CN110304658A - 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法 - Google Patents

一种用于锂离子电池的Nb18W16O93负极材料及其制备方法 Download PDF

Info

Publication number
CN110304658A
CN110304658A CN201910547664.2A CN201910547664A CN110304658A CN 110304658 A CN110304658 A CN 110304658A CN 201910547664 A CN201910547664 A CN 201910547664A CN 110304658 A CN110304658 A CN 110304658A
Authority
CN
China
Prior art keywords
electrode material
negative electrode
lithium ion
ion battery
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910547664.2A
Other languages
English (en)
Other versions
CN110304658B (zh
Inventor
吕建国
任磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910547664.2A priority Critical patent/CN110304658B/zh
Publication of CN110304658A publication Critical patent/CN110304658A/zh
Application granted granted Critical
Publication of CN110304658B publication Critical patent/CN110304658B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种用于锂离子电池的Nb18W16O93负极材料及其制备方法。制备步骤包括:将铌源、钨源溶于无水乙醇,一定条件水热得到前驱体溶液;前驱体溶液离心所得沉淀真空烘干后于一定条件下热处理,即可得到Nb18W16O93负极材料。本发明制备方法操作简单,不需要复杂设备,成本低廉;制备的Nb18W16O93由不规则的纳米颗粒、纺锤形纳米球、纳米棒组成,纺锤形的纳米球由一次纳米颗粒构成。本发明制得的Nb18W16O93负极材料在0.3C的倍率下表现出177.1mAh g‑1的高放电比容量,是一种优异的锂离子电池负极材料。

