CN102211037B - 一种制备具有抗烧结性能的负载型金催化剂的方法 - Google Patents

一种制备具有抗烧结性能的负载型金催化剂的方法 Download PDF

Info

Publication number
CN102211037B
CN102211037B CN 201110091645 CN201110091645A CN102211037B CN 102211037 B CN102211037 B CN 102211037B CN 201110091645 CN201110091645 CN 201110091645 CN 201110091645 A CN201110091645 A CN 201110091645A CN 102211037 B CN102211037 B CN 102211037B
Authority
CN
China
Prior art keywords
gold
catalyst
molecular sieve
fdu
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110091645
Other languages
English (en)
Other versions
CN102211037A (zh
Inventor
范杰
闫晓庆
王晓娟
马桂岑
汤禹
徐少丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201110091645 priority Critical patent/CN102211037B/zh
Publication of CN102211037A publication Critical patent/CN102211037A/zh
Application granted granted Critical
Publication of CN102211037B publication Critical patent/CN102211037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

一种制备具有抗烧结性能的负载型金催化剂的新方法,属于催化材料的制备领域。金属纳米催化剂工业应用的最大问题在于在高温高压等苛刻反应条件下会发生烧结从而降低了其催化性能。本发明介绍一种制备具有抗烧结性能负载型金催化剂的新方法,将均一的金纳米颗粒负载于超大的笼状介孔孔道中,通过提高纳米颗粒的负载量(>5wt%),提高金纳米颗粒的抗烧结性能,催化剂在650oC条件下热处理也没有发现严重的烧结现象。本发明的特点在于:1)发明中使用的载体为具有特定介孔结构的FDU-12介孔分子筛;2)金催化剂的金负载量超过5wt%。

