CN110238384A - 单晶纳米银粉的制备方法 - Google Patents
单晶纳米银粉的制备方法 Download PDFInfo
- Publication number
- CN110238384A CN110238384A CN201910708085.1A CN201910708085A CN110238384A CN 110238384 A CN110238384 A CN 110238384A CN 201910708085 A CN201910708085 A CN 201910708085A CN 110238384 A CN110238384 A CN 110238384A
- Authority
- CN
- China
- Prior art keywords
- solution
- agno
- silver powder
- preparation
- nanometer monocrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种单晶纳米银粉的制备方法,包括以下步骤:(1)将纯水加热至60℃,保持60℃的温度加入甲醛、硫酸钾和阿拉伯树胶粉搅拌均匀并调节pH值为3.5‑4,得到溶液Ⅰ;(2)继续保持溶液Ⅰ在60℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与甲醛发生反应,AgNO3中的Ag+被还原得到颗粒状态的银,此时溶液Ⅰ变成溶液Ⅱ。本发明的单晶纳米银粉的制备方法,在60℃的温度下,硫酸钾和阿拉伯树胶粉协同作用起分散作用,甲醛还原AgNO3制得单晶纳米银粉,制得的单晶纳米银粉颗粒均匀,粒径分布在29.8nm‑63.8nm之间,颗粒形状好,分散性好;制备方法简单,便于操作。
Description
技术领域
本发明涉及银粉制备方法技术领域,特别涉及一种单晶纳米银粉的制备方法。
背景技术
当功能性材料超细化后,粒径处于微米、亚微米和纳米尺寸时,其尺度介于原子、分子与块状材料之间,物理化学性质都有很大的变化,被称之为物质的第四状态。随着物质的超细化,其表面分子排列与电子排列分布结构以及晶体结构都发生相应的变化,产生了块状材料所不具有的奇特的小尺寸效应、表面效应、宏观量子隧道效应与量子尺寸效应,进而使得超细粉体与一般大体积材料相比,在物理、化学以及界面方面都有更优异的性质,从而在应用方面有意想不到的效果。
超细银粉为微米级粒度的银粉,其颗粒形态有球状、絮状、树枝状、棒状、线状、立方状、片状和微晶。超细银粉的粒径小、比表面积大。这种结构使其熔点岁随颗粒变小而降低,超细银粉表面原子的原子间相互作用及电子能谱同银粉内部均有不同,具有很大的化学活性,因此,在其使用于电子元器件上时,与表面有关的吸附、催化、扩散、烧结等特性明显与大粒径的银粉末有显著不同,有良好的导电性能。另外,超细功能的体积效应(即体积缩小,粒子内的原子数目减少而引起的效应)使得能带点的能级间隔加大,其质子振动和能级均不连续。活性强,易于进行各种化学反应,有很强的的吸附能力和催化活性。超细粒子的表面有许多悬空键,具有不饱和性质,从而导致超细银粉的特殊吸附现象和催化性质。
超细银粉的制备方法包括气相法、固相法和液相法。气相法的投资大、能耗高、产率低;固相法制备的银粉粒径偏大而且粒径分布范围宽;液相法工艺过程比较简单,粉体颗粒大小和形状容易控制,是目前低成本制备银粉常用的方法。现有技术中有很多采用液相法制备超细银粉的方法,主要采用还原剂如葡萄糖、水合肼、硼氰化钠、抗坏血酸等在液相中还原银盐溶液得到超细银粉,制得的银粉有球状、树枝状等,但是现有技术中液相法制备的超细银粉分散度差,还没有采用化学方法制备单晶纳米银粉的报道,例如申请号为2015107269865的树叶状银粉的制备方法。
发明内容
有鉴于此,本发明的目的在于提供一种采用液相还原法制备超细立方单晶银粉的方法,分散性好,而且粒径分布均匀。具体而言通过以下技术方案实现:
本发明的单晶纳米银粉的制备方法,包括以下步骤:
(1)将纯水加热至60℃,保持60℃的温度加入甲醛、硫酸钾和阿拉伯树胶粉搅拌均匀并调节pH值为3.5-4,得到溶液Ⅰ;
(2)继续保持溶液Ⅰ在60℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与甲醛发生反应,AgNO3中的Ag+被还原得到颗粒状态的银,此时溶液Ⅰ变成溶液Ⅱ。
进一步,还包括步骤(3):对于步骤(2)得到颗粒状态的银后,所述溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质。
进一步,所述步骤(1)采用水浴或沙浴对乙二醇加热并保持温度。
进一步,所述步骤(2)中注射加入AgNO3的注射速率为5ml/min。
进一步,所述硫酸钾、阿拉伯树胶粉和AgNO3的质量比为10:1:320。甲醛溶液作为还原剂,只要能充分保证足够还原AgNO3即可,其质量的多少不影响银粉颗粒的形状。
本发明的有益效果:本发明的单晶纳米银粉的制备方法,在60℃的温度下,硫酸钾和阿拉伯树胶粉协同作用起分散作用,甲醛还原AgNO3制得单晶纳米银粉,制得的单晶纳米银粉颗粒均匀,粒径分布在29.8nm-63.8nm之间,颗粒形状好,分散性好;制备方法简单,便于操作。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1和图2为采用本发明方法制得的单晶纳米银粉的电镜扫描图。
具体实施方式
本实施例中的单晶纳米银粉的制备方法,首先将600ml的纯水在60℃的沙浴中加热20min加热至60℃,然后在保持60℃温度并搅拌的条件下加入44g甲醛溶液(此处44g是指甲醛溶液中含有甲醛的质量)和2g硫酸钾和0.2g阿拉伯树胶粉,滴入硝酸溶液调解pH值为3.5-4,本实施例中具体的调节结果为3.6,经过实验验证pH值为3.5-4内所得结果无明显差异,得到溶液Ⅰ。取64g分析纯的固体AgNO3溶入20ml水中形成AgNO3溶液,继续保持60℃温度并搅拌的条件下在用蠕动泵向溶液中注射配制的AgNO3溶液,注射速率为5ml/min,在此条件下AgNO3与甲醛发生反应,AgNO3中的Ag+被还原得到单晶纳米状态的银粉,此时溶液Ⅰ变成溶液Ⅱ。得到单晶纳米状态的银粉后,溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮2ml,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质,重复清洗直到清洗干净为止。
液相还原制备银粉过程中,需要克服制备出来的颗粒之间的团聚问题。粉体的团聚主要存在于两个过程中,其一是在还原过程中,首先还原出来的超细颗粒由于搅拌热运动等因素互相碰撞团聚在一起。本发明中采用硫酸钾和阿拉伯树胶粉协同作用起分散作用,甲醛还原AgNO3制得单晶纳米银粉,制得的单晶纳米银粉如图1和图2所示,颗粒均匀,粒径分布在29.8nm-63.8nm之间,颗粒形状好,分散性好;制备方法简单,便于操作。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (5)
1.一种单晶纳米银粉的制备方法,其特征在于包括以下步骤:
(1)将纯水加热至60℃,保持60℃的温度加入甲醛、硫酸钾和阿拉伯树胶粉搅拌均匀并调节pH值为3.5-4,得到溶液Ⅰ;
(2)继续保持溶液Ⅰ在60℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与甲醛发生反应,AgNO3中的Ag+被还原得到颗粒状态的银,此时溶液Ⅰ变成溶液Ⅱ。
2.根据权利要求1所述的单晶纳米银粉的制备方法,其特征在于还包括步骤(3):对于步骤(2)得到颗粒状态的银后,所述溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质。
3.根据权利要求1所述的单晶纳米银粉的制备方法,其特征在于:所述步骤(1)采用水浴或沙浴对乙二醇加热并保持温度。
4.根据权利要求1所述的单晶纳米银粉的制备方法,其特征在于:所述步骤(2)中注射加入AgNO3的注射速率为5ml/min。
5.根据权利要求1所述的单晶纳米银粉的制备方法,其特征在于:所述硫酸钾、阿拉伯树胶粉和AgNO3的质量比为10:1:320。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910708085.1A CN110238384A (zh) | 2019-08-01 | 2019-08-01 | 单晶纳米银粉的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910708085.1A CN110238384A (zh) | 2019-08-01 | 2019-08-01 | 单晶纳米银粉的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110238384A true CN110238384A (zh) | 2019-09-17 |
Family
ID=67893820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910708085.1A Pending CN110238384A (zh) | 2019-08-01 | 2019-08-01 | 单晶纳米银粉的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110238384A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111570822A (zh) * | 2020-06-29 | 2020-08-25 | 河南金渠银通金属材料有限公司 | 一种纳米银粉及其制备方法 |
CN114082976A (zh) * | 2021-11-10 | 2022-02-25 | 电子科技大学 | 一种高结晶度纳米银粉制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101460271A (zh) * | 2006-06-02 | 2009-06-17 | E.I.内穆尔杜邦公司 | 制备可高度分散的球形银粉颗粒的方法和由此形成的银颗粒 |
CN102335751A (zh) * | 2011-09-22 | 2012-02-01 | 上海交通大学 | 一种高分散超细球形银粉的制备方法 |
US20120118105A1 (en) * | 2010-11-17 | 2012-05-17 | E. I. Du Pont De Nemours And Company | Reactor and continuous process for producing silver powders |
CN103394701A (zh) * | 2013-07-16 | 2013-11-20 | 宁波晶鑫电子材料有限公司 | 一种粒度均匀集中的超细银粉的制备方法 |
CN108941609A (zh) * | 2018-09-10 | 2018-12-07 | 河南金渠银通金属材料有限公司 | 太阳能电池导电银浆用高性能球形超细银粉及其制备方法 |
-
2019
- 2019-08-01 CN CN201910708085.1A patent/CN110238384A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101460271A (zh) * | 2006-06-02 | 2009-06-17 | E.I.内穆尔杜邦公司 | 制备可高度分散的球形银粉颗粒的方法和由此形成的银颗粒 |
