に、n+型バッファ層20の表面上に、n型の不純物、例えば窒素原子(N)をドーピングしながら下部n-型炭化珪素エピタキシャル層2aを、例えば30μm程度の厚さまでエピタキシャル成長させる。下部n-型炭化珪素エピタキシャル層2aの不純物濃度が8×1015/cm3程度となるように設定する。ここまでの状態が図2に記載される。
次に、下部n-型炭化珪素エピタキシャル層2aの表面上に、フォトリソグラフィ技術によって所望の開口部を有する図示しないマスクを、例えば酸化膜で形成する。そして、この酸化膜をマスクとしてイオン注入法によってn型の不純物、例えば窒素原子をイオン注入してもよい。これによって、下部n-型炭化珪素エピタキシャル層2aの内部に、n+型領域17が形成される。
次に、n+型領域17を形成するためのイオン注入時に用いたマスクを除去する。次に、フォトリソグラフィ技術によって所定の開口部を有するイオン注入用マスクを例えば酸化膜で形成する。そして、アルミニウム等のp型の不純物を、酸化膜の開口部に注入し、深さ0.5μm程度の下部第1p+型ベース領域3aおよび第2p+型ベース領域4を形成する。n+型領域17を形成した場合の、n+型領域17のn+型炭化珪素基板1と反対側の表面上に、下部第1p+型ベース領域3aをn+型領域17に重なるように形成する。
次に、イオン注入用マスクの一部を除去し、開口部に窒素等のn型の不純物をイオン注入し、下部n-型炭化珪素エピタキシャル層2aの表面領域の一部に、例えば深さ0.5μm程度の下部n型高濃度領域5aを形成してもよい。下部n型高濃度領域5aの不純物濃度を例えば1×1017/cm3程度に設定する。ここまでの状態が図3に記載される。
次に、下部n-型炭化珪素エピタキシャル層2aの表面上に、窒素等のn型の不純物をドーピングした上部n-型炭化珪素エピタキシャル層2bを、0.5μm程度の厚さで形成する。上部n-型炭化珪素エピタキシャル層2bの不純物濃度が8×1015/cm3程度となるように設定する。以降、下部n-型炭化珪素エピタキシャル層2aと上部n-型炭化珪素エピタキシャル層2bを合わせてn-型炭化珪素エピタキシャル層2となる。
次に、上部n-型炭化珪素エピタキシャル層2bの表面上に、フォトリソグラフィによって所定の開口部を有するイオン注入用マスクを例えば酸化膜で形成する。そして、アルミニウム等のp型の不純物を、酸化膜の開口部に注入し、深さ0.5μm程度の上部第1p+型ベース領域3bを、下部第1p+型ベース領域3aに重なるように形成する。上部第1p+型ベース領域3bと下部第1p+型ベース領域3aは連続した領域を形成し、第1p+型ベース領域3となる。上部第1p+型ベース領域3bの不純物濃度を例えば5×1018/cm3程度となるように設定する。
次に、イオン注入用マスクの一部を除去し、開口部に窒素等のn型の不純物をイオン注入し、第2炭化珪素エピタキシャル層2の表面領域の一部に、例えば深さ0.5μm程度の上部n型高濃度領域5bを形成してもよい。上部n型高濃度領域5bの不純物濃度を例えば1×1017/cm3程度に設定する。この上部n型高濃度領域5bと下部n型高濃度領域5aは少なくとも一部が接するように形成され、n型高濃度領域5を形成する。ただし、このn型高濃度領域5が基板全面に形成される場合と、形成されない場合がある。ここまでの状態が図4に記載される。
次に、n-型炭化珪素エピタキシャル層2の表面上に、エピタキシャル成長によりp型ベース層6を1.1μm程度の厚さで形成する。p型ベース層6の不純物濃度は4×1017/cm3程度に設定する。p型ベース層6をエピタキシャル成長により形成した後、p型ベース層6にさらにアルミニウム等のp型の不純物を、イオン注入してもよい。
次に、炭化珪素半導体基体18の第1主面層(p型ベース層6の表面層)に、MOSゲートを構成する所定領域を形成する。具体的には、p型ベース層6の表面上に、フォトリソグラフィによって所定の開口部を有するイオン注入用マスクを例えば酸化膜で形成する。この開口部に窒素(N)、リン(P)等のn型の不純物をイオン注入し、p型ベース層6の表面の一部にn+型ソース領域7を形成する。次に、n+型ソース領域7の形成に用いたイオン注入用マスクを除去し、同様の方法で、所定の開口部を有するイオン注入用マスクを形成し、p型ベース層6の表面の一部にホウ素等のp型の不純物をイオン注入し、p+型コンタクト領域8を形成してもよい。p+型コンタクト領域8の不純物濃度は、p型ベース層6の不純物濃度より高くなるように設定する。
次に、イオン注入で形成した全領域を活性化するための熱処理(活性化アニール)を行う。例えば、1700℃程度の不活性ガス雰囲気で熱処理(アニール)を行い、第1p+型ベース領域3、第2p+型ベース領域4、n+型ソース領域7、p+型コンタクト領域8およびn+型領域17の活性化処理を実施する。なお、上述したように1回の熱処理によって各イオン注入領域をまとめて活性化させてもよいし、イオン注入を行うたびに熱処理を行って活性化させてもよい。ここまでの状態が図5に記載される。
