CN114058027B - 一种改善微/纳米纤维素干燥过程中絮聚的方法 - Google Patents

一种改善微/纳米纤维素干燥过程中絮聚的方法 Download PDF

Info

Publication number
CN114058027B
CN114058027B CN202111298061.7A CN202111298061A CN114058027B CN 114058027 B CN114058027 B CN 114058027B CN 202111298061 A CN202111298061 A CN 202111298061A CN 114058027 B CN114058027 B CN 114058027B
Authority
CN
China
Prior art keywords
micro
nano
suspension
nano cellulose
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111298061.7A
Other languages
English (en)
Other versions
CN114058027A (zh
Inventor
高文花
刘和芳
涂琪媛
王平
徐峻
王斌
曾劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111298061.7A priority Critical patent/CN114058027B/zh
Publication of CN114058027A publication Critical patent/CN114058027A/zh
Application granted granted Critical
Publication of CN114058027B publication Critical patent/CN114058027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种改善微/纳米纤维素干燥过程中絮聚的方法,属于微/纳米纤维素干燥领域。该方法包括如下步骤:将木质素磺酸盐加入微/纳米纤维素悬浮液中,混合均匀,得混合悬浮液;再冷冻所述混合悬浮液,然后干燥。本发明方法干燥后的微/纳米纤维素再经过机械分散,可获得较稳定的微/纳米纤维素悬浮液。本发明的方法可有效降低低浓度微/纳纤维素储存、运输成本,为微/纳米纤维素的工业化生产和应用提供支持。

