CN113270477A - 一种降低主结体电场的积累场效应晶体管及其制作方法 - Google Patents

一种降低主结体电场的积累场效应晶体管及其制作方法 Download PDF

Info

Publication number
CN113270477A
CN113270477A CN202110379146.1A CN202110379146A CN113270477A CN 113270477 A CN113270477 A CN 113270477A CN 202110379146 A CN202110379146 A CN 202110379146A CN 113270477 A CN113270477 A CN 113270477A
Authority
CN
China
Prior art keywords
accumulation
region
type
layer
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110379146.1A
Other languages
English (en)
Inventor
段宝兴
王彦东
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110379146.1A priority Critical patent/CN113270477A/zh
Publication of CN113270477A publication Critical patent/CN113270477A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开一种降低主结体电场的积累场效应晶体管及其制作方法。该器件中设置积累介质层,覆盖P型基区与N+漏区之间的区域;设置半导体材料的外延层,覆盖所述积累介质层;积累栅极和积累漏极,分别位于外延层的左端侧面、右端侧面;欧姆栅极与积累栅极通过导线连接,整体作为器件的栅极;欧姆漏极与积累漏极通过导线连接,整体作为器件的漏极。积累介质层可在衬底表面引入高浓度电子形成器件的电流通道,降低器件的导通电阻,同时取消传统LDMOS器件中的N型漂移区,在衬底中引入了N型埋层,可降低主结处的体电场(Reduced Bulk Field,REBULF),从而提升器件的击穿电压。