Description

一种用于锂离子电池的Nb18W16O93负极材料及其制备方法
技术领域
本发明涉及锂离子电池电极材料的领域,特别涉及一种用于锂离子电池的过渡金属氧化物电极材料及其制备方法。
背景技术
为遵循可持续发展、可再生能源理念,开发高效绿色无污染的新型储能设备逐渐成为人类的共识。在此前提下,伴随各种便携式电子设备与电动汽车的兴起,对电能储存与释放的研究逐渐引起研究人员的关注。电能的常见储存器件主要有两种:传统电容器和化学电池。传统电容器的显著优势是具有较高的功率密度,这是因为它可以迅速释放或存储电荷。然而传统电容器储存的电荷量少也决定其能量密度较低;化学电池依靠化学反应来储存电荷,即通过化学能与电能的相互转化来储存和释放电能。在这方面,科研人员不断突破研究瓶颈,化学电池凭借其高能量密度得以成为现如今应用广泛的电储能设备。在化学电池中,锂离子电池自上世纪末由SONY公司商业开发,现已被广泛应用于电子设备、通信器件、交通工具等多个领域。
锂离子电池主要由正负两个电极、集流体、隔膜和电解质五个部分组成,其中影响锂离子电池电化学性能最关键的因素是电极材料。目前已开发的锂离子电池正极材料有层状过渡金属和锰的离子嵌入化合物,商业负极材料则主要是碳材料。虽然碳材料具有较高的比容量且循环稳定良好,然而其在锂离子电池实际使用过程中仍存在待解决的问题,例如导致库伦效率降低的碳层表面SEI膜和低嵌锂电位引起的锂枝晶生长,因此科研人员竭力寻找热力学稳定和循环性能优异的新型负极材料。
发明内容
本发明旨在探索一种热力学稳定和循环性能优异的新型锂离子电池负极材料及其制备方法。基于此,本发明设计出Nb18W16O93负极材料,并采用水热方法合成出该铌钨化合物,并证实,铌钨化合物可以在轻微的体积形变下存储大量的锂离子,是极具发展前景的锂离子电池负极材料,锂离子可以存储于拥有tetragonal tungsten bronze结构的Nb18W16O93材料中,并且Nb18W16O93材料在较小的形变条件下就可以可逆脱嵌锂离子,因此本发明的Nb18W16O93材料可作为一种理想的锂离子电池负极材料;且本发明采用简单便捷的水热合成方法,此方法无需昂贵的实验设备和复杂工艺。
本发明的技术方案如下。
本发明提供了一种用于锂离子电池的Nb18W16O93负极材料,具体的,一种用于锂离子电池的Nb18W16O93负极材料,由不规则的纳米颗粒、纺锤形纳米球、纳米棒组成,纺锤形的纳米球由尺寸分布不均匀的一次颗粒构成;纳米颗粒尺寸大约为100nm,纳米球尺寸范围大约为300~400nm,构成纳米球的一次颗粒尺寸范围大约为50~200nm;纳米棒直径约为150nm。这些纳米结构能够增加电极材料与电解液的接触面积,并抑制电化学脱嵌锂过程中的体积微应变,有利于电化学性能的提升。
进一步地,本发明制得的用于锂离子电池的Nb18W16O93负极材料在电化学性能测试中,在0.3C的倍率下表现出177.1mAh g-1的高比容量。
本发明还提供了制备上述Nb18W16O93负极材料的制备方法,包括:
1)称取一定量的六氯化钨和五氯化铌溶解在适量无水乙醇中,搅拌直至形成透明均质溶液为前驱体溶液;
2)将步骤1)中得到的前驱体溶液倒入反应釜中,进行水热反应;
3)将步骤2)中水热反应后的溶液离心、洗涤,置于真空烘箱内干燥超过12小时,得到固体粉末;
4)将步骤3)中得到的固体粉末研磨,并于氮气气氛下热处理,得到所述Nb18W16O93负极材料。
所述步骤1)中六氯化钨、五氯化铌的摩尔比为9:8,无水乙醇按照每0.5m mol六氯化钨70ml的量加入。
所述步骤2)中水热反应的温度为180~200℃ 、时间为24h。
所述步骤4)中热处理温度为800~900℃、时间为12h,升温速率为2℃/min。
上述各参数均为本发明的制备方法的关键工艺参数,为发明人经多次实验所确认,需严格和精确控制,在发明人的实验中若超出上述工艺参数的范围,则无法制得所述Nb18W16O93负极材料。
本发明的有益成果在于:
(1)本发明的方法制备得到的用于锂离子电池的Nb18W16O93负极材料,主要由不规则的纳米颗粒、纺锤形纳米球、纳米棒组成,纺锤形的纳米球是由尺寸分布不均匀的一次颗粒构成。该结构能够增加电极材料与电解液的接触面积,增加电解质与电极材料的接触,获得更多的活性点,有利于促进离子的高速扩散并抑制电化学脱嵌锂过程中的体积微应变,有利于电化学性能的提升。
(2)本发明采用水热合成的方法,不需要复杂设备,操作简单,非常适合于工业化的批量生产。
附图说明
图1为实施例1制备的Nb18W16O93负极材料的低倍扫描电镜(SEM)图。
图2为实施例1制备的Nb18W16O93负极材料的高倍扫描电镜(SEM)图。
图3为实施例1制备的Nb18W16O93负极材料的X射线衍射(XRD)图。
图4为实施例1制备的Nb18W16O93负极材料的充放电平台图。
具体实施方式
以下结合具体实施例对本发明作进一步的说明。
实施例1
(1)称取0.500m mol六氯化钨和0.563m mol五氯化铌溶解于70mL无水乙醇中,搅拌直至形成透明均质溶液;
(2)将步骤1)中得到的前驱体溶液倒入反应釜中,将反应釜置于烘箱中,200℃反应24h,然后冷却反应釜至室温,收集反应液中的白色沉淀,并且用去离子水和乙醇各洗三次,置于80℃烘箱中过夜;
(3)将步骤2)中得到的白色固体置于研钵中研磨10min;
(4)将步骤3)中得到的固体细粉末置于管式炉中,氮气条件下800℃热处理12h,得到所需Nb18W16O93负极材料。
实施例2
(1)称取0.500m mol六氯化钨和0.563m mol五氯化铌溶解于70mL无水乙醇中,搅拌直至形成透明均质溶液;
(2)将步骤1)中得到的前驱体溶液倒入反应釜中,将反应釜置于烘箱中,200℃反应24h,然后冷却反应釜至室温,收集反应液中的白色沉淀,并且用去离子水和乙醇各洗三次,置于80℃烘箱中12小时以上;
(3)将步骤2)中得到的白色固体置于研钵中研磨10min;
(4)将步骤3)中得到的固体细粉末置于管式炉中,氮气条件下850℃热处理12h,得到所需Nb18W16O93负极材料。
实施例3
(1)称取0.500m mol六氯化钨和0.563m mol五氯化铌溶解于70mL无水乙醇中,搅拌直至形成透明均质溶液;
(2)将步骤1)中得到的前驱体溶液倒入反应釜中,将反应釜置于烘箱中,200℃反应24h,然后冷却反应釜至室温,收集反应液中的白色沉淀,并且用去离子水和乙醇各洗三次,置于80℃烘箱中12小时以上;
(3)将步骤2)中得到的白色固体置于研钵中研磨10min;
(4)将步骤3)中得到的固体细粉末置于管式炉中,氮气条件下900℃热处理12h,得到所需Nb18W16O93负极材料。
实施例4
(1)称取0.500m mol六氯化钨和0.563m mol五氯化铌溶解于70mL无水乙醇中,搅拌直至形成透明均质溶液;
(2)将步骤1)中得到的前驱体溶液倒入反应釜中,将反应釜置于烘箱中,180℃反应24h,然后冷却反应釜至室温,收集反应液中的白色沉淀,并且用去离子水和乙醇各洗三次,置于80℃烘箱中12小时以上;
(3)将步骤2)中得到的白色固体置于研钵中研磨10min;
(4)将步骤3)中得到的固体细粉末置于管式炉中,氮气条件下850℃热处理12h,得到所需Nb18W16O93负极材料。
性能测试:
1)SEM测试:将上述各实例制备的样品在扫描电子显微镜下观测。图1为实施例1步骤(4)中得到的Nb18W16O93负极材料的低倍微观形貌图,可以看出,由不规则的纳米颗粒、纺锤形纳米球、纳米棒组成,纳米颗粒尺寸大约为100nm,纳米球尺寸范围大约为300~400nm;图2为实施例1最终制得Nb18W16O93负极材料的高倍形貌图,从中可以看出,纺锤形的纳米球是由尺寸分布不均匀的一次颗粒构成,一次颗粒尺寸范围大约为50~200nm,纳米棒直径约为150nm。这些纳米结构能够增加电极材料与电解液的接触面积,并抑制电化学脱嵌锂过程中的体积微应变,有利于电化学性能的提升。
2)XRD测试:将上述各实例制备最终得到的样品进行XRD测试,图3为实施例1制得的Nb18W16O93负极材料测试得到的XRD图,X射线衍射峰和Nb18W16O93的特征图谱相对应,表明样品成分为Nb18W16O93
3)电化学性能测试:将上述各实例制得的Nb18W16O93负极材料分别组装成扣式电池,进行电化学性能测试,图4为实施例1制得的Nb18W16O93负极材料的首圈及第二圈充放电平台图。可以看出,0.3C倍率下Nb18W16O93负极材料的首圈放电比容量可达177.1mAh g-1,第二圈放电比容量达168.7 mAh g-1,显示出该材料在锂离子电池领域应用的潜力。

Claims (6)

1.一种用于锂离子电池的Nb18W16O93负极材料,其特征在于:所述Nb18W16O93负极材料由不规则的纳米颗粒、纺锤形纳米球、纳米棒组成,其中所述纺锤形纳米球由尺寸分布不均匀的一次颗粒构成;所述纳米颗粒尺寸约为100nm,所述纺锤形纳米球尺寸约为300~400nm,其中构成所述纺锤形纳米球的一次颗粒的尺寸约为50~200nm;所述纳米棒直径约为150nm。
2.根据权利要求1所述的一种用于锂离子电池的Nb18W16O93负极材料,其特征在于:所述Nb18W16O93负极材料,在0.3C的倍率下达到177.1mAh g-1的放电比容量。
3.制备权利要求1至2中任一项所述的用于锂离子电池的Nb18W16O93负极材料的方法,其特征在于,步骤包括:
1)称取六氯化钨和五氯化铌溶解在无水乙醇中,搅拌直至形成透明均质溶液为前驱体溶液;
2)将步骤1)中得到的前驱体溶液倒入反应釜中,进行水热反应;
3)将步骤2)中水热反应后的溶液离心、洗涤,置于真空烘箱内干燥得到固体粉末;
4)将步骤3)中得到的固体粉末研磨,并于氮气气氛下热处理,得到所述Nb18W16O93负极材料。
4.根据权利要求3所述一种用于锂离子电池的Nb18W16O93负极材料的制备方法,其特征在于:所述步骤1)中六氯化钨、五氯化铌的摩尔比为9:8,无水乙醇按照每0.5m mol六氯化钨70ml的量加入。
5.根据权利要求3所述一种用于锂离子电池的Nb18W16O93负极材料的制备方法,其特征在于:所述步骤2)中水热反应的温度为180~200℃、时间为24h。
6.根据权利要求3所述一种用于锂离子电池的Nb18W16O93负极材料的制备方法,其特征在于:所述步骤4)中热处理温度为800~900℃ 、时间为12h,升温速率为2℃/min。
CN201910547664.2A 2019-06-24 2019-06-24 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法 Expired - Fee Related CN110304658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910547664.2A CN110304658B (zh) 2019-06-24 2019-06-24 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910547664.2A CN110304658B (zh) 2019-06-24 2019-06-24 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110304658A true CN110304658A (zh) 2019-10-08
CN110304658B CN110304658B (zh) 2020-09-22

Family

ID=68076546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910547664.2A Expired - Fee Related CN110304658B (zh) 2019-06-24 2019-06-24 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110304658B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785917A (zh) * 2020-07-31 2020-10-16 武汉理工大学 铌钨氧化物电极材料及其制备和应用
CN112885992A (zh) * 2021-01-12 2021-06-01 厦门厦钨新能源材料股份有限公司 一种锂离子电池负极材料的制备方法及应用
CN116119942A (zh) * 2023-02-14 2023-05-16 浙江大学 一种可见-近红外双频电致变色铌钨氧化物薄膜及其制备方法和应用
GB2625362A (en) * 2022-12-15 2024-06-19 Nyobolt Ltd Niobium metal oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244443A (zh) * 2018-11-13 2019-01-18 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244443A (zh) * 2018-11-13 2019-01-18 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENT J. GRIFFITH ET AL.: "Niobium tungsten oxides for high-rate lithium-ion energy storage", 《NATURE》 *
WUQUAN YE ET AL.: "Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage", 《ELECTROCHIMICA ACTA》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785917A (zh) * 2020-07-31 2020-10-16 武汉理工大学 铌钨氧化物电极材料及其制备和应用
CN111785917B (zh) * 2020-07-31 2023-03-24 武汉理工大学 铌钨氧化物电极材料及其制备和应用
CN112885992A (zh) * 2021-01-12 2021-06-01 厦门厦钨新能源材料股份有限公司 一种锂离子电池负极材料的制备方法及应用
GB2625362A (en) * 2022-12-15 2024-06-19 Nyobolt Ltd Niobium metal oxide
WO2024126839A1 (en) 2022-12-15 2024-06-20 Nyobolt Limited Niobium metal oxide
CN116119942A (zh) * 2023-02-14 2023-05-16 浙江大学 一种可见-近红外双频电致变色铌钨氧化物薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN110304658B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN108550805B (zh) 一种三氧化钼@二硫化钼核壳异质结构的纳米复合材料、制备方法及其应用
CN110304658B (zh) 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法
CN110156081B (zh) 一种锂离子电池负极用多孔薄片状TiNb2O7纳米晶的制备方法
CN108682827A (zh) 一种碳复合钠离子正极材料及其制备方法
CN111193014B (zh) 蛋壳-蛋黄结构的四氧化三钴-氮掺杂碳/碳纳米笼复合材料及其制备方法和应用
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN114291796B (zh) 一种钾离子电池负极材料及其制备方法和应用
CN107204426A (zh) 一种锆掺杂改性的氧化镍钴锰锂/钛酸锂复合正极材料
Wu et al. High-performance aqueous battery with double hierarchical nanoarrays
CN108933243B (zh) 一种高比容量钠离子电池正极材料及其制备方法和钠离子电池
CN105836800A (zh) 一种维度可控的二氧化钒纳米材料的合成方法及锂离子电池
Chen et al. Lithium, sodium and potassium storage behaviors of Pb3Nb4O13 nanowires for rechargeable batteries
Anwar et al. Effect of annealing atmosphere induced crystallite size changes on the electrochemical properties of TiO2 nanotubes arrays
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN108550824A (zh) 一种高容量电池负极材料制备方法
CN109192938B (zh) 一种柔性材料及其制备方法与应用
CN107394174A (zh) 一种氧化铁‑介孔碳锂离子电池负极材料的制备方法
CN110233251A (zh) 一种多孔硅/碳复合材料的制备方法及其应用
CN111162252B (zh) 一种rgo修饰的氟代磷酸钒氧钠复合材料的制备方法及产品与应用
CN111313025A (zh) 氮掺杂碳包覆鳞片状氧化钛材料及其制备方法、应用
CN114084911B (zh) 一种Bi2Fe4O9材料的制备方法及应用
CN112430089B (zh) 一种ReO3剪切结构MoNb6O18材料的制备方法及其应用
CN112331812B (zh) 一种MoO2纳米棒负极材料的制备方法
CN104882598B (zh) 一种片状介孔Li4Ti5O12锂离子电池纳米负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200922