次に、p型ベース層6の表面上に、フォトリソグラフィによって所定の開口部を有するトレンチ形成用マスクを例えば酸化膜で形成する。次に、ドライエッチングによってp型ベース層6を貫通し、n型高濃度領域5(2)に達するトレンチ16を形成する。トレンチ16の底部はn型高濃度領域5(2)に形成された第2p+型ベース領域4に達してもよい。次に、トレンチ形成用マスクを除去する。
次に、n+型ソース領域7およびp+型コンタクト領域8の表面と、トレンチ16の底部および側壁と、に沿ってゲート絶縁膜9を形成する。このゲート絶縁膜9は、酸素雰囲気中において1000℃程度の温度の熱酸化によって形成してもよい。また、このゲート絶縁膜9は高温酸化(High Temperature Oxide:HTO)等のような化学反応によって堆積する方法で形成してもよい。ここまでの状態が図6に記載される。
次に、ゲート絶縁膜9上に、例えばリン原子がドーピングされた多結晶シリコン層を設ける。この多結晶シリコン層はトレンチ16内を埋めるように形成してもよい。この多結晶シリコン層をフォトリソグラフィによりパターニングし、トレンチ16内部に残すことによって、ゲート電極10を形成する。
次に、ゲート絶縁膜9およびゲート電極10を覆うように、例えばリンガラスを1μm程度の厚さで成膜し、層間絶縁膜11を形成する。次に、層間絶縁膜11を覆うように、チタン(Ti)または窒化チタン(TiN)からなるバリアメタル14を形成してもよい。層間絶縁膜11およびゲート絶縁膜9をフォトリソグラフィによりパターニングしn+型ソース領域7およびp+型コンタクト領域8を露出させたコンタクトホールを形成する。その後、熱処理(リフロー)を行って層間絶縁膜11を平坦化する。
次に、層間絶縁膜11を選択的に除去して炭化珪素半導体基体18の表面に、ニッケル(Ni)かTiの膜を成膜する。次に、表面を保護してn+型炭化珪素基板1の裏面側にNiかTiの膜を成膜する。次に1000℃程度の熱処理を行い炭化珪素半導体基体18の表面側とn+型炭化珪素基板1の裏面の表面側にオーミック電極を形成する。
次に、上記コンタクトホール内に形成したオーミック電極部分に接触するように、および層間絶縁膜11上にソース電極12となる導電性の膜を設け、n+型ソース領域7およびp+型コンタクト領域8とソース電極12とを接触させる。
次いで、n+型炭化珪素基板1の第2主面上に、例えばニッケル(Ni)膜でできた裏面電極13を形成する。その後、例えば970℃程度の温度で熱処理を行って、n+型炭化珪素基板1と裏面電極13とをオーミック接合する。
次に、例えばスパッタ法によって、炭化珪素半導体基体18のおもて面のソース電極12上および層間絶縁膜11の開口部に、ソース電極パッド(不図示)となる電極パッドを堆積する。電極パッドの層間絶縁膜11上の部分の厚さは、例えば5μmであってもよい。電極パッドは、例えば、1%の割合でシリコンを含んだアルミニウム(Al-Si)で形成してもよい。次に、ソース電極パッドを選択的に除去する。
次に、裏面電極13の表面に、ドレイン電極パッド(不図示)として例えばチタン(Ti)、ニッケル(Ni)および金(Au)をこの順に成膜する。以上のようにして、図1に示す炭化珪素半導体装置が完成する。
以上、説明したように、実施の形態1によれば、n型エピタキシャル層の深い領域では、膜厚方向のプロファイルにおいて、Alの濃度の最大値は3.0×1013/cm3未満であり、Bの濃度の最大値は1.0×1014/cm3未満である。これにより、ドリフト層であるn-型炭化珪素エピタキシャル層のキャリア寿命を長くしている。このため、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスに有効である。また、キャリア寿命のばらつきを抑えることができ、粒子線照射等により、素子毎に求められるキャリア寿命に制御することが可能になる。
(実施の形態2)
図7は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なるのは、n+型バッファ層20とn-型炭化珪素エピタキシャル層2との間にn+型高濃度バッファ層(第1導電型の第4半導体層)21が設けられていることである。
+型高濃度バッファ層21は、n+型バッファ層20より厚く、不純物濃度が高い。例えば、n+型高濃度バッファ層21の膜厚は、n+型バッファ層20の膜厚の3倍以上であり、n+型高濃度バッファ層21の不純物濃度は、n+型バッファ層20の不純物濃度の3倍以上である。また、n+型高濃度バッファ層21は、n+型バッファ層20とn-型炭化珪素エピタキシャル層2と同様に、膜厚方向のプロファイルにおいて、Alの濃度の最大値は3.0×1013/cm3未満であり、Bの濃度の最大値は1.0×1014/cm3未満である。好ましくは、n+型高濃度バッファ層21のAlの濃度の最大値は2.0×1014/cm3未満である。これにより、実施の形態2でも、実施の形態1と同様に、DLTS測定によるZ1/2センターおよびEH6/7センターの欠陥密度が低くなっている。
ここで、図8は、実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のAl濃度を示すグラフである。図8において、縦軸はAlの濃度を示し、単位は/cm3である。また、横軸は、n-型炭化珪素エピタキシャル層2とp型ベース層6との界面(n型高濃度領域5を設ける場合、n型高濃度領域5とp型ベース層6との界面、以下、P/N界面と称する。)からの深さを示し、単位は、μmである。図8は、SIMS(Secondary Ion Mass Spectrometry)による計測結果である。
図8に示すように、P/N界面から1μmより浅い領域(図8の点線より原点側)は、p型ベース層6を形成する際のAlの影響が出て、Alの濃度が高くなっている。一方、P/N界面から1μm以上深い領域(図8の点線より原点と反対側)では、従来の炭化珪素半導体基体118では、Alの濃度の最大値は6.0×1013/cm3程度であるのに対して、実施の形態2の炭化珪素半導体基体18では、Alの濃度の最大値は2.0×1013/cm3未満となっている。なお、実施の形態1の炭化珪素半導体基体18でも、Alの濃度は図8と同様の結果となる。
また、図9は、実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のB濃度を示すグラフである。図9において、縦軸はBの濃度を示し、単位は/cm3である。また、横軸は、P/N界面からの深さを示し、単位は、μmである。図9は、SIMSによる計測結果である。
図9に示すように、P/N界面から1μmより浅い領域は、p型ベース層6を形成する際のBの影響が出て、Bの濃度が高くなっている。一方、P/N界面から1μm以上深い領域では、従来の炭化珪素半導体基体118では、Bの濃度の最大値は6.0×1014/cm3程度であるのに対して、実施の形態2の炭化珪素半導体基体18では、Bの濃度の最大値は1.0×1014/cm3未満となっている。なお、実施の形態1の炭化珪素半導体基体18でも、Bの濃度は図9と同様の結果となる。
図10は、実施の形態2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置のAl、B濃度を示す表である。図10は、図8および図9のSIMSによる計測結果を表にまとめ、実施の形態2および従来のAl、Bの濃度の平均値、最大値、最小値、標準偏差(σ)、最大値-最小値を記載している。
図10に示すように、従来のBの濃度は、最大値から最小値を引いた値(最大値-最小値)が1.4×1014/cm3と大きくなっているが、実施の形態2のBの濃度は、最大値から最小値を引いた値が1.3×1013/cm3と小さくなっている。同様に、従来のAlの濃度は、最大値から最小値を引いた値が5.1×1013/cm3と大きくなっているが、実施の形態2のAlの濃度は、最大値から最小値を引いた値が1.0×1013/cm3と小さくなっている。つまり、実施の形態2では、最大値から最小値を引いた絶対値が従来より小さいので不純物量が少ない。このため、絶対値でのばらつきの幅が実施の形態2の方が従来よりも小さい。
図11は、実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の多数キャリア寿命、少数キャリア寿命、欠陥密度を示す表である。図11では、複数回測定して、平均値を示している。図11において、評価深さは、P/N界面からの深さで、多数キャリア寿命、少数キャリア寿命、欠陥密度を測定した位置である。
図11に示すように、多数キャリアおよび少数キャリアの両方とも、従来より実施の形態1,2の方が長くなっており、実施の形態2は、実施の形態1よりも長くなっている。実施の形態1,2では、多数キャリアの寿命は、0.5μs以上であり、少数キャリアの寿命は、500ns以上であった。また、多数キャリアでは、平均値は1.0μs以下であり、さらに最大値も1.0μs以下であった。
さらに、図11に示すように、Z1/2センターの欠陥密度は、従来より実施の形態1,2の方が低くなっている。図11に示していないが、EH6/7センターの欠陥密度も、従来より実施の形態1、2の方が低くなっている。このように、n型エピタキシャル層22のAlおよびBの濃度が低い実施の形態1,2では、欠陥密度は低くなっているが、n+型高濃度バッファ層21による差は小さくなっている。