US20120118105A1 (en) * | 2010-11-17 | 2012-05-17 | E. I. Du Pont De Nemours And Company | Reactor and continuous process for producing silver powders |
CN102335751A (zh) * | 2011-09-22 | 2012-02-01 | 上海交通大学 | 一种高分散超细球形银粉的制备方法 |
CN103394701A (zh) * | 2013-07-16 | 2013-11-20 | 宁波晶鑫电子材料有限公司 | 一种粒度均匀集中的超细银粉的制备方法 |
CN108941609A (zh) * | 2018-09-10 | 2018-12-07 | 河南金渠银通金属材料有限公司 | 太阳能电池导电银浆用高性能球形超细银粉及其制备方法 |
Non-Patent Citations (2)
Title |
---|
周馨我: "《功能材料学》", 31 March 2002, 北京理工大学出版社 * |
曲选辉: "《粉末冶金原理与工艺》", 31 May 2013, 冶金工业出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111570822A (zh) * | 2020-06-29 | 2020-08-25 | 河南金渠银通金属材料有限公司 | 一种纳米银粉及其制备方法 |
CN114082976A (zh) * | 2021-11-10 | 2022-02-25 | 电子科技大学 | 一种高结晶度纳米银粉制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102664275B (zh) | 一种燃料电池用碳载核壳型铜钯-铂催化剂及其制备方法 | |
CN110238384A (zh) | 单晶纳米银粉的制备方法 | |
CN109935847A (zh) | 一种低温燃料电池用担载型铂基合金催化剂的制备方法 | |
CN103861657B (zh) | 纳米银负载多孔二氧化硅的制备方法 | |
US20130061718A1 (en) | Process for preparing anisotropic metal nanoparticles | |
CN103079730B (zh) | 银粉及其制造方法 | |
CN107915257A (zh) | 一种钨青铜纳米分散体的制备方法及其应用 | |
CN113522279A (zh) | 一种用于十二氢乙基咔唑放氢的金钯催化剂及其制备方法 | |
CN112548113A (zh) | 银纳米颗粒的制备方法 | |
CN113731408A (zh) | MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法 | |
JP6573333B2 (ja) | 担体担持パラジウム微粒子コロイド、担体担持パラジウムコア白金シェル微粒子コロイド、担体担持パラジウムコア白金シェル微粒子触媒、及びそれらの製造方法ならびに電池。 | |
CN111940759A (zh) | 一种制备超细铂粉的方法 | |
CN101348254A (zh) | 一种中空纳米氧化硅球的制备方法 | |
Erikson et al. | Oxygen electroreduction on small (< 10 nm) and {100}-oriented Pt nanoparticles | |
CN110238386A (zh) | 超细立方单晶银粉的制备方法 | |
CN102211037B (zh) | 一种制备具有抗烧结性能的负载型金催化剂的方法 | |
CN101269417A (zh) | 纳米铂粉的制备方法 | |
RU2415707C2 (ru) | Способ приготовления платиновых катализаторов | |
CN110238385A (zh) | 圆饼状片式超细银粉的制备方法 | |
CN106693962A (zh) | 一种双贵金属纳米催化剂的制备方法 | |
JP2019198868A (ja) | 担体担持パラジウムコア白金シェル微粒子コロイド、担体担持パラジウムコア白金シェル微粒子触媒、及びそれらの製造方法ならびに電池 | |
CN113547116B (zh) | 一种棒状银粉及其制备方法 | |
CN114029050B (zh) | 一种负载型高载量碳包覆贵金属纳米颗粒催化剂合成方法 | |
CN115663216A (zh) | 一种燃料电池用氧化物修饰碳载铂催化剂及其制备方法 | |
JP2009059694A (ja) | 燃料電池用触媒インクとその製造方法およびそれを用いた燃料電池電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhou Bin Inventor after: Hu Xiaobin Inventor after: Shen Xianlin Inventor after: Hao Ruichen Inventor before: Hu Xiaobin Inventor before: Zhou Bin Inventor before: Shen Xianlin Inventor before: Hao Ruichen |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190917 |