CN110272503B - 一种水溶液可再分散型纤维素纳米纤丝的制备方法 - Google Patents

一种水溶液可再分散型纤维素纳米纤丝的制备方法 Download PDF

Info

Publication number
CN110272503B
CN110272503B CN201910567064.2A CN201910567064A CN110272503B CN 110272503 B CN110272503 B CN 110272503B CN 201910567064 A CN201910567064 A CN 201910567064A CN 110272503 B CN110272503 B CN 110272503B
Authority
CN
China
Prior art keywords
cnf
aqueous solution
nano
suspension
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910567064.2A
Other languages
English (en)
Other versions
CN110272503A (zh
Inventor
杨桂花
马光瑞
和铭
陈嘉川
吉兴香
李伟栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201910567064.2A priority Critical patent/CN110272503B/zh
Publication of CN110272503A publication Critical patent/CN110272503A/zh
Priority to KR1020207029778A priority patent/KR102509908B1/ko
Priority to PCT/CN2020/070225 priority patent/WO2020258827A1/zh
Application granted granted Critical
Publication of CN110272503B publication Critical patent/CN110272503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种水溶液可再分散型纤维素纳米纤丝的制备方法。包括如下步骤:首先对植物纤维原料进行打浆处理,然后对其进行纳米均质处理,得到CNF悬浮液,对制得的CNF悬浮液调节pH后加入一定量的氯化钾,实施干燥处理。本发明的方法中采用机械法制备CNF,得率较高。本发明方法中经过调节pH,加盐处理后的CNF悬浮液经真空干燥后容易水溶液再分散,且再分散后的稳定性等特性好,本方法可降低纤维素纳米纤丝的贮藏、运输成本,且操作简单,适宜于规模化的生产。这为纤维素的高值化利用提供新思路和新方法,为获得水溶液可再分散型CNF的制备提供了新方法。

Description

一种水溶液可再分散型纤维素纳米纤丝的制备方法
技术领域
本发明属于纤维素领域,具体涉及纳米纤维素的制备,干燥以及水溶液再分散方法。
背景技术
纤维素是一种丰富、可再生和可生物降解的天然聚合物,在生产家庭生活用化学品和造纸、食品、印刷、化妆品、油井钻探、制药等行业具有十分巨大的应用前景。同时纤维素纳米纤丝(CNF)因其纳米尺度,高比表面积,高长径比,较低的密度,可再生及降解性等优异特性而具有十分广阔的应用前景。然而,CNF因其高的比表面积及其表面含有大量的羟基导致了其在干燥过程中的不可逆团聚和复合过程中CNF(薄膜或粉末)在非极性基质中的团聚;CNF无定形部分之间在干燥过程中额外氢键的形成导致其聚合的不可逆形成,同时,这些在干燥过程中形成的氢键在再分散后不会“断裂”。
为了避免CNF干燥过程中形成不可逆的聚集体或膜状结构,CNF必须悬浮在水中。这些问题限制了CNF在运输、储存和复合材料工业的规模化生产及大规模商业化应用。
有报道使用改性的方式提高纳米纤维素的再分散性,其处理过程中大多使用异丙醇,氢氧化钠,醋酸等化学试剂。这些试剂不仅对CNF本身的性质有一定的改变及影响,无法有效地维持其原本性能,而且会污染环境。
发明内容
为了克服上述问题,本发明提供了一种水溶液可再分散型纤维素纳米纤丝的制备方法。该方法将真空干燥与pH,温度对CNF的去质子化影响相结合,加入盐类后经干燥制得的CNF容易水溶液再分散,是一种显著改善CNF水溶液再分散性制备方法,同时实现了非改性处理纤维素纳米纤丝水溶液再分散后不同固含的应用需求,使CNF水溶液再分散后的应用更加简便。
为实现上述技术目的,本发明采用的技术方案如下:
一种水溶液可再分散型纳米纤维素纳米纤丝的制备方法,包括:
将浆料打浆、纳米均质,形成CNF悬浮液;
调节CNF悬浮液的pH值为3~4,再调节CNF悬浮液的pH值为7~8;
向pH值为7~8的CNF悬浮液加入氯化钾,混合均匀,真空干燥,形成干燥的CNF;
将干燥的CNF再次分散到水溶液中,即得。
本申请研究发现:CNF悬浮液的pH值的酸碱调节有利于纤维素的去质子化,形成-CNF。加入氯化钾后,容易形成K+--CNF,在干燥的过程中这种结构将限制氢键的形成,降低了CNF角质化的程度,使其干燥后易于再分散。
本申请研究发现:CNF的制备方法,干燥的温度、压力等会对水溶液再分散后CNF悬浮液性能产生巨大影响,因此,在一些实施例中,所述打浆采用纤维解离器,转速400~800rpm。
在一些实施例中,所述打浆后的游离度CSF为50~100mL。
高压微射流纳米均质可使介质的颗粒极度细化,均质后的产品具有不沉淀、高胶状、高稳定性等优点,因此,在一些实施例中,所述纳米均质的条件为在200~400bar下,通过200μm的腔室10~15次,1000~1500bar下,依次通过200μm和87μm腔室10~30次,制备的CNF悬浮液分散性好。
本申请研究发现:采用一价钾盐作真空干燥过程中的氢键阻滞剂可以有效地提高CSF的水溶性,因此,在一些实施例中,所述氯化钾的加入量为控制离子强度在5~15mM,有效地提高了CSF的水溶性和再分散性。
本申请研究发现:就目前的纤维素纳米纤丝的干燥方法而言,干燥的方式不同,其处理温度也不同,会对氯化钾的作用效果会起到很大的影响。因此,在一些实施例中,所述真空干燥的压力为-15~-10bar,温度40~60℃,干燥时间2~3天。真空干燥相对温和的干燥温度与压力条件既有利于干燥后CNF的水溶液再分散,又提高CNF水溶液再分散后的稳定性等特性。在一些实施例中,所述再次分散的转速10000~20000rpm,时间为15~90s。
本发明还提供了任一上述的方法制备的水溶液可再分散型纳米纤维素纳米纤丝。上述方法未对CNF进行改性处理却能使其具有较好的水溶液可再分散性,同时具有绿色无污染,成本低且操作工艺简单的优点。
本发明还提供了上述的水溶液可再分散型纳米纤维素纳米纤丝的粒径为610~1990nm,水溶液再分散后TSI在0.0~0.25。
本发明还提供了上述的水溶液可再分散型纳米纤维素纳米纤丝在化学品、造纸、食品、印刷、化妆品、油井钻探或制药领域中的应用。
本发明的有益效果在于:
(1)采用机械法制备CNF,制得的CNF得率高。
(2)采用真空干燥,其干燥温度较有利于K+~-CNF的进一步形成,使干燥后更有利于再分散。
(3)采用一价钾盐做干燥过程中的氢键阻滞剂,成本低且作用效果好。
(4)为CNF的运输,储存问题提供了解决方案。
(5)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施例1的工艺流程图。
图2为本发明的实施例1,2,3,4中得到的水溶液再分散后CNF的粒径分布图,其中,1%,0.5%,0.25%,0.125%依次对应实施例1-4中水溶液再分散时CNF的质量分数。
图3为本发明实施例1,2,3,4的加盐干燥后以不同质量分数的CNF水溶液再分散的稳定性指数(TSI)图,其中,1%,0.5%,0.25%,0.125%依次对应实施例1-4中水溶液再分散时CNF的质量分数。
图4为本发明的实施例1的加盐干燥后的CNF扫描电镜图。
图5为本发明的实施例1的加盐干燥后水溶液再分散的CNF扫描电镜图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对现有的水溶液可再分散纤维素纳米纤丝制备技术中不同程度上都会导致纤维素纳米纤丝被改性、难以维持原有性能的问题。因此,本发明提出一种水溶液可再分散型纤维素纳米纤丝(CNF)的制备方法。采用以下步骤:
(1)打浆处理:经纤维解离器疏解后的浆料通过打浆机打浆。
(2)纳米均质:经过打浆机处理后的浆料,在室温下,先通过200μm腔室处理后,再依次通过200μm和87μm腔室均质处理。
(3)调节pH:用盐酸溶液调节CNF悬浮液pH为酸性后,再用氢氧化钠溶液调节至碱性。
(4)加入氯化钾:称取一定量氯化钾加入已调好pH的CNF悬浮液。
(5)干燥处理:将加入氯化钾后的CNF悬浮液放入真空干燥箱干燥。