Description

一种降低主结体电场的积累场效应晶体管及其制作方法
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种横向双扩散金属氧化物半导体场效应管。
背景技术
横向双扩散金属氧化物半导体场效应管(Lateral Double-diffused MOSFET,简称LDMOS)作为多子导电器件,且源、栅、漏三个电极均位于器件表面,很容易与其他控制电路、保护电路和逻辑电路集成在一起,已广泛应用于功率集成电路领域,。
目前LDMOS的耐压主要由轻掺杂的漂移区承担,一般采用(Reduced SurfaceField,RESURF)降低表面电场。LDMOS导通时,导通电阻由漂移区掺杂浓度直接决定,低的掺杂浓度会导致导通电阻的急剧增加。因此,无法通过简单的降低掺杂浓度来提高击穿电压。器件结构的优化设计过程中,在提高器件耐压的同时,降低器件的比导通电阻,进而实现耐压与比导通电阻特性的良好折中,成为LDMOS器件研究的热点问题。
然而目前常采用的方法都是基于N型掺杂的漂移区作为导电通道,低的电阻需要高的掺杂浓度;通过N型掺杂的漂移区耐压,高的击穿电压需要低的掺杂浓度,从根本上决定了击穿电压和比导通电阻二者存在矛盾的关系。
发明内容
为了解决现有LDMOS器件无法同时兼顾击穿电压和比导通电阻问题,本发明提出了一种降低主结体电场的积累场效应管,通过积累层的电子导电,消除了N型漂移区,通过N型埋层降低主结的电场,可大幅度提高器件的击穿电压。
同时,还提供了该效应管的制作方法。
本发明的技术方案如下:
一种降低主结体电场的积累场效应管,包括:
P型衬底,P型衬底的背面设置有衬底电极;
在P型衬底上部左端区域形成的P型基区,在P型基区中形成相应的沟道以及N+源区和P+源区;
在P型衬底右侧区域形成至少一个N型埋层,所述N型埋层水平方向上与P型基区水平方向上存在间隔,垂直方向上与积累介质层存在间隔;
P型衬底的右上角区域形成N+漏区;
源极,位于P+源区与N+源区上方;
栅极介质层,覆盖N+源区右侧的沟道表面区域;
欧姆栅极,覆盖所述栅极介质层;
欧姆漏极,位于N+漏区表面;
积累介质层,位于P型衬底上表面,且覆盖P型基区与N+漏区之间的区域;
外延层,覆盖在所述积累介质层上方;
积累栅极和积累漏极,分别位于外延层的左端区域、右端区域;
N+阻挡层位于外延层的右侧,且与积累漏极存在间隔;
所述欧姆栅极与积累栅极通过导线连接,整体作为器件的栅极;
所述欧姆漏极与积累漏极通过导线连接,整体作为器件的漏极。
可选地,所述P型衬底的掺杂浓度为1×1013cm-3~1×1015cm-3
可选地,N型埋层的掺杂浓度为1×1015cm-3~1×1018cm-3;当N型埋层至少为两个时,每个N型埋层互相之间存在垂直方向的间隔,每个N型埋层的水平方向为等长度设置或者不等长度设置;且在水平方向上最上方的N型埋层的左侧不超过外延层的左侧;
每个N型埋层垂直方向上为等间距布置或者不等间距布置;
最上方的N型埋层与积累介质层的间隔为1-8微米。
可选地,上述积累介质层的材料为绝缘材料,所述积累介质层的厚度为0.03-0.2微米。
可选地,上述外延层分为掺杂型外延层和非掺杂型外延层两种,且均采用半导体材料制作,厚度为0.2~5微米;掺杂型外延层的掺杂浓度为1×1013cm-3~1×1015cm-3,其掺杂类型为N型掺杂或P型掺杂;