Description

一种制备具有抗烧结性能的负载型金催化剂的方法
技术领域
本发明属于纳米催化剂的制备领域,特别提供了一种简单制备出具有高温抗烧结性能负载型金催化剂的方法。 
技术背景
金属纳米催化剂(以贵金属为主,如Pt,Rh,Ag,Pd,Au, 以及非贵金属Ni,Fe,Cu,Co等)以其优良的活性、选择性及稳定性而倍受重视,广泛用于加氢、脱氢、氧化、还原、异构化、芳构化、裂化等反应。许多工业催化剂都是将金属纳米颗粒负载在多孔材料的表面以提高它们的分散度和稳定性。虽然金属纳米颗粒在很多反应中都表现出很高的催化活性和独特的尺寸效应,但由于这些纳米颗粒表面存在大量低配位的金属原子、具有很高的表面自由能,在高温反应条件下这些纳米颗粒极容易烧结长大,导致催化活性下降甚至丧失,极大限制了金属纳米颗粒催化剂的应用推广。因此如何提高金属纳米颗粒催化剂的抗烧结性能是亟待解决的科学问题,也是金属纳米催化剂工业应用取得突破的关键问题之一。 
为了抑制金属纳米颗粒的烧结长大,人们首先是从金属着手。Cao等人将具有更高熔点的金属Rh(熔点2430 oC)引入到Pt(熔点1773.5 oC)纳米颗粒中,希望通过合金化的方法降低原来Pt纳米颗粒表面原子蒸汽压,从而抑制Ostwald熟化过程。但这一策略不仅改变了催化剂的金属成分,而且引入的高熔点贵金属价格一般比较昂贵,对于降低催化剂成本不利。将金属纳米颗粒负载在惰性载体上也是最常用的一种提高金属颗粒抗烧结性能的方法。许多工业催化剂都是将金属纳米颗粒低量负载在多孔惰性材料的表面,使金属颗粒之间相互接触的机会降低,减弱颗粒融合烧结作用,以提高金属纳米颗粒在惰性载体上的分散度和稳定性。人们还可以设计载体,通过载体的物理限制作用来抑制金属纳米颗粒的烧结生长。例如用惰性材料对金属纳米颗粒进行封装或包裹,形成限制层(壳)-纳米颗粒的核壳结构。这种惰性保护层,将金属纳米颗粒隔绝开来,避免颗粒迁移融合烧结。必须强调的是,不管是哪种设计载体的方案,人们不仅要考虑载体带来的抗烧结能力,还必须保证催化反应的底物分子能不受阻碍的与金属纳米颗粒表面的催化活性中心接触。 
发明内容
本发明的目的在于提出一种将均一的金纳米颗粒负载于超大的笼状介孔孔道中,通过提高金纳米颗粒的负载量和调控介孔孔道结构,控制其尺寸分布,以期增强纳米金颗粒抗烧结性能的新方法。与传统的多孔载体不同,特殊的超大笼状介孔孔道不仅可以限制纳米颗粒在介孔孔道表面的迁移团聚,更为重要的是在高的纳米颗粒负载浓度下,多个金属纳米颗粒处于同一介孔笼中,纳米颗粒表面原子迁移存在很大的相互作用,Ostwald熟化作用受到抑制,从而减弱金属纳米颗粒在高温下的烧结现象。 
本发明的催化剂载体为介孔二氧化硅分子筛,活性组分为金纳米颗粒,利用自组装的方法,通过调节水热温度及盐浓度合成具有孔空穴介孔结构的二氧化硅分子筛,再将提前合成出的均一尺寸的金颗粒负载到介孔二氧化硅中,在经过焙烧制得高分散性,高活性,高稳定性且在高温下具有抗烧结性能的催化剂。 
为了实现上述目的是通过以下制备工艺的 
1)采用软模板法合成出孔道大小均匀、排列有序、孔径可调节的介孔EP-FDU-12分子筛。通过调节合成过程中盐和表面活性剂F-127浓度,采用1,3,5-三甲基苯(TMB)作为扩孔剂,控制合成温度和水热温度实现介孔结构可控可调。
2)金纳米颗粒制备与负载。采用弱极性溶剂中还原金属前驱体制备金属纳米颗粒,控制还原温度,选择适合的还原剂,实现金纳米颗粒尺寸的合成控制。 
3)通过偶极-偶极相互作用在非水体系中完成金纳米颗粒在极性介孔二氧化硅分子筛载体上的负载,在一定温度下将制得的催化剂进行焙烧。 
本发明的具体技术方案如下: 
       本发明是一种制备具有抗烧结性能的负载型金催化剂的新方法,以具有特定孔空穴结构的介孔二氧化硅分子筛FDU-12为载体,通过提高纳米金的负载量来增强催化剂的抗烧结性能,具体合成步骤如下:1)、合成具有三维孔空穴结构的FDU-12介孔二氧化硅分子筛载体;2)、制备具有均一尺寸的金纳米颗粒;3)、将一定量的金纳米颗粒负载于FDU-12载体上,在一定温度下焙烧后即制得具有抗烧结性的负载型金催化剂。
本发明所述的介孔二氧化硅分子筛载体的合成方法,其制备步骤如下: 
(1)、采用软模板法合成出孔道大小均匀、排列有序、孔径可调节的介孔FDU-12分子筛,通过调节合成过程中盐和表面活性剂F-127浓度,采用1,3,5-三甲基苯(TMB)作为扩孔剂,控制合成温度(10OC-50OC)和水热温度(100OC-220OC)实现介孔二氧化硅分子筛的介孔结构可控可调;
(2)、将(1)中得到的介孔二氧化硅分子筛在一定比例的硝酸和过氧化氢混合液中进行微波消解以去除表面活性剂,再将得到的样品在70OC下处理5-10h即可得到孔径在12nm-60nm,窗口尺寸在4-30nm的有序的介孔二氧化硅分子筛。
本发明所述的金纳米颗粒的合成方法,其制备步骤如下: 
(1)、采用苯或甲苯等弱极性溶剂,采用硫醇为保护剂,控制还原温度为40OC-100OC,选择适合的无机还原剂硼氢化钠和有机还原剂硼胺,恒温反应3-10h ;
(2)、加入一定量的乙醇为沉淀剂将(1)中得到的混合液进行离心后干燥即可得到尺寸分布均一的金纳米颗粒,通过调变还原温度和使用的溶剂,金纳米颗粒的尺寸可在为3-8nm调控。
本发明所述的金纳米颗粒负载于FDU-12载体上的方法,其负载步骤如下: 
     (1)、将权3中制备得到的一定量的金纳米颗粒溶解于非水溶液如氯仿中,称取所需质量的载体FDU-12,在恒温条件下进行搅拌吸附5-24h;
     (2)、将 (1)中的混合物进行离心干燥得到催化剂的前体,在350OC-650OC进行焙烧5-24h以除去催化剂中的硫醇,最后得到wt%为0%-70%的负载型的纳米金催化剂。
和现有技术相比,本发明具有如下特点: 
      1)本研究中使用的载体FDU-12是一种具有高度有序的面心立方对称结构的介孔分子筛,介孔笼的尺寸可以在12-60nm之间调控;
      2)提高金纳米颗粒在FDU-12的负载量可以增强其抗烧结性能。
附图说明
图1为尺寸为3.3纳米的单分散纳米金颗粒的TEM图; 
图2为纳米金分散到氯仿溶液中的紫外可见吸收光谱;
图3为介孔FDU-12分子筛的N2吸附脱附曲线;
图4为介孔FDU-12分子筛的小角度X光散射(SAXS);
图5为孔径为27nm,窗口尺寸9nm的介孔二氧化硅负载的金催化剂,金:二氧化硅质量比=5:100的在550OC焙烧的TEM图;
图6为孔径为27nm,窗口尺寸9nm的介孔二氧化硅负载的金催化剂,金:二氧化硅质量比=35:100的在550OC焙烧的TEM图;
图7为金纳米颗粒的尺寸在介孔二氧化硅(孔径27nm,窗口尺寸9nm)经550OC焙烧后负载量变化对尺寸分布的影响;
图8为金纳米颗粒的尺寸在介孔二氧化硅(孔径36nm,窗口尺寸9nm)经650OC焙烧后负载量变化对尺寸分布的影响。
具体实施方式
下面通过实施例对本发明做进一步说明: 
实施例1-3:具有特定介孔结构的FDU-12的合成。
实施例1
     将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解得到介孔二氧化硅分子筛,根据氮气吸附脱附曲线可以计算所制备的FDU-12载体的孔径为27nm,窗口尺寸为9nm (如图3)。