(6)机械再分散:通过混合器将干燥后的CNF再分散在水中,利用多重光散射仪对其稳定性进行了表征。
优选的,步骤(1)中,纤维解离器转速400~800rpm,打浆后的游离度在50~200mL。
优选的,步骤(2)中打浆后的浆料在200~400bar下通过200μm腔室10~15次,然后在1000~1500bar下依次通过200μm和87μm腔室15~30次。
优选的,步骤(3)中先用0.05~0.2M的盐酸溶液将制得的CNF悬浮液的pH调至3~4后,再用0.05~0.2M的氢氧化钾溶液将pH调至7~8。
优选的,步骤(4)中CNF悬浮液加入氯化钾,控制离子强度在5~15mM。
优选的,步骤(5)中真空干燥的压力为-15~-10bar,温度40~60℃,干燥时间2~3天。
优选的,步骤(6)中机械再分散时转速10000~20000rpm,时间为15~90s。
本发明的一方面还提供了一种通过调节pH,加盐后控温干燥的水溶液可再分散型纤维素纳米纤丝的制备方法,包括如下步骤:
(1)利用打浆设备将浆料打到一定游离度。
(2)步骤(1)制得的浆料经过高压微射流纳米均质机制得CNF悬浮液。
(3)调节步骤(2)得到的CNF悬浮液的pH值。
(4)将一定量的氯化钾加入步骤(3)中的CNF悬浮液。
(5)步骤(4)中的CNF悬浮液经真空干燥得到干燥的CNF。
(6)步骤(5)得到的CNF按照不同质量分数通过混合器再分散。
优选步骤(1)中打浆处理,将漂白阔叶木浆打到100~150mL CSF(加拿大标准游离度)。
优选步骤(2),均质压力为在200~400bar,通过200μm的腔室10~15次,1000~1500bar下,依次通过200μm和87μm腔室10~30次。
优选步骤(3),CNF悬浮液调至pH 3~4后,再调节到pH 7~8。
优选步骤(4)中氯化钾加入量,离子强度维持在5~15mM。
优选步骤(5)中真空干燥的条件,真空压力-15~-10bar,温度45~60℃,时间2~3天。
优选步骤(6)中混合器再分散,转速10000~20000rpm,剪切30~60s。
原理说明:调节CNF悬浮液的pH将有利于纤维素的去质子化,形成-CNF。加入氯化钾后,容易形成K+--CNF,在干燥的过程中这种结构将限制氢键的形成,降低了CNF角质化的程度,使其干燥后易于再分散。
以下通过具体的实施例对本申请的方案进行描述。
实施例1
1.打浆处理,经纤维解离器疏解后的浆料以10%的浆浓置入瓦利打浆机打至CSF为100mL。
2.纳米均质处理,选用高压微射流纳米均质机。处理条件为:200bar下通过200μm腔室10次,然后1200bar下依次通过200μm和87μm腔室15次。
3.pH调节,先用盐酸将CNF悬浮液pH调至3,再滴入氢氧化钠调至pH为8。
4.将氯化钾加入CNF悬浮液,离子强度维持在10mM。
5.干燥处理,采用真空干燥箱干燥。处理条件:-15bar,60℃下干燥2天(扫描电镜见附图4)。
6.再分散,分散条件为:CNF为1%,在10000rpm下剪切15s。(扫描电镜见附图5)。
本实例制得的再分散粒径1100~2300nm(见附图2),水溶液再分散后TSI在0.0~0.05(见附图3)。
实施例2
1.打浆处理,经纤维解离器疏解后的浆料以20%的浆浓置入瓦利打浆机打至CSF为50mL。
2.纳米均质处理,选用高压微射流纳米均质机。处理条件为:300bar下通过200μm腔室15次,然后1000bar下依次通过200μm和87μm腔室25次。
3.pH调节,先用盐酸将CNF悬浮液pH调至4,再滴入氢氧化钠调至pH为8。
4.将氯化钾加入CNF悬浮液,离子强度维持在15mM。
5.干燥处理,真空干燥箱干燥。处理条件:-10bar,55℃下干燥3天。
6.再分散,分散条件为:CNF为0.5%,在11000rpm下剪切30s。
本实例制得的的再分散粒径1100~1990nm(见附图2),水溶液再分散后TSI在0.0~0.05(见附图3)。
实施例3
1.打浆处理,经纤维解离器疏解后的浆料以15%的浆浓置入瓦利打浆机打至CSF为80mL。
2.纳米均质处理,选用高压微射流纳米均质机。处理条件为:400bar下通过200μm腔室10次,然后1500bar下依次通过200μm和87μm腔室30次。
3.pH调节,先用盐酸将CNF悬浮液pH调至3.5,再滴入氢氧化钠调至pH为7.5。
4.干燥处理,真空干燥箱型干燥。处理条件:-13bar,50℃下干燥3天。
5.将氯化钾加入CNF悬浮液,离子强度维持在8mM。
6.再分散,分散条件为:CNF为0.25%,在12000rpm下剪切60s。
本实例制得的再分散粒径710~1480nm(见附图2),水溶液再分散后TSI在0.0~0.05(见附图3)。
实施例4
1.打浆处理,经纤维解离器疏解后的浆料以10%的浆浓置入瓦利打浆机打至CSF为150mL。
2.纳米均质处理,选用高压微射流纳米均质机。处理条件为:250bar下通过200μm腔室13次,然后1000bar下依次通过200μm和87μm腔室20次。
3.pH调节,先用盐酸将CNF悬浮液pH调至4,再滴入氢氧化钠调至pH为8。
4.将氯化钾加入CNF悬浮液,离子强度维持在15mM。
5.干燥处理,真空干燥箱干燥。处理条件:-15bar,50℃下干燥2天。
6.再分散,分散条件为:CNF为0.125%,在15000rpm下剪切40s。
本实例制得的再分散粒径610~1100nm(见附图2),水溶液再分散后TSI在0.0~0.25(见附图3)。
结果:上述实例制得的CNF粒径在500~2500nm之间,氯化钾的存在对维持再分散CNF悬浮液稳定性有良好作用。CNF悬浮液经真空干燥后以0.25~1%任意质量分数再分散,并且都有良好的稳定性等特性。这创新了非改性处理纤维素纳米纤丝水溶液再分散后不同固含的应用要求(见附图3),也表明了干燥方式对生产水溶液可再分散性CNF的巨大影响。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (6)

1.一种水溶液可再分散型纳米纤维素纳米纤丝的制备方法,其特征在于,包括: 将浆料打浆、纳米均质,形成 CNF 悬浮液;
调节 CNF 悬浮液的 pH 值为 3~4,再调节 CNF 悬浮液的 pH 值为 7~8;
向 pH 值为 7~8的 CNF 悬浮液加入氯化钾,混合均匀,真空干燥,形成干燥的 CNF;将干燥的 CNF 再次分散到水溶液中,即得;
所述纳米均质的条件为在 200~400 bar下,通过 200 μm的腔室 10~15次,1000~1500bar下,依次通过 200 μm和 87 μm腔室 10~30次;
所述打浆后的游离度 CSF 为 50 ~100 mL;
所述氯化钾的加入量为控制离子强度在 5~15mM;
所述真空干燥的压力为-15~-10 bar,温度40~60℃,干燥时间 2~3天。
2.如权利要求 1 所述的一种水溶液可再分散型纳米纤维素纳米纤丝的制备方法,其特征在于,所述打浆采用纤维解离器,转速 400~800 rpm。
3.如权利要求 1 所述的一种水溶液可再分散型纳米纤维素纳米纤丝的制备方法,其特征在于,所述再次分散为机械再分散,所述再次分散的转速 10000~20000 rpm,时间为15~90 s。
4.如权利要求 1-3 任一项所述的方法制备的水溶液可再分散型纳米纤维素纳米纤丝。
5.如权利要求 4 所述的水溶液可再分散型纳米纤维素纳米纤丝,其特征在于,其粒径为 610~1990 nm,水溶液再分散后 TSI 在 0.0~0.25。
6.权利要求4所述的水溶液可再分散型纳米纤维素纳米纤丝在造纸、食品、印刷、化妆品或油井钻探领域中的应用。
CN201910567064.2A 2019-06-27 2019-06-27 一种水溶液可再分散型纤维素纳米纤丝的制备方法 Active CN110272503B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910567064.2A CN110272503B (zh) 2019-06-27 2019-06-27 一种水溶液可再分散型纤维素纳米纤丝的制备方法
KR1020207029778A KR102509908B1 (ko) 2019-06-27 2020-01-03 수용액에 재 분산 가능한 셀룰로오스나노피브릴의 제조 방법
PCT/CN2020/070225 WO2020258827A1 (zh) 2019-06-27 2020-01-03 一种水溶液可再分散型纤维素纳米纤丝的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910567064.2A CN110272503B (zh) 2019-06-27 2019-06-27 一种水溶液可再分散型纤维素纳米纤丝的制备方法

Publications (2)

Publication Number Publication Date
CN110272503A CN110272503A (zh) 2019-09-24
CN110272503B true CN110272503B (zh) 2020-11-24

Family

ID=67963665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910567064.2A Active CN110272503B (zh) 2019-06-27 2019-06-27 一种水溶液可再分散型纤维素纳米纤丝的制备方法

Country Status (3)

Country Link
KR (1) KR102509908B1 (zh)
CN (1) CN110272503B (zh)
WO (1) WO2020258827A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272503B (zh) * 2019-06-27 2020-11-24 齐鲁工业大学 一种水溶液可再分散型纤维素纳米纤丝的制备方法
CN112745451B (zh) * 2020-12-29 2021-11-23 华南理工大学 一种用cnf稳定的苯丙乳液及其制备方法与应用
CN114058027B (zh) * 2021-11-04 2023-01-06 华南理工大学 一种改善微/纳米纤维素干燥过程中絮聚的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2745475C (en) * 2008-12-17 2014-02-25 Fpinnovations A method to control the dispersibility and barrier properties of dried nanocrystalline cellulose in solutions of different ph and ionic strength
CN101942102B (zh) * 2010-09-07 2012-05-23 东南大学 一种粉体纳米纤维素的制备方法
CN102433786B (zh) * 2011-10-31 2014-04-09 福建农林大学 一种机械力化学法制备微纳米纤维素的方法
FR2992320B1 (fr) * 2012-06-25 2014-06-06 Inst Polytechnique Grenoble Procede de fabrication d'une poudre de cellulose fibrillee adaptee a etre dispersee en milieu aqueux
CN103275336B (zh) * 2013-06-19 2015-06-10 天津科技大学 一种经干燥后易再分散的纤维素晶体的制备方法
EP3289004B1 (en) * 2015-05-01 2021-07-07 FPInnovations A dry mixed re-dispersible cellulose filament/carrier product and the method of making the same
JP6534172B2 (ja) * 2015-06-05 2019-06-26 日本製紙株式会社 セルロースナノファイバーの乾燥固形物及びその製造方法ならびに乾燥固形物の再分散体
JP6805658B2 (ja) * 2015-09-10 2020-12-23 王子ホールディングス株式会社 微細繊維状セルロース再分散スラリーの製造方法および微細繊維状セルロース再分散スラリー
EP3445910B1 (en) * 2016-04-22 2022-08-03 FiberLean Technologies Limited Method of improving the physical and/or mechanical properties of re-dispersed microfibrillated cellulose
CN106905437B (zh) * 2017-03-20 2019-02-26 青岛科技大学 高耐热可再分散粉体纤维素纳米晶及其制备方法
CN109929126A (zh) * 2017-12-15 2019-06-25 中国制浆造纸研究院有限公司 一种经干燥后水再分散型纳米纤化纤维素的制备方法
CN110272503B (zh) * 2019-06-27 2020-11-24 齐鲁工业大学 一种水溶液可再分散型纤维素纳米纤丝的制备方法

Also Published As

Publication number Publication date
KR20210002357A (ko) 2021-01-07
KR102509908B1 (ko) 2023-03-14
WO2020258827A1 (zh) 2020-12-30
CN110272503A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110272503B (zh) 一种水溶液可再分散型纤维素纳米纤丝的制备方法
Chen et al. Individual cotton cellulose nanofibers: pretreatment and fibrillation technique
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
Kamel Nanotechnology and its applications in lignocellulosic composites, a mini review
Zhou et al. Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films.
Besbes et al. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content
Li et al. High Yield Preparation Method of Thermally Stable Cellulose Nanofibers.
TWI647257B (zh) 用於製造奈米纖維狀纖維素凝膠之方法
JP6099605B2 (ja) セルロース懸濁液およびその製造方法
US10683616B2 (en) Method for forming a composite comprising MFC and a composite produced by the method
Chen et al. Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding
JP6345925B2 (ja) ナノ複合体及びナノ複合体の製造法
Holt et al. Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives
WO2017111103A1 (ja) セルロースザンテートナノファイバー
JP2014181421A (ja) 微細セルロース繊維及びその製造方法並びに分散液
Du et al. Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced transparency and changed rheological property
CN109970875A (zh) 一种纤维素纳米纤维及其制备方法
Lu et al. High-yield preparation of cellulose nanofiber by small quantity acid assisted milling in glycerol
Huang et al. Structure and properties of cellulose nanofibrils
Peng et al. A new protocol for efficient and high yield preparation of cellulose nanofibrils
CN111138719A (zh) 一种含纳米纤维素的粉体的制备方法
Lv et al. Tuning the properties of pineapple peel cellulose nanofibrils by TEMPO-mediated oxidation and ball milling
Song et al. Cellulose nanofibril/mineral composites induced by H-bond/ionic coordination in co-refining system
CN110172859B (zh) 一种基于凝胶原位生长包覆碳酸钙填料的造纸加填方法
TWI688692B (zh) 降低奈米纖維素製造中之總體能量消耗的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee after: Qilu University of Technology (Shandong Academy of Sciences)

Country or region after: China

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee before: Qilu University of Technology

Country or region before: China