可选地,所述积累栅极和积累漏极可以为欧姆接触或肖特基接触。若积累栅极和积累漏极为欧姆接触,则第一P型区和第二P型区不可省略,浓度为1×1016cm-3~1×1019cm-3(这两个浓度可以不相等);若积累栅极和积累漏极为肖特基接触,则第一P型区和第二P型区可以有,但可以省略,势垒均为0.5-1eV(这两个接触势垒可以不相等)。
可选地,所述N+阻挡层与积累漏极之间的距离为0.5-3μm。
可选地,所述N+阻挡层的掺杂浓度为1×1017cm-3~1×1019cm-3
上述降低主结体电场的积累场效应管的一种制作方法,包括以下步骤:
1)取P型衬底,并形成衬底电极;
2)通过离子注入和扩散形成P型基区、N+源区和P+源区,通过离子注入和扩散形成N型埋层和N+漏区;
3)另选取0.3-5微米的外延层材料,在其底面生长积累氧化层,然后通过键合工艺与P型衬底相连接;在外延层上通过离子注入形成N+区,第一P型区和第二P型区;
4)在沟道上方形成栅介质层,并淀积金属形成欧姆栅极;在N+源区和P+源区上方淀积金属形成源极;在N+漏区上方淀积金属形成欧姆漏极;
5)外延层上方两侧分别淀积金属,形成积累栅极和积累漏极;
6)将欧姆栅极与积累栅极相连,形成栅极;将欧姆漏极与积累漏极相连,形成漏极;
7)在器件表面形成钝化层。
本发明技术方案的有益效果如下:
从矛盾的源头N型漂移区出发,取消了在P型衬底上形成N型漂移区,改变了器件的导通和耐压模式。
器件导通基于积累层结构产生的电子沟道,而不是像传统LDMOS器件采用N型漂移区,没有形成N型漂移区自然消除了RESURF技术对浓度的限制,可以通过降低掺杂浓度来实现高的击穿电压。利用REBULF技术降低主结附近的电场,使得器件的击穿点位于器件的内部,进一步提升了器件的击穿电压。通过积累介质层在源极和漏极之间形成高密度的电子,与通过N型漂移区传输电流的传统LDMOS相比,减小了电流路径上的电阻,使得器件的比导通电阻大幅度下降。
由于在器件开启时,会在积累介质层下方形成电子,但同时会在积累介质层上方形成等量的空穴,设置N+阻挡层可阻断氧化层上方外延层中的空穴电流。
附图说明
图1为本发明的一个实施例的结构示意图。
图2是本发明实施例与普通LDMOS的纵向电场对照示意图。
图3是本发明实施例与普通LDMOS的导通电阻对照示意图。
图4是本发明实施例与普通LDMOS的击穿电压对照示意图。
附图标号说明:
1-P型衬底;2-P型基区;3-P+源区;4-源极;5-N+源区;6-栅介质层;7-欧姆栅极;8-积累栅极;9-第一P型区;10-积累介质层;11-外延层;12-N+阻挡区;13-第二P型区;14-积累漏极;15-欧姆漏极;16-N+漏区;17-N型埋层;18-衬底电极。
具体实施方式
以下结合附图,通过实施例进一步详述本发明。
本实施例提供了降低主结体电场的积累场效应管的具体结构,如图1所示,效应管包括:
P型衬底1;掺杂浓度典型值为1×1013cm-3~1×1015cm-3
P型衬底底面形成衬底电极18;
在P型衬底上形成的P型基区2,基区的浓度由阈值电压决定,基区中形成相应的沟道以及N+源区5和P+源区3;
在P型衬底上形成的N型埋层17以及N+漏区16,N型埋层17的浓度、个数及位置需要根据器件的耐压决定;N型埋层17的掺杂浓度典型值为1×1015cm-3~1×1018cm-3;当N型埋层17至少为两个时,每个N型埋层17互相之间存在垂直方向的间隔,每个N型埋层的水平方向为等长度设置或者不等长度设置;且在水平方向上最上方的N型埋层17的左侧不超过外延层11的左侧;每个N型埋层垂直方向上为等间距布置或者不等间距布置;最上方的N型埋层17与积累介质层10的间隔为1-8微米。