实施例2
  将0.5g F127,1.25gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入4.46ml正硅酸乙酯在40OC下反应1天,然后将反应液在100OC下水热1天,抽滤干燥后微波消解得到孔径为27nm,窗口尺寸为6. 9nm的FDU-12载体(如图3)。
实施例3
将1.0g F127,1.25gKCl加到50ml1MHCl中搅拌至澄清,加入1.4ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在14OC下反应1天,然后将反应液在170OC下水热1天,抽滤干燥后微波消解得到孔径为36nm,窗口尺寸为9nm的FDU-12载体,通过小角X射线衍射(SAXS)图可以看出所制备的介孔二氧化硅FDU-12分子筛具有完美的面心立方(fcc)的介观结构(如图4)。
实施例4:单分散性纳米金颗粒的制备。
实施例4
  将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥得到单分散的纳米金颗粒(如图1)。从TEM图可以看出,制得的纳米金颗粒具有单分散性,尺寸在3.3左右。当把纳米金颗粒重新分散到氯仿中测得其最大吸收波长为500nm (如图2)。
实施例5-9: 通过调节金纳米颗粒的负载量来提高纳米催化剂的抗烧结性能。
实施例5
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解;
3、将5mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=5:100的催化剂。TEM表征出来位于二氧化硅孔道中的纳米金的粒径在25.6 ±5.2nm范围(如图5)。从TEM图可以看出当纳米金的负载量较低的情下,焙烧后的纳米金颗粒的尺寸较大,而且尺寸分布较宽。
实施例6
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解;
3、将10mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=10:100的催化剂,TEM表征出来位于二氧化硅孔道中的纳米金的粒径在22.6 ±6.9nm范围。
实施例7
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解;
3、将20mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=20:100的催化剂。TEM表征出来位于二氧化硅孔道中的纳米金的粒径在12.1 ±2.6nm范围。
实施例8
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解;
3、将32mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=32:100的催化剂。TEM表征出来位于二氧化硅孔道中的纳米金的粒径在5.9 ±1.4nm范围。
实施例9
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,2.5gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在20OC下反应1天,然后将反应液在120OC下水热1天,抽滤干燥后微波消解;
3、将35mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=35:100的催化剂,TEM表征出来位于二氧化硅孔道中的纳米金的粒径在5.6 ±1.2nm范围(如图6)。从TEM图可以看出当纳米金的负载量较高的情下,焙烧后的纳米金颗粒的尺寸变小了,而且尺寸分布较窄。
    实施例5-9中的介孔SiO2通过BET测得的孔径为27nm,窗口尺寸为9nm(如图3)。随着负载量的提高(从5wt%-35wt%),焙烧后的纳米金颗粒的尺寸变小,从负载量较低时的26nm到负载量较高时的6nm,尺寸分布也变窄了,从较低负载量时的6nm到较高负载量时的1.2nm(如图7)。 
实施例10- 11:通过调节介孔SiO2的孔径来提高金属纳米催化剂的抗烧结性能。
实施例10
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将1.0g F127,1.25gKCl加到50ml1MHCl中搅拌至澄清,加入1.4ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在14OC下反应1天,然后将反应液在170OC下水热1天,抽滤干燥后微波消解;
3、将10mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=10:100的催化剂,TEM表征出来位于二氧化硅孔道中的纳米金的粒径在4.3+0.9nm范围。
上述实施例中介孔SiO2通过BET测得的孔径为36nm。随着负载量的提高(从5wt%-35wt%),焙烧后的纳米金颗粒的尺寸变小,从负载量较低时的7nm到负载量较高时的4nm,尺寸分布也变窄了,从较低负载量时的1.7nm到较高负载量时的0.9nm(如图8)。 
实施例11
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将1.0g F127,1.25gKCl加到50ml1MHCl中搅拌至澄清,加入1.4ml1,3,5-三甲苯后加入2.23ml正硅酸乙酯在30OC下反应1天,然后将反应液在170OC下水热1天,抽滤干燥后微波消解;
3、将10mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2OC/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=10:100的催化剂。TEM表征出来位于二氧化硅孔道中的纳米金的粒径在4.7+1.2nm范围。
上述实施例中介孔SiO2通过BET测得的孔径为42nm。 
实施例12:通过调节介孔SiO2的窗口尺寸来增强纳米催化剂的抗烧结性能。
实施例12
催化剂制备过程如下:
1、将0.2gAuPPh3Cl溶解于20ml苯中,加入0.4ml十二烷基硫醇,置于70OC油浴中搅拌20分钟至溶液澄清,加入47mgNaBH4反应3个小时,加入20ml乙醇离心干燥;
2、将0.5g F127,1.25gKCl加到30ml2MHCl中搅拌至澄清,加入0.7ml1,3,5-三甲苯后加入4.46ml正硅酸乙酯在40OC下反应1天,然后将反应液在100OC下水热1天,抽滤干燥后微波消解;
3、将10mg步骤1制备的纳米金溶于20ml氯仿中,称取步骤2中100mg二氧化硅加入溶液中在28OC水浴中搅拌吸附5个小时后离心干燥;
4、将步骤3中制备的催化剂前体置于马弗炉中焙烧,以2C/分钟升至550OC焙烧5个小时,得到纳米金:二氧化硅质量比=10:100的催化剂。TEM表征出来位于二氧化硅孔道中的纳米金的粒径在4.9 ±1.2nm范围。
上述实施例中介孔SiO2通过BET测得的窗口尺寸为6.9nm。 