Description

一种改善微/纳米纤维素干燥过程中絮聚的方法
技术领域
本发明属于微/纳米纤维素干燥领域,具体涉及一种改善微/纳米纤维素干燥过程中絮聚的方法。
背景技术
微/纳米纤维素是一种从植物纤维中分离的可再生天然高聚物,具有高强度、低密度、高比表面积、高生物相容性等特点,使其在化学性质和物理性质方面均表现出特异性,在新能源、新材料、食品、药品、化妆品、轻工造纸等领域展现出巨大的潜在应用价值。微/纳米纤维素表面有较多的水分子结合位点,易于在水体系中与水分子形成氢键结合,使微/纳米纤维素呈现出凝胶特性,从而导致目前微/纳米纤维素的制备浓度普遍偏低,一般为0.1~3.0wt%,极大的增加了微/纳米纤维素的运输和存储成本,探索合适的微纳米纤维素干燥技术,减少微/纳米纤维素在干燥过程中结构和性能的变化,改善微/纳米纤维素凝胶的团聚,对微纳米纤维素工业化生产和应用具有重要意义。
目前改善微/纳米纤维素凝胶团聚的方法,主要是对微/纳米纤维素进行接枝改性,如酯化、乙酰化、甲硅烷基化、聚合物接枝等方法,在微/纳米纤维素上接枝疏水基团,提高微/纳米纤维素的疏水性能,进而改善其絮聚或者团聚。这类方法改变了微纳米纤维素的天然化学结构,限制了微纳米纤维素在部分领域应用,且增加其成本。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种改善微/纳米纤维素干燥过程中絮聚的方法。该方法基于微/纳米纤维素较大的比表面积,易于与水分子形成氢键结合的特点,利用大分子木质素磺酸盐大分子屏蔽微/纳米纤维素表面的部分氢键,减少微/纳米纤维素在干燥过程中纤维内部和纤维之间相互结合而导致的絮聚,从而保证干燥后微/纳米纤维素的特性和性能得以保持。
本发明的目的通过以下技术方案实现。
一种改善微/纳米纤维素干燥过程中絮聚的方法,包括以下步骤:
将木质素磺酸盐加入微/纳米纤维素悬浮液中,混合均匀,得混合悬浮液;再冷冻所述混合悬浮液,然后干燥。
优选的,所述木质素磺酸盐的添加量相对于绝干微/纳米纤维素的0.5~25.0wt%。
优选的,所述木质素磺酸盐的添加量相对于绝干微/纳米纤维素的0.5~10.0wt%。
优选的,所述微/纳米纤维素悬浮液的浓度为0.2~3.0wt%。
优选的,所述冷冻的温度为-195℃~-20℃,冷冻时间为10~20h,低温可以实现混合悬浮液的快速冷冻,减少悬浮液中粒子的移动。
优选的,所述微/纳米纤维素悬浮液是将木质纤维素原料通过机械研磨或者酶预处理/机械研磨工艺制备得到;所述机械研磨是采用纳米均质机、超微粒粉碎机、纳米微射流均质机中的至少一种研磨至稳定的悬浮凝胶液状态;所述酶预处理为纤维素酶预处理、内切纤维素酶预处理和木聚糖酶预处理中的一种或多种。
优选的,所述超微粒粉碎机机械研磨时,研磨浓度为0.2~3.0wt%,研磨10~30次,优选的1.0~2.0wt%,研磨20~30次。
优选的,所述内切纤维素酶预处理工艺为3.0~9.0mg/g基质,45~55℃,处理1~3h,溶液pH为4.8~7.0。
优选的,所述木质素磺酸盐添加入微/纳米纤维素悬浮液后,采用高速机械搅拌的方式至体系均匀,搅拌速率为5000~10000r/min。
优选的,所述干燥后再将微/纳米纤维素分散,获得较稳定的微/纳米纤维素悬浮液。
优选的,所述干燥后再将微/纳米纤维素进行机械再分散,分散后微/纳米纤维素的浓度为0.2~2.0wt%,分散方法采用高速乳化机、纳米均质机、超微粒粉碎机和纳米微射流均质机中的一种或多种。
优选的,所述干燥后的微/纳米纤维素悬浮液再分散的高速乳化机转速10000~12000r/min,分散时间3~10min。
优选的,所述干燥后的微/纳米纤维素悬浮液再分散的超微粒粉碎机的研磨次数5~10次。
由以上任一项所述的方法干燥后的微/纳米纤维素。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明所获得干燥后的微/纳米纤维素絮聚程度较低,保持良好的微纳米纤维形貌,获得稳定的干燥再分散微/纳米纤维素悬浮液。
(2)本发明充分利用了微/纳米纤维素与木质素磺酸盐在氢键或者范德华力作用下相互结合的机理,在冷冻干燥前添加木质素磺酸盐,屏蔽微/纳米纤维素表面的部分亲水性羟基,使微/纳米纤维素内部或者纤丝相互之间氢键结合减少,有效减少了微/纳米纤维素在干燥过程中的相互团聚和絮聚,该技术可极大的降低低浓度微/纳米纤维素的存储和制备成本。
附图说明
图1为对比例1和实施例3的微/纳米纤维素干燥后的SEM图;其中,a为未添加木质素磺酸盐(对比例1),b为添加10.0wt%木质素磺酸盐(实施例3)。
具体实施方式
以下结合实例对本发明的具体实施作进一步的具体说明,但本发明的实施方式不限于此。
本发明对所用木质纤维素原料的种类、来源并没有特殊的限制,下面以漂白化学热磨机械浆为例。
实施例1
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为3mg/g基质,50℃,pH=7.0,处理2h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨20次得到微/纳米纤维素悬浮液,悬浮液的透光率为54.5%,微/纳米纤维素的比表面积为173.0g/m2。向制得的微/纳米纤维素悬浮液中添加0.5wt%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-75℃下,冷冻混合悬浮液18h,然后置于冷冻干燥机中至微/纳米纤维素干燥。将干燥后的微/纳米悬浮液稀释至0.2wt%,高速乳化机10000转速下搅拌5min,可获得在400nm可见光照射下透光率达到17.1%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为158.0±1.3g/m2,说明了木素磺酸盐的加入有效的改善了微/纳米纤维素干燥过程中的团聚,保持了微/纳米纤维素的形态结构。
实施例2
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为9mg/g基质,50℃,pH=4.8,处理1h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨10次得到微/纳米纤维素悬浮液,悬浮液的透光率为57.5%,微/纳米纤维素的比表面积为183.0g/m2。向制得的微/纳米纤维素悬浮液中添加5.0wt%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-20℃下,冷冻混合悬浮液15h,然后置于冷冻干燥机中至微/纳米纤维素干燥。将干燥后的微/纳米悬浮液稀释至1.0wt%,高速乳化机10000转速下搅拌5min,可获得在400nm可见光照射下透光率达到24.0%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为172.0g/m2,说明了木素磺酸盐的加入有效的改善了微/纳米纤维素干燥过程中的团聚,保持了微/纳米纤维素的形态结构。
实施例3