在P+源区3与N+源区5的表面形成的源极4;
在N+源区(5)右侧的沟道上方形成栅极介质层6;
在P型衬底(1)上表面,且位于P型基区2与N+漏区5之间形成积累介质层10,积累介质层10的厚度由工艺决定,厚度越小导通电阻越低,厚度典型值为0.03-0.2微米;积累介质层材料可选择二氧化硅或高K材料;
在积累介质层10上方设置外延层11,外延层11分为掺杂型外延层和非掺杂型外延层两种,且均采用半导体材料制作,厚度为0.2~5微米;掺杂型外延层的掺杂浓度为1×1013cm-3~1×1015cm-3,其掺杂类型为N型掺杂或P型掺杂;
在外延层中靠近漏端通过离子注入形成N+阻挡区12;N+阻挡区12与积累漏极14之间的间隔为0.5-3μm,N+阻挡区12的掺杂浓度为1×1017cm-3~1×1019cm-3
积累栅极8和积累漏极14,分别位于外延层左、右两端侧面;
欧姆栅极7,覆盖于栅极氧化层6上方;
欧姆漏极15,位于N+漏区16表面;
欧姆栅极7与积累栅极8相连,作为器件的栅极;
欧姆漏极13与积累漏极14相连,作为器件的漏极。
需要说明的一点是:积累栅极8和积累漏极14为欧姆接触或者肖特基接触。
若积累栅极8和积累漏极14是欧姆接触,则通过离子注入的方式在外延层11的左侧与积累栅极8之间设置第一P型区9,同时以同样的方式在N+阻挡区12和积累漏极14之间设置第二P型区13。
若是积累栅极8和积累漏极14是肖特基接触,则第一P型区9和第二P型区13可以省略,也可保留。
如图2所示,该器件通过N型埋层将现有LDMOS漏端的高电场重新分配,使得击穿位置发生改变。新结构突破了横向器件中弱化表面电场(Reduced Surface Field,简称RESURF)条件的限制,从而可通过利用从衬底较低的浓度获得高的击穿电压。
该器件可按照以下步骤制备:
步骤1:取P型衬底1,并在P型衬底1的底面形成衬底电极18;
步骤2:通过离子注入和扩散的方式在P型衬底1的左上角区域形成P型基区2、N+源区5和P+源区3,通过离子注入和扩散的方式在P型衬底1的右侧区域形成N型埋层17和N+漏区16;
步骤3:另选取外延层11材料,在其底面生长积累介质层10,然后通过键合工艺与P型衬底1相连接;
步骤4:在N+源区5右侧的沟道表面区域形成栅介质层6,并在栅介质层6上方淀积金属形成欧姆栅极7;在N+源区5和P+源区3上方淀积金属形成源极4;在N+漏区16上方淀积金属形成欧姆漏极15;
步骤5:在外延层11上通过离子注入形成N+阻挡区12、N+阻挡区12与积累漏极14保持间距,并外延层11左右两侧分别淀积金属,形成积累栅极8和积累漏极14;
步骤6:将欧姆栅极7与积累栅极8相连,形成栅极;将欧姆漏极15与积累漏极14相连,形成漏极;
步骤7:在器件表面形成钝化层。
经仿真试验,对于N沟道LDMOS,当漂移区长度为15μm时:如图3所示,普通LDMOS的比导通电阻为19.2mΩ.cm2左右,而本实施例的比导通电阻降低到2.6mΩ.cm2,下降了86%。如图4所示,普通LDMOS的击穿电压仅为210V左右,而本实施例可以将器件的击穿电压提高到360V,提高了71%;
当然,本发明中的LDMOS材料可以为硅材料也可以为宽带隙半导体材料,也可以为P沟道,其结构与N沟道LDMOS等同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (10)