図12は、実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の少数キャリア寿命の測定結果を示すグラフである。図12において、縦軸は少数キャリアの寿命を示し、単位はnsである。また、横軸は、温度を示し、単位は、℃である。図12は、n-型炭化珪素エピタキシャル層2中の少数キャリアの寿命をTRPLで計測した結果である。
図12に示すように、少数キャリアの寿命は、すべての温度範囲で従来より実施の形態1,2の方が長くなっており、実施の形態2は、温度が100℃以上の領域では実施の形態1よりも長くなっている。このように、n型エピタキシャル層22のAlおよびBの濃度が低い実施の形態1、2では、少数キャリアの寿命が長くなり、実施の形態2のようにn+型高濃度バッファ層21を設けると少数キャリアの寿命はさらに長くなっている。
図13は、実施の形態1,2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の逆回復特性を示す表である。図13では、逆回復特性として逆回復蓄積電荷量Qrrを示している。評価深さは、P/N界面からの深さで、逆回復蓄積電荷量Qrrを測定した位置である。
図13に示すように、逆回復蓄積電荷量Qrrは、従来より実施の形態1,2の方が大きくなっており、実施の形態2は、実施の形態1よりも大きくなっている。このように、n型エピタキシャル層22のAlおよびBの濃度が低い実施の形態1、2では、逆回復特性が向上し、実施の形態2のようにn+型高濃度バッファ層21を設けると逆回復特性がさらに向上する。
図14は、実施の形態1、2にかかる炭化珪素半導体装置および従来の炭化珪素半導体装置の分析結果を示す表である。図14は、図8~図13の分析結果をまとめた表である。図14に示すように、n型エピタキシャル層22のAlおよびBの濃度を低くすることで、欠陥密度が減少し、多数キャリアおよび少数キャリアの寿命が長くなる。また、n+型高濃度バッファ層21を設けることで、多数キャリアおよび少数キャリアの寿命がさらに長くなる。
実施の形態2では、n+型高濃度バッファ層21を設けることにより、n+型高濃度バッファ層21が、界面のキャリアの捕獲確率を低下させるため、実施の形態1よりも多数キャリア寿命および少数キャリア寿命を長くすることができる。このため、実施の形態2の炭化珪素半導体基体18は、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスに有効である。また、実施の形態2でも、キャリア寿命を長くすることで、キャリア寿命のばらつきを抑えることができる。このため、粒子線照射等により、素子毎に求められるキャリア寿命に制御することが可能になる。
(実施の形態2にかかる炭化珪素半導体装置の製造方法)
次に、実施の形態2にかかる炭化珪素半導体装置の製造方法について説明する。まず、実施の形態1と同様に、n+型炭化珪素基板1の表面に、n+型バッファ層20を形成する。次に、n+型バッファ層20の表面上に、n型の不純物、例えば窒素原子(N)をドーピングしながらn+型高濃度バッファ層21を、エピタキシャル成長させる。n+型高濃度バッファ層21の不純物濃度は、例えば8.0×1018/cm3程度となるように設定してもよい。
次に、n+型高濃度バッファ層21の表面上に、n型の不純物、例えば窒素原子(N)をドーピングしながら下部n-型炭化珪素エピタキシャル層2aを、例えば30μm程度の厚さまでエピタキシャル成長させる。この後、実施の形態1の下部n-型炭化珪素エピタキシャル層2aの内部に、n+型領域17を形成する工程以降の工程を行うことで、図7に示す炭化珪素半導体装置が完成する。
以上、説明したように、実施の形態2によれば、n+型高濃度バッファ層を設けることで、実施の形態1よりも多数キャリアの寿命および少数キャリアの寿命を長くすることができる。このため、実施の形態2の炭化珪素半導体基体は、耐圧10kV級の超高耐圧の高性能SiCバイポーラデバイスに有効である。また、実施の形態2でも、キャリア寿命を長くすることで、キャリア寿命のばらつきを抑えることができる。このため、粒子線照射等により、素子毎に求められるキャリア寿命に制御することが可能になる。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施の形態では、トレンチゲート型の縦型MOSFETを例に説明したが、PiNダイオード、IGBT(Insulated Gate Bipolar Transistor)等にも適用可能である。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