Claims (1)

1.一种制备具有抗烧结性能的负载型金催化剂的方法,其特征在于,以具有特定孔空穴结构的介孔二氧化硅分子筛FDU-12为载体,通过提高纳米金的负载量来增强催化剂的抗烧结性能,具体合成步骤如下:
1)、合成具有三维孔空穴结构的FDU-12介孔二氧化硅分子筛载体,其制备步骤如下:(1)、采用软模板法合成出孔道大小均匀、排列有序、孔径可调节的介孔FDU-12分子筛,通过调节合成过程中盐和表面活性剂F-127浓度,采用1,3,5-三甲基苯(TMB)作为扩孔剂,控制合成温度在10℃-50℃之间和水热温度在100℃-220℃之间,实现介孔二氧化硅分子筛的介孔结构可控可调;(2)、将(1)中得到的介孔二氧化硅分子筛在一定比例的硝酸和过氧化氢混合液中进行微波消解以去除表面活性剂,再将得到的样品在70℃下处理5-10h即可得到孔径在12nm-60nm,窗口尺寸在4-30nm的有序的介孔二氧化硅分子筛;
2)、制备具有均一尺寸的金纳米颗粒;其制备步骤如下:(a)、采用苯或甲苯为溶剂,采用硫醇为保护剂,以AuPPh3Cl为金源,控制还原温度为40℃-100℃,选择适合的无机还原剂硼氢化钠和有机还原剂硼胺,恒温反应3-10h ;(b)、加入一定量的乙醇为沉淀剂将(a)中得到的混合液进行离心后干燥即可得到尺寸分布均一的金纳米颗粒,通过调变还原温度和使用的溶剂,使金纳米颗粒的尺寸在为3-8nm;
3)、将一定量的金纳米颗粒负载于FDU-12载体上,在一定温度下焙烧后即制得具有抗烧结性的负载型金催化剂,其负载步骤如下:(c)、将步骤2)中制备得到的一定量的金纳米颗粒溶解于非水溶液氯仿中,称取所需质量的载体FDU-12,在恒温条件下进行搅拌吸附5-24h;(d)、将 (c)中的混合物进行离心干燥得到催化剂的前体,在350℃-650℃进行焙烧5-24h以除去催化剂中的硫醇,最后得到wt%为5%-70%的负载型的纳米金催化剂。 
CN 201110091645 2011-04-13 2011-04-13 一种制备具有抗烧结性能的负载型金催化剂的方法 Active CN102211037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110091645 CN102211037B (zh) 2011-04-13 2011-04-13 一种制备具有抗烧结性能的负载型金催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110091645 CN102211037B (zh) 2011-04-13 2011-04-13 一种制备具有抗烧结性能的负载型金催化剂的方法