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为6mg/g基质,50℃,pH=4.8,处理3h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨15次得到微/纳米纤维素悬浮液,悬浮液的透光率为58.5%,微/纳米纤维素的比表面积为186.0g/m2。向制得的微/纳米纤维素悬浮液中添加10.0wt%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-195℃下,冷冻混合悬浮液10h,然后置于冷冻干燥机中至微/纳米纤维素干燥。干燥后的微/纳米纤维素保持了较好的微纳米级别形态结构,如图1中的b。将干燥后的微/纳米悬浮液稀释至2.0wt%,高速乳化机10000转速下搅拌10min,可获得在400nm可见光照射下透光率达到25.0%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为164.5g/m2,说明了木素磺酸盐的加入有效的改善了微/纳米纤维素干燥过程中的团聚,保持了微/纳米纤维素的形态结构。
实施例4
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为9mg/g基质,50℃,pH=7.0,处理1h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨30次得到微/纳米纤维素悬浮液,悬浮液的透光率为59.0%,微/纳米纤维素的比表面积为181.0g/m2。向制得的微/纳米纤维素悬浮液中添加25.0wt%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-75℃下,冷冻混合悬浮液20h,然后置于冷冻干燥机中至微/纳米纤维素干燥。将干燥后的微/纳米悬浮液稀释至1.0wt%,超微粒粉碎机研磨10次。可获得在400nm可见光照射下透光率达到19.2%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为165.0g/m2,说明了木素磺酸盐的加入有效的改善了微/纳米纤维素干燥过程中的团聚,保持了微/纳米纤维素的形态结构。
对比例1
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为3mg/g基质,50℃,pH=7.0,处理2h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨20次得到微/纳米纤维素悬浮液,悬浮液的透光率为54.5%,微/纳米纤维素的比表面积为173.0g/m2。向制得的微/纳米纤维素悬浮液中添加0%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-75℃下,冷冻混合悬浮液18h,然后置于冷冻干燥机中至微/纳米纤维素干燥。干燥后的微/纳米纤维素具有一定的相互团聚,形成了片状结构,如图1中的a。将干燥后的微/纳米悬浮液稀释至0.2wt%,高速乳化机10000转速下搅拌5min,可获得在400nm可见光照射下透光率为11.2%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为144.0g/m2,说明了干燥过程中微/纳米纤维素之间具有较多的团聚,微/纳米纤维素未能保持原有的微纳米结构,比表面积下降明显。
对比例2
将漂白化学热磨机械浆充分疏解后进行内切纤维素酶预处理和超微粒粉碎机机械处理。内切纤维素酶用量为9mg/g基质,50℃,pH=7.0,处理1h。超微粒粉碎机机械处理采用超微粒粉碎机,浓度1.0wt%,研磨30次得到微/纳米纤维素悬浮液,悬浮液的透光率为59.0%,微/纳米纤维素的比表面积为181.0g/m2。向制得的微/纳米纤维素悬浮液中添加26.0wt%(相对于绝干微/纳米纤维素)的木质素磺酸盐,机械搅拌混合均匀。在-75℃下,冷冻混合悬浮液20h,然后置于冷冻干燥机中至微/纳米纤维素干燥。将干燥后的微/纳米悬浮液稀释至1.0wt%,超微粒粉碎机研磨10次,可获得在400nm可见光照射下透光率为12.9%的稳定微/纳米纤维素悬浮液,微/纳米纤维素的比表面积为155.0g/m2,说明了过量的木素磺酸盐影响了再分散的微/纳米纤维素悬浮液的透光率,打破了微/纳米纤维素原有体系的平衡,不利于微/纳米纤维素保持原有的形态结构。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种改善微/纳米纤维素干燥过程中絮聚的方法,其特征在于,包括以下步骤:
将木质素磺酸盐加入微/纳米纤维素悬浮液中,混合均匀,得混合悬浮液;再冷冻所述混合悬浮液,然后干燥;
所述木质素磺酸盐的添加量相对于绝干微/纳米纤维素的0.5 ~25.0 wt%;
所述微/纳米纤维素悬浮液的浓度为0.2~3.0 wt%;
所述微/纳米纤维素悬浮液是将木质纤维素原料通过机械研磨或者酶预处理/机械研磨工艺制备得到。
2.根据权利要求1所述的方法,其特征在于,所述木质素磺酸盐的添加量相对于绝干微/纳米纤维素的0.5 ~10.0 wt%。
3.根据权利要求1-2任一项所述的方法,其特征在于,所述冷冻的温度为 -195℃~-20℃,冷冻时间为10~20 h。
4.根据权利要求1-2任一项所述的方法,其特征在于,所述机械研磨是采用纳米均质机、超微粒粉碎机、纳米微射流均质机中的至少一种研磨至稳定的悬浮凝胶液状态;所述酶预处理为纤维素酶预处理、内切纤维素酶预处理和木聚糖酶预处理中的一种或多种。
5.根据权利要求1-2任一项所述的方法,其特征在于,所述木质素磺酸盐加入微/纳米纤维素悬浮液后,采用高速机械搅拌的方式至体系均匀,搅拌速率为5000~10000 r/min。
6.根据权利要求1-2任一项所述的方法,其特征在于,所述干燥后微/纳米纤维素再分散,可获得稳定的微/纳米纤维素悬浮液。
7.根据权利要求6所述的方法,其特征在于,所述干燥后微/纳米纤维素进行机械再分散,分散后微/纳米纤维素的浓度为0.2~2.0 wt%,分散方法采用高速乳化机、纳米均质机、超微粒粉碎机和纳米微射流均质机中的一种或多种。
8.由权利要求1-7任一项所述的方法制备的微/纳米纤维素。
CN202111298061.7A 2021-11-04 2021-11-04 一种改善微/纳米纤维素干燥过程中絮聚的方法 Active CN114058027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111298061.7A CN114058027B (zh) 2021-11-04 2021-11-04 一种改善微/纳米纤维素干燥过程中絮聚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111298061.7A CN114058027B (zh) 2021-11-04 2021-11-04 一种改善微/纳米纤维素干燥过程中絮聚的方法