1.一种降低主结体电场的积累场效应晶体管,其特征在于,包括:
P型衬底(1),P型衬底的底面设置有衬底电极(18);
在P型衬底左上角区域形成的P型基区(2),在P型基区中形成相应的沟道以及N+源区(5)和P+源区(3);
在P型衬底右侧区域形成至少一个N型埋层(17),所述N型埋层(17)水平方向上与P型基区(2)存在间隔,垂直方向上与积累介质层(10)存在间隔;
在P型衬底右上角区域形成N+漏区(16);
源极(4),位于P+源区(3)与N+源区(5)上方;
栅极介质层(6),覆盖N+源区(5)右侧的沟道表面区域;
欧姆栅极(7),覆盖所述栅极介质层(6)上;
欧姆漏极(15),位于N+漏区(16)表面;
积累介质层(10),位于P型衬底(1)上表面,且覆盖P型基区(2)与N+漏区(16)之间的区域;
外延层(11),覆盖在所述积累介质层(10)上方;
积累栅极(8)和积累漏极(14),分别位于外延层(11)的左端区域、右端区域;
N+阻挡层(12)位于外延层(11)的右侧,且与积累漏极(14)存在间隔;
所述欧姆栅极(7)与积累栅极(8)通过导线连接,整体作为器件的栅极;
所述欧姆漏极(15)与积累漏极(14)通过导线连接,整体作为器件的漏极。
2.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述P型衬底(1)的掺杂浓度为1×1013cm-3~1×1015cm-3
3.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述N型埋层(17)的掺杂浓度为1×1015cm-3~1×1018cm-3
当N型埋层(17)至少为两个时,每个N型埋层(17)互相之间存在垂直方向的间隔,每个N型埋层的水平方向为等长度设置或者不等长度设置;且在水平方向上最上方的N型埋层(17)的左侧不超过外延层(11)的左侧;
每个N型埋层垂直方向上为等间距布置或者不等间距布置;
最上方的N型埋层(17)与积累介质层(10)的间隔为1-8微米。
4.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述积累介质层(10)的材料为绝缘材料;积累介质层(10)的厚度为0.03-0.2微米。
5.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述外延层(11)分为掺杂型外延层和非掺杂型外延层两种,且均采用半导体材料制作,厚度为0.2~5微米;
掺杂型外延层(11)的掺杂浓度为1×1013cm-3~1×1015cm-3,其掺杂类型为N型掺杂或P型掺杂。
6.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述积累栅极(8)和积累漏极(14)为欧姆接触或者肖特基接触。
7.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:若积累栅极(8)和积累漏极(14)是欧姆接触,则通过离子注入的方式在外延层(11)的左侧与积累栅极(8)之间设置第一P型区(9),同时以同样的方式在N+阻挡区(12)和积累漏极(14)之间设置第二P型区(13)。
8.根据权利要求1所述的降低主结体电场的积累场效应管,其特征在于:所述N+阻挡层(12)的掺杂浓度为1×1017cm-3~1×1019cm-3
9.一种如权利要求1所述降低主结体电场的积累场效应管的制作方法,其特征在于,包括以下步骤:
步骤1:取P型衬底(1),并在P型衬底(1)的底面形成衬底电极(18);
步骤2:通过离子注入和扩散的方式在P型衬底(1)的左上角区域形成P型基区(2)、N+源区(5)和P+源区(3),通过离子注入和扩散的方式在P型衬底(1)的右侧区域形成N型埋层(17)和N+漏区(16);
步骤3:另选取外延层(11)材料,在其底面生长积累介质层(10)(10),然后通过键合工艺与P型衬底(1)相连接;
步骤4:在N+源区(5)右侧的沟道表面区域形成栅介质层(6),并在栅介质层(6)上方淀积金属形成欧姆栅极(7);在N+源区(5)和P+源区(3)上方淀积金属形成源极(4);在N+漏区(16)上方淀积金属形成欧姆漏极(15);
步骤5:在外延层(11)上通过离子注入形成N+阻挡区(12)、N+阻挡区(12)与积累漏极(14)保持间距,并外延层(11)左右两侧分别淀积金属,形成积累栅极(8)和积累漏极(14);
步骤6:将欧姆栅极(7)与积累栅极(8)相连,形成栅极;将欧姆漏极(15)与积累漏极(14)相连,形成漏极;
步骤7:在器件表面形成钝化层。
10.根据权利要求9所述的降低主结体电场的积累场效应管的制作方法,其特征在于:若积累栅极(8)和积累漏极(14)是欧姆接触,则执行步骤5时还需通过离子注入的方式在外延层(11)的左侧与积累栅极(8)之间设置第一P型区(9),同时以同样的方式在N+阻挡区(12)和积累漏极(14)之间设置第二P型区(13)。
CN202110379146.1A 2021-04-08 2021-04-08 一种降低主结体电场的积累场效应晶体管及其制作方法 Pending CN113270477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110379146.1A CN113270477A (zh) 2021-04-08 2021-04-08 一种降低主结体电场的积累场效应晶体管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110379146.1A CN113270477A (zh) 2021-04-08 2021-04-08 一种降低主结体电场的积累场效应晶体管及其制作方法