以上のように、本発明にかかる炭化珪素半導体装置は、インバータなどの電力変換装置や種々の産業用機械などの電源装置や自動車のイグナイタなどに使用されるパワー半導体装置に有用である。
1、101 n+型炭化珪素基板
2、102 n-型炭化珪素エピタキシャル層
2a 下部n-型炭化珪素エピタキシャル層
2b 上部n-型炭化珪素エピタキシャル層
3 第1p+型ベース領域
3a 下部第1p+型ベース領域
3b 上部第1p+型ベース領域
4 第2p+型ベース領域
5 n型高濃度領域
5a 下部n型高濃度領域
5b 上部n型高濃度領域
6、106 p型ベース層
7 n+型ソース領域
8 p+型コンタクト領域
9 ゲート絶縁膜
10 ゲート電極
11 層間絶縁膜
12 ソース電極
13 裏面電極
14 バリアメタル
16 トレンチ
17 n+型領域
18、118 炭化珪素半導体基体
20、120 n+型バッファ層
21 n+型高濃度バッファ層
22 n型エピタキシャル層
70 トレンチ型MOSFET

Claims (5)

  1. 第1導電型の炭化珪素半導体基板と、
    前記炭化珪素半導体基板のおもて面に設けられた、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層と、
    前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に設けられた第1導電型の第2半導体層と、
    前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に設けられた第2導電型の第3半導体層と、
    前記第3半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に設けられた第1導電型の第1半導体領域と、
    前記第1半導体領域と前記第2半導体層との間に位置する前記第3半導体層の表面上の少なくとも一部にゲート絶縁膜を介して設けられたゲート電極と、
    前記第3半導体層および前記第1半導体領域の表面に設けられた第1電極と、
    前記炭化珪素半導体基板の裏面に設けられた第2電極と、
    を備え、
    前記第1半導体層および前記第2半導体層から構成される第1導電型半導体層の前記第3半導体層との界面より1μm以上深い領域では、アルミニウムの濃度の最大値は、3.0×1013/cm3未満であり、
    前記第1導電型半導体層の前記領域では、ホウ素の濃度の最大値は、1.0×1014/cm3未満であることを特徴とする炭化珪素半導体装置。
  2. 前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面に設けられた、前記第1半導体層より高不純物濃度の第1導電型の第4半導体層をさらに備えることを特徴とする請求項1に記載の炭化珪素半導体装置。
  3. 前記第4半導体層の不純物濃度は、前記第1半導体層の不純物濃度の3倍以上であり、
    前記第4半導体層の膜厚は、前記第1半導体層の膜厚の3倍以上であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  4. 前記第1導電型半導体層の前記領域では、アルミニウムの濃度の最大値は、2.0×1013/cm3未満であることを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体装置。
  5. 前記第1導電型半導体層の前記領域では、アルミニウムの濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であり、
    前記第1導電型半導体層の前記領域では、ホウ素の濃度は、最大値から最小値を引いた値が3.0×1013/cm3未満であることを特徴とする請求項1~4のいずれか一つに記載の炭化珪素半導体装置。
JP2020168495A 2020-10-05 2020-10-05 炭化珪素半導体装置 Pending JP2022060802A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020168495A JP2022060802A (ja) 2020-10-05 2020-10-05 炭化珪素半導体装置
US17/463,020 US11824093B2 (en) 2020-10-05 2021-08-31 Silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168495A JP2022060802A (ja) 2020-10-05 2020-10-05 炭化珪素半導体装置

Publications (1)

Publication Number Publication Date
JP2022060802A true JP2022060802A (ja) 2022-04-15

Family

ID=80932434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168495A Pending JP2022060802A (ja) 2020-10-05 2020-10-05 炭化珪素半導体装置

Country Status (2)

Country Link
US (1) US11824093B2 (ja)
JP (1) JP2022060802A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11769827B2 (en) 2020-12-02 2023-09-26 Wolfspeed, Inc. Power transistor with soft recovery body diode
US11990543B2 (en) * 2020-12-02 2024-05-21 Wolfspeed, Inc. Power transistor with soft recovery body diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5745997B2 (ja) * 2011-10-31 2015-07-08 トヨタ自動車株式会社 スイッチング素子とその製造方法
JP2019067982A (ja) 2017-10-03 2019-04-25 富士電機株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
US11824093B2 (en) 2023-11-21
US20220109049A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6115678B1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2020110514A1 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
CN109841616B (zh) 碳化硅半导体装置及碳化硅半导体装置的制造方法
JP6880669B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US10418445B2 (en) Silicon carbide semiconductor device and method of manufacturing a silicon carbide semiconductor device
JP2017092368A (ja) 半導体装置および半導体装置の製造方法
JPWO2017064948A1 (ja) 半導体装置および半導体装置の製造方法
JP6766512B2 (ja) 半導体装置および半導体装置の製造方法
JP6802454B2 (ja) 半導体装置およびその製造方法
JP2019003967A (ja) 半導体装置および半導体装置の製造方法
JP2020043243A (ja) 半導体装置
JP2019216224A (ja) 半導体装置
JP2018182032A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2019080035A (ja) 炭化珪素半導体装置およびその製造方法
JPWO2018117061A1 (ja) 半導体装置および半導体装置の製造方法
US11824093B2 (en) Silicon carbide semiconductor device
JP2019129300A (ja) 半導体装置とその製造方法
JP7310184B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2023154314A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US11742392B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2022136894A (ja) 超接合炭化珪素半導体装置の製造方法
CN113410286A (zh) 半导体装置
JP2022136627A (ja) 半導体装置および半導体装置の製造方法
JP6953876B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7379880B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230913