Publications (2)

Publication Number Publication Date
CN114058027A CN114058027A (zh) 2022-02-18
CN114058027B true CN114058027B (zh) 2023-01-06

Family

ID=80273623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111298061.7A Active CN114058027B (zh) 2021-11-04 2021-11-04 一种改善微/纳米纤维素干燥过程中絮聚的方法

Country Status (1)

Country Link
CN (1) CN114058027B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117461830A (zh) * 2023-11-14 2024-01-30 北京工商大学 一种具有润滑效果的纤维素纳米纤维和海藻酸钠复合微凝胶及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127305A (zh) * 2009-12-30 2011-07-20 陶氏化学公司 稳定化的可再分散的聚合物粉末组合物
CN110204915A (zh) * 2019-02-25 2019-09-06 王成 一种防水型纳米纤维素的制备方法
CN110272503A (zh) * 2019-06-27 2019-09-24 齐鲁工业大学 一种水溶液可再分散型纤维素纳米纤丝的制备方法
WO2019221535A1 (ko) * 2018-04-26 2019-11-21 Choi Mee Kyoung 크리스탈 나노 셀룰로오스의 제조방법
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法
CN112029123A (zh) * 2020-08-11 2020-12-04 华南理工大学 一种纳米纤维素/木质素磺酸复合薄膜及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127305A (zh) * 2009-12-30 2011-07-20 陶氏化学公司 稳定化的可再分散的聚合物粉末组合物
WO2019221535A1 (ko) * 2018-04-26 2019-11-21 Choi Mee Kyoung 크리스탈 나노 셀룰로오스의 제조방법
CN110204915A (zh) * 2019-02-25 2019-09-06 王成 一种防水型纳米纤维素的制备方法
CN110272503A (zh) * 2019-06-27 2019-09-24 齐鲁工业大学 一种水溶液可再分散型纤维素纳米纤丝的制备方法
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法
CN112029123A (zh) * 2020-08-11 2020-12-04 华南理工大学 一种纳米纤维素/木质素磺酸复合薄膜及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils";Haocheng Fu等;《Cellulose》;20191204;第27卷;1327-1340 *
"Highly Strong and Conductive Carbon Fibers Originated from Bioinspired Lignin/Nanocellulose Precursors Obtained by Flow-Assisted Alignment and In Situ Interfacial Complexation";Lihong Geng等;《ACS Sustainable Chem. Eng.》;20210201;第9卷;2591-2599 *
"酶预处理对木质纤维素纳米纤丝性能的影响";贺礼龙等;《大连工业大学学报》;20210731;第40卷(第4期);267-273 *

Also Published As

Publication number Publication date
CN114058027A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
Hu et al. Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase
El Bakkari et al. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications
Long et al. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation
Chen et al. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans
Kargarzadeh et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
Beltramino et al. Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers
Khalil et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
Islam et al. Production and modification of nanofibrillated cellulose composites and potential applications
Zhang et al. High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood
Lim et al. Cellulose nanocrystals from bleached rice straw pulp: acidic deep eutectic solvent versus sulphuric acid hydrolyses
Wang et al. Fabricating cellulose nanofibril from licorice residues and its cellulose composite incorporated with natural nanoparticles
Luo et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation
Chen et al. An efficient method for cellulose nanofibrils length shearing via environmentally friendly mixed cellulase pretreatment
Cebreiros et al. Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments
Zeng et al. Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood kraft fibers
CN114058027B (zh) 一种改善微/纳米纤维素干燥过程中絮聚的方法
Samsudin et al. Effect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis process
Vazquez et al. Extraction and production of cellulose nanofibers
Hassan et al. Effect of pectin extraction method on properties of cellulose nanofibers isolated from sugar beet pulp
Lu et al. High-yield preparation of cellulose nanofiber by small quantity acid assisted milling in glycerol
CN109970875A (zh) 一种纤维素纳米纤维及其制备方法
Zhong et al. The influence of pre-fibrillation via planetary ball milling on the extraction and properties of chitin nanofibers
Dias et al. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties
Dias et al. High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant