CN110238386A - 超细立方单晶银粉的制备方法 - Google Patents

超细立方单晶银粉的制备方法 Download PDF

Info

Publication number
CN110238386A
CN110238386A CN201910708931.XA CN201910708931A CN110238386A CN 110238386 A CN110238386 A CN 110238386A CN 201910708931 A CN201910708931 A CN 201910708931A CN 110238386 A CN110238386 A CN 110238386A
Authority
CN
China
Prior art keywords
solution
silver powder
agno
preparation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910708931.XA
Other languages
English (en)
Inventor
胡晓斌
默罕默德·塔赫尔
沈仙林
周斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Jin Qu Yitong Metal Material Co Ltd
Original Assignee
Henan Jin Qu Yitong Metal Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Jin Qu Yitong Metal Material Co Ltd filed Critical Henan Jin Qu Yitong Metal Material Co Ltd
Priority to CN201910708931.XA priority Critical patent/CN110238386A/zh
Publication of CN110238386A publication Critical patent/CN110238386A/zh
Pending legal-status Critical Current

Links

Classifications

    • B22F1/0007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种超细立方单晶银粉的制备方法,包括以下步骤:(1)将乙二醇加热至170℃,保持170℃的温度加入NaBr、NaCl和聚乙烯吡咯烷酮搅拌均匀得到溶液Ⅰ;(2)继续保持溶液Ⅰ在170℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与乙二醇发生反应,AgNO3中的Ag+被还原得到立方状态的银,此时溶液Ⅰ变成溶液Ⅱ。本发明的超细立方单晶银粉的制备方法,在170℃的温度下,采用聚乙烯吡咯烷酮作为分散剂,同时配合NaBr、NaCl,三者的协同作用共同作用使得制备的银粉成为立方状的颗粒,制得的颗粒均匀而且分散度好。制备方法简单,便于操作。

Description

超细立方单晶银粉的制备方法
技术领域
本发明涉及银粉制备方法技术领域,特别涉及一种超细立方单晶银粉的制备方法。
背景技术
当功能性材料超细化后,粒径处于微米、亚微米和纳米尺寸时,其尺度介于原子、分子与块状材料之间,物理化学性质都有很大的变化,被称之为物质的第四状态。随着物质的超细化,其表面分子排列与电子排列分布结构以及晶体结构都发生相应的变化,产生了块状材料所不具有的奇特的小尺寸效应、表面效应、宏观量子隧道效应与量子尺寸效应,进而使得超细粉体与一般大体积材料相比,在物理、化学以及界面方面都有更优异的性质,从而在应用方面有意想不到的效果。
超细银粉为微米级粒度的银粉,其颗粒形态有球状、絮状、树枝状、棒状、线状、立方状、片状和微晶。超细银粉的粒径小、比表面积大。这种结构使其熔点岁随颗粒变小而降低,超细银粉表面原子的原子间相互作用及电子能谱同银粉内部均有不同,具有很大的化学活性,因此,在其使用于电子元器件上时,与表面有关的吸附、催化、扩散、烧结等特性明显与大粒径的银粉末有显著不同,有良好的导电性能。另外,超细功能的体积效应(即体积缩小,粒子内的原子数目减少而引起的效应)使得能带点的能级间隔加大,其质子振动和能级均不连续。活性强,易于进行各种化学反应,有很强的的吸附能力和催化活性。超细粒子的表面有许多悬空键,具有不饱和性质,从而导致超细银粉的特殊吸附现象和催化性质。
超细银粉的制备方法包括气相法、固相法和液相法。气相法的投资大、能耗高、产率低;固相法制备的银粉粒径偏大而且粒径分布范围宽;液相法工艺过程比较简单,粉体颗粒大小和形状容易控制,是目前低成本制备银粉常用的方法。现有技术中有很多采用液相法制备超细银粉的方法,主要采用还原剂如葡萄糖、水合肼、硼氰化钠、抗坏血酸等在液相中还原银盐溶液得到超细银粉,制得的银粉有球状、树枝状等,但是现有技术中液相法制备的超细银粉分散度差,还没有采用化学方法制备超细立方单晶银粉的报道,例如申请号为2015107269865的树叶状银粉的制备方法。
发明内容
有鉴于此,本发明的目的在于提供一种采用液相还原法制备超细立方单晶银粉的方法,制得的银粉分散性好,而且粒径分布均匀。具体而言通过以下技术方案实现:
本发明的超细立方单晶银粉的制备方法,包括以下步骤:
(1)将乙二醇加热至170℃,保持170℃的温度加入NaBr、NaCl和聚乙烯吡咯烷酮搅拌均匀得到溶液Ⅰ;
(2)继续保持溶液Ⅰ在170℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与乙二醇发生反应,AgNO3中的Ag+被还原得到立方状态的银,此时溶液Ⅰ变成溶液Ⅱ。
进一步,还包括步骤(3):对于步骤(2)得到立方状态的银后,所述溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质。先冷却再加入丙酮,防止丙酮被氧化
进一步,所述步骤(1)采用沙浴对乙二醇加热并保持温度。
进一步,所述步骤(2)中注射加入AgNO3的注射速率为5ml/h。
进一步,所述NaBr、NaCl、聚乙烯吡咯烷酮和AgNO3的质量比为71:71:1000:532。
本发明的有益效果:本发明的超细立方单晶银粉的制备方法,在170℃的温度下,采用聚乙烯吡咯烷酮作为分散剂,同时配合NaBr、NaCl,三者的协同作用共同作用使得制备的银粉成为立方状的颗粒,制得的颗粒均匀而且分散度好。制备方法简单,便于操作。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1和图2为采用本发明方法制得的超细立方单晶银粉的电镜扫描图。
具体实施方式
本实施例中的超细立方单晶银粉的制备方法,首先将40ml的乙二醇在170℃的沙浴中加热20min加热至170℃,然后在保持170℃温度并搅拌的条件下加入14.2mgNaBr、14.2mgNaCl和聚乙烯吡咯烷酮(polyvinyl pyrrolidone,简称PVP,采用平均相对分子质量为130000的聚乙烯吡咯烷酮),搅拌30min得到溶液Ⅰ。取106.4mg分析纯的固体AgNO3溶入1ml水中形成AgNO3溶液,继续保持170℃温度并搅拌的条件下在用注射泵向溶液中注射配制的AgNO3溶液,注射速率为5ml/h,在此条件下AgNO3与乙二醇发生反应,AgNO3中的Ag+被还原得到立方状态的银,此时溶液Ⅰ变成溶液Ⅱ。得到立方状态的银后,溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮2ml,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质,重复清洗直到清洗干净为止。
液相还原制备银粉过程中,需要克服制备出来的颗粒之间的团聚问题。粉体的团聚主要存在于两个过程中,其一是在还原过程中,首先还原出来的超细颗粒由于搅拌热运动等因素互相碰撞团聚在一起。本发明中采用聚乙烯吡咯烷酮作为分散剂,同时配合NaBr、NaCl,三者的协同作用共同作用使得制备的银粉成为立方状的颗粒,制得的颗粒均匀而且分散度好,如图1和图2所示,制得的银粉为立方状,粒度均匀并且分散度好。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种超细立方单晶银粉的制备方法,其特征在于包括以下步骤:
(1)将乙二醇加热至170℃,保持170℃的温度加入NaBr、NaCl和聚乙烯吡咯烷酮搅拌均匀得到溶液Ⅰ;
(2)继续保持溶液Ⅰ在170℃的温度下注射加入AgNO3溶液,注射加入AgNO3溶液的过程保持对溶液Ⅰ的搅拌,在此条件下AgNO3与乙二醇发生反应,AgNO3中的Ag+被还原得到立方状态的银,此时溶液Ⅰ变成溶液Ⅱ。
2.根据权利要求1所述的超细立方单晶银粉的制备方法,其特征在于还包括步骤(3):对于步骤(2)得到立方状态的银后,所述溶液Ⅱ在25℃下冷却反应,然后缓慢加入丙酮,然后在6000rpm下离心10分钟,用乙醇清洗除去杂质。
3.根据权利要求1所述的超细立方单晶银粉的制备方法,其特征在于:所述步骤(1)采用沙浴对乙二醇加热并保持温度。
4.根据权利要求1所述的超细立方单晶银粉的制备方法,其特征在于:所述步骤(2)中注射加入AgNO3的注射速率为5ml/h。
5.根据权利要求1所述的超细立方单晶银粉的制备方法,其特征在于:所述NaBr、NaCl、聚乙烯吡咯烷酮和AgNO3的质量比为71:71:1000:532。
CN201910708931.XA 2019-08-01 2019-08-01 超细立方单晶银粉的制备方法 Pending CN110238386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910708931.XA CN110238386A (zh) 2019-08-01 2019-08-01 超细立方单晶银粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910708931.XA CN110238386A (zh) 2019-08-01 2019-08-01 超细立方单晶银粉的制备方法

Publications (1)

Publication Number Publication Date
CN110238386A true CN110238386A (zh) 2019-09-17

Family

ID=67893865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910708931.XA Pending CN110238386A (zh) 2019-08-01 2019-08-01 超细立方单晶银粉的制备方法

Country Status (1)

Country Link
CN (1) CN110238386A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570822A (zh) * 2020-06-29 2020-08-25 河南金渠银通金属材料有限公司 一种纳米银粉及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627574A (ja) * 1992-07-06 1994-02-04 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
CN102328094A (zh) * 2011-09-28 2012-01-25 上海交通大学 一种粒度均匀超细银粉的制备方法
CN102554258A (zh) * 2012-02-03 2012-07-11 济南大学 一种在水溶液里制备金属银纳米结构的方法
CN107685156A (zh) * 2017-10-11 2018-02-13 中国科学院合肥物质科学研究院 银纳米立方体的制备方法
CN108356284A (zh) * 2018-03-29 2018-08-03 景德镇陶瓷大学 一种银纳米立方体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627574A (ja) * 1992-07-06 1994-02-04 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
CN102328094A (zh) * 2011-09-28 2012-01-25 上海交通大学 一种粒度均匀超细银粉的制备方法
CN102554258A (zh) * 2012-02-03 2012-07-11 济南大学 一种在水溶液里制备金属银纳米结构的方法
CN107685156A (zh) * 2017-10-11 2018-02-13 中国科学院合肥物质科学研究院 银纳米立方体的制备方法
CN108356284A (zh) * 2018-03-29 2018-08-03 景德镇陶瓷大学 一种银纳米立方体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEKSEY RUDITSKIY, YOUNAN XIA: "Toward the Synthesis of Sub-15 nm Ag Nanocubes with Sharp Corners and Edges: The Roles of Heterogeneous Nucleation and Surface Capping", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570822A (zh) * 2020-06-29 2020-08-25 河南金渠银通金属材料有限公司 一种纳米银粉及其制备方法

Similar Documents

Publication Publication Date Title
CN110694616B (zh) 一种普适性制备负载型金属单原子/金属纳米颗粒的方法
CN105431230B (zh) 在载体上形成贵金属纳米粒子的方法
Nguyen et al. Chemical synthesis and characterization of palladium nanoparticles
Singh et al. Synthesis of bimetallic Pt–Cu nanoparticles and their application in the reduction of rhodamine B
CN102664275B (zh) 一种燃料电池用碳载核壳型铜钯-铂催化剂及其制备方法
CN110518257B (zh) 一种碳载过渡金属@Pt核壳结构催化剂的制备方法
US8524420B2 (en) Method for preparing nano-sized metal particles on a carbon support
CN109935847A (zh) 一种低温燃料电池用担载型铂基合金催化剂的制备方法
CN110578069B (zh) 一种金属及合金纳米晶的制备方法
CN103157465A (zh) 核壳型负载催化剂的制备方法及形成的核壳型负载催化剂
CN111451521B (zh) 一种化学法制备高振实密度球形银粉的方法
Zheng et al. Surfactant-free gold nanoparticles: rapid and green synthesis and their greatly improved catalytic activities for 4-nitrophenol reduction
CN109841856A (zh) 一种燃料电池用单分散核壳纳米催化剂的制备方法
CN110238384A (zh) 单晶纳米银粉的制备方法
CN109126820A (zh) 核壳结构Au@PtCu纳米晶及其制备方法和应用
CN110238386A (zh) 超细立方单晶银粉的制备方法
CN111940759A (zh) 一种制备超细铂粉的方法
CN102211037B (zh) 一种制备具有抗烧结性能的负载型金催化剂的方法
CN114618551A (zh) 一种负载型纳米合金催化剂及普适性制备方法
CN112490453B (zh) 一种氮磷共掺杂碳载铂钴基纳米合金催化剂及其制备方法与应用
Erikson et al. Oxygen electroreduction on small (< 10 nm) and {100}-oriented Pt nanoparticles
CN110238385A (zh) 圆饼状片式超细银粉的制备方法
CN102133526A (zh) 一种钌炭催化剂的制备方法
CN106693962A (zh) 一种双贵金属纳米催化剂的制备方法
CN1171670C (zh) 一种高担载量双组元或多组元贵金属催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Bin

Inventor after: Hu Xiaobin

Inventor after: Shen Xianlin

Inventor after: Mohammed Taher

Inventor before: Hu Xiaobin

Inventor before: Mohammed Taher

Inventor before: Shen Xianlin

Inventor before: Zhou Bin

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20190917

RJ01 Rejection of invention patent application after publication