Publications (1)

Publication Number Publication Date
CN113270477A true CN113270477A (zh) 2021-08-17

Family

ID=77228563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110379146.1A Pending CN113270477A (zh) 2021-04-08 2021-04-08 一种降低主结体电场的积累场效应晶体管及其制作方法

Country Status (1)

Country Link
CN (1) CN113270477A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270137A (en) * 1977-12-15 1981-05-26 U.S. Philips Corporation Field-effect devices
US5844272A (en) * 1996-07-26 1998-12-01 Telefonaktiebolaet Lm Ericsson Semiconductor component for high voltage
US20100025726A1 (en) * 2008-07-30 2010-02-04 Maxpower Semiconductor Inc. Lateral Devices Containing Permanent Charge
CN101930999A (zh) * 2009-06-17 2010-12-29 英飞凌科技奥地利有限公司 具有非晶沟道控制层的半导体部件
CN103268890A (zh) * 2013-05-28 2013-08-28 电子科技大学 一种具有结型场板的功率ldmos器件
US20140264580A1 (en) * 2013-03-14 2014-09-18 Infineon Technologies Ag Semiconductor Device, Integrated Circuit and Method of Manufacturing a Semiconductor Device
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN105590960A (zh) * 2015-12-28 2016-05-18 电子科技大学 超高速大电流横向绝缘栅双极型晶体管
CN107680996A (zh) * 2017-09-14 2018-02-09 电子科技大学 横向功率器件
CN111477681A (zh) * 2020-04-23 2020-07-31 西安电子科技大学 双通道均匀电场调制横向双扩散金属氧化物元素半导体场效应管及制作方法
CN111725071A (zh) * 2020-07-20 2020-09-29 西安电子科技大学 一种硅基结型积累层和缓冲层横向双扩散场效应晶体管及其制作方法
CN111725321A (zh) * 2020-07-20 2020-09-29 西安电子科技大学 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270137A (en) * 1977-12-15 1981-05-26 U.S. Philips Corporation Field-effect devices
US5844272A (en) * 1996-07-26 1998-12-01 Telefonaktiebolaet Lm Ericsson Semiconductor component for high voltage
CN1231770A (zh) * 1996-07-26 1999-10-13 艾利森电话股份有限公司 高压半导体元件
US20100025726A1 (en) * 2008-07-30 2010-02-04 Maxpower Semiconductor Inc. Lateral Devices Containing Permanent Charge
CN101930999A (zh) * 2009-06-17 2010-12-29 英飞凌科技奥地利有限公司 具有非晶沟道控制层的半导体部件
US20140264580A1 (en) * 2013-03-14 2014-09-18 Infineon Technologies Ag Semiconductor Device, Integrated Circuit and Method of Manufacturing a Semiconductor Device
CN103268890A (zh) * 2013-05-28 2013-08-28 电子科技大学 一种具有结型场板的功率ldmos器件
CN104183646A (zh) * 2014-08-29 2014-12-03 电子科技大学 一种具有延伸栅结构的soi ldmos器件
CN105590960A (zh) * 2015-12-28 2016-05-18 电子科技大学 超高速大电流横向绝缘栅双极型晶体管
CN107680996A (zh) * 2017-09-14 2018-02-09 电子科技大学 横向功率器件
CN111477681A (zh) * 2020-04-23 2020-07-31 西安电子科技大学 双通道均匀电场调制横向双扩散金属氧化物元素半导体场效应管及制作方法
CN111725071A (zh) * 2020-07-20 2020-09-29 西安电子科技大学 一种硅基结型积累层和缓冲层横向双扩散场效应晶体管及其制作方法
CN111725321A (zh) * 2020-07-20 2020-09-29 西安电子科技大学 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法

Similar Documents

Publication Publication Date Title
CN112331719B (zh) 半导体器件以及制造半导体器件的方法
US8652930B2 (en) Semiconductor device with self-biased isolation
US9570438B1 (en) Avalanche-rugged quasi-vertical HEMT
JP3721172B2 (ja) 半導体装置
EP2922096A2 (en) Semiconductor device and manufacturing method for the same
US20090085064A1 (en) Heterojunction semiconductor device and method
US20130292699A1 (en) Nitride semiconductor device
WO2012105611A1 (ja) 半導体パワーデバイスおよびその製造方法
JP5691267B2 (ja) 半導体装置
TW202213770A (zh) 半導體裝置
US9570435B2 (en) Surge protection element and semiconductor device
CN110785836B (zh) 半导体装置
JP2008258419A (ja) 窒化物半導体素子
US20200295150A1 (en) Semiconductor device
US10510869B2 (en) Devices and methods for a power transistor having a Schottky or Schottky-like contact
US10038052B2 (en) Semiconductor device with channelstopper and method for producing the same
US20140084333A1 (en) Power semiconductor device
CN112951909A (zh) 半导体器件
WO2019187789A1 (ja) 窒化物半導体装置
CN112768519A (zh) 半导体器件
US20200273956A1 (en) Transistor Device with a Field Electrode that Includes Two Layers
CN111725071A (zh) 一种硅基结型积累层和缓冲层横向双扩散场效应晶体管及其制作方法
CN111725321B (zh) 一种硅基肖特基积累层和缓冲层横向双扩散场效应晶体管及其制作方法
KR102531554B1 (ko) 실리콘카바이드 트랜지스터 및 이의 제조방법
US20140084334A1 (en) Power semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210817

RJ01 Rejection of invention patent application after publication