Publications (2)

Publication Number Publication Date
CN102211037A CN102211037A (zh) 2011-10-12
CN102211037B true CN102211037B (zh) 2013-04-03

Family

ID=44742709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110091645 Active CN102211037B (zh) 2011-04-13 2011-04-13 一种制备具有抗烧结性能的负载型金催化剂的方法

Country Status (1)

Country Link
CN (1) CN102211037B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921956A (zh) * 2012-11-01 2013-02-13 河南大学 一种有机相制备Au和Agx(Au)1-x纳米晶的方法
CN105618038B (zh) * 2014-10-28 2018-05-11 中国石油化工股份有限公司 负载型金催化剂及其制备方法和制备对氨基苯酚的方法
CN106693963A (zh) * 2016-12-28 2017-05-24 南京理工大学 新型金纳米颗粒修饰二氧化硅纳米片催化剂的制备方法
CN107442160B (zh) * 2017-06-29 2019-10-22 浙江大学 一种抗烧结负载型Pd基催化材料的制备方法
CN114784306A (zh) * 2022-05-06 2022-07-22 青岛创启新能催化科技有限公司 一种用于燃料电池的阳极催化剂Pt/C的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698954A (zh) * 2004-05-17 2005-11-23 中国科学院大连化学物理研究所 一种在硅基材料上原位组装高分散纳米银粒子的方法
CN101347741A (zh) * 2008-07-29 2009-01-21 南京航空航天大学 磷-有序介孔碳复合物的制备方法及以此复合物作为载体的燃料电池催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698954A (zh) * 2004-05-17 2005-11-23 中国科学院大连化学物理研究所 一种在硅基材料上原位组装高分散纳米银粒子的方法
CN101347741A (zh) * 2008-07-29 2009-01-21 南京航空航天大学 磷-有序介孔碳复合物的制备方法及以此复合物作为载体的燃料电池催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jie Fan,et al.."Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties".《Angewandte Chemie》.2003,第42卷3146-3150.
Jie Fan,et al.."Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties".《Angewandte Chemie》.2003,第42卷3146-3150. *

Also Published As

Publication number Publication date
CN102211037A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
CN109453773B (zh) 一种负载型双金属核壳结构催化剂及其制备方法
CN102211037B (zh) 一种制备具有抗烧结性能的负载型金催化剂的方法
CN102553579B (zh) 一种高分散负载型纳米金属催化剂的制备方法
CN105597739B (zh) 一种Pt@CNTs催化剂及其制备和应用
CN108579758B (zh) 一种可控的双金属核壳纳米结构、催化剂、其制法与应用
Singh et al. Synthesis of bimetallic Pt–Cu nanoparticles and their application in the reduction of rhodamine B
Subhan et al. Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue catalytic reduction
CN106914255B (zh) 一种非合金金属复合物及其制备方法和应用
JP6185073B2 (ja) 封入ナノ粒子
CN107020147A (zh) 一种封装金属氧化物或金属纳米颗粒的mfi结构片层状分子筛催化剂、其制备方法及用途
CN113600209A (zh) 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
Wang et al. The effects of Au species and surfactant on the catalytic reduction of 4-nitrophenol by Au@ SiO 2
WO2012115073A1 (ja) 金属-炭素複合材料及びその製造方法
CN103007963A (zh) 一种以石墨烯为载体的双金属纳米合金复合材料的制备方法
CN103447038B (zh) 介孔TiO2负载纳米铁催化剂的制备方法
CN104741118A (zh) 一种高分散负载型贵金属合金催化剂的制备方法
CN109092326B (zh) 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN106881083A (zh) 一种尺寸可控的金纳米粒子催化剂合成方法及金催化剂和应用
CN108212175A (zh) 一种多孔Co3O4单分散微球负载Au-Pd合金纳米催化剂及其制备方法
CN116351477A (zh) 一种除甲醛负载型Pt6团簇催化剂及其制备方法
CN113351214A (zh) 一种碳掺杂二氧化硅负载镍铜合金及其制备方法和应用
CN106693962A (zh) 一种双贵金属纳米催化剂的制备方法
CN108213460B (zh) 一种单分散的金银合金纳米颗粒的微波制备方法
CN107442160B (zh) 一种抗烧结负载型Pd基催化材料的制备方法
CN102580725A (zh) 一种纳米单晶Pd核壳型催化剂的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant