CN113731408A - MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法 - Google Patents

MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法 Download PDF

Info

Publication number
CN113731408A
CN113731408A CN202111025571.7A CN202111025571A CN113731408A CN 113731408 A CN113731408 A CN 113731408A CN 202111025571 A CN202111025571 A CN 202111025571A CN 113731408 A CN113731408 A CN 113731408A
Authority
CN
China
Prior art keywords
moo
catalyst
noble metal
carrier
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111025571.7A
Other languages
English (en)
Other versions
CN113731408B (zh
Inventor
张炳森
牛一鸣
普颖慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111025571.7A priority Critical patent/CN113731408B/zh
Publication of CN113731408A publication Critical patent/CN113731408A/zh
Application granted granted Critical
Publication of CN113731408B publication Critical patent/CN113731408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种MoO3载体包裹贵金属纳米粒子催化剂及其制备方法,属于负载型金属催化剂技术领域。催化剂为NM@MoO3,NM为Pd、Pt等贵金属颗粒。在水热条件下,利用钼酸钠和浓硝酸制备MoO3纳米材料,通过浸渍法分别将贵金属盐负载到MoO3载体上,在空气气氛下退火处理后得到NM/MoO3催化剂,然后经超声波处理,贵金属被载体MoO3均匀包裹,得到NM@MoO3催化剂。本发明通过超声处理制备的纳米MoO3负载贵金属包裹型催化剂涉及一种纳米催化材料,制备过程简单,原料易得,在多相催化领域的发展具有广阔的前景。

Description

MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
技术领域
本发明涉及纳米金属负载型催化剂技术领域,具体涉及一种MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法。
背景技术
负载型金属催化剂是将具有催化活性的金属组分负载在高比表面积载体上的一类催化剂,具有活性组分高度分散、机械和化学稳定性高等特点,在能源存储、环境保护以及化学品转化等领域发挥重要作用。其中,利用金属-载体间相互作用实现对负载型金属催化剂的精细调控和可控制备一直以来是工业催化领域研究的重要内容。通过控制预处理条件能够在金属纳米粒子表面引入包裹层,实现对金属纳米颗粒的热、化学稳定性的提升,能够有效抑制催化剂活性组分团聚或流失导致的催化剂失活。此外,在纳米粒子表面引入的包裹层还能够提供更多的金属-氧化物界面位点,提高催化性能。
超声化学是一门新兴学科,利用超声产生的特殊声化学作用(如表面损伤的产生,高速粒子间的碰撞和脆性固体的破碎等),能够产生许多具有不同化学结果的物理效应,从而实现对新型纳米材料的制备和改性。此外,超声波提供的能量能够克服分子间的范德华力产生物理剥除作用,导致纳米材料的结构被破坏。合理有效的利用超声波对纳米材料产生的物理剥除作用为设计和制备包裹型催化剂提供了良好的思路。
MoO3是一种由变形八面体MoO6为基本结构单元构成的片层状化合物,层与层之间靠范德华力作用交错堆积排列,这种独特的结构赋予了其特殊的物理化学性能,在烃类的选择氧化和氨氧化过程中表现出良好的催化活性。此外,范德华力是一种相对比较弱的力,导致层状MoO3结构较容易被破坏,在外界的影响下,层间可以相互错位平移进而改变层间距离,当层间距增加到一定程度时,层与层之间的作用力会减弱直至最后消失,即发生剥离。剥离后的层状MoO3通过迁移能够对负载金属表面进行有效的修饰,表面覆盖层的引入可以进一步改善催化剂的稳定性,实现对负载型金属化剂表界面结构的有效调控。
发明内容
本发明的目的在于提供一种MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法,利用MoO3特殊的片层结构,通过超声实现载体的部分剥离,进而对负载贵金属纳米粒子表面进行有效修饰。该方法不仅制备过程简便,而且表面覆盖层的引入能够有效的改善催化剂的稳定性,为负载型金属催化剂的制备提供了一种有效策略。
为了实现上述目的,本发明所采用的技术方案是:
一种MoO3载体包裹贵金属纳米粒子的负载型催化剂,该催化剂是由贵金属活性组分负载在纳米MoO3载体上并被载体均匀包裹形成,所述纳米MoO3载体为形貌完整的纳米片层结构,所述贵金属活性组分包括金属钯或铂中的一种。
所述MoO3载体包裹贵金属纳米粒子负载型催化剂的制备方法,首先通过水热法合成MoO3纳米材料,然后通过浸渍法将钯盐或铂盐负载到MoO3载体上,采用热处理得到NM/MoO3催化剂;再利用超声波处理得到包覆型NM@MoO3催化剂,即所述的包裹型纳米MoO3负载贵金属催化剂。该方法包括如下步骤:
(1)纳米MoO3的合成:将钼酸钠溶于定量去离子水中,磁力搅拌,得到均匀的水溶液,取稀释后的浓硝酸加入上述钼酸钠溶液中,充分搅拌10min后移至反应釜中,在130℃保持12小时,冷却至室温后,用去离子水和乙醇分别抽滤洗涤,将沉淀物移至80℃烘箱烘干,之后在300℃空气气氛下处理2小时,轻微研磨后得到纳米MoO3材料。
(2)将适量钯盐(如乙酰丙酮钯)或铂盐(如乙酰丙酮铂)分别溶于无水甲醇中,充分超声搅拌溶解至透明溶液后,加入适量步骤(1)所制备的纳米MoO3材料,超声搅拌30分钟完成均匀分散,再通过旋转蒸发仪去除溶剂后,获得负载钯或铂盐的催化剂前体;
(3)将步骤(2)所得负载钯或铂盐的催化剂前体置于烘箱中进行干燥,干燥温度50~200℃,干燥时间1~24小时;
(4)将经步骤(3)处理后的催化剂前体在300℃空气气氛中进行焙烧处理,分别得到Pd/MoO3或Pt/MoO3负载型催化剂;
(5)将步骤(4)处理后得到的Pd/MoO3或Pt/MoO3催化剂在超声波仪器中经超声处理30min后,得到MoO3载体包裹的Pd@MoO3或Pt@MoO3负载型催化剂。
上述步骤(1)中,所述钼酸钠和硝酸的投料质量比约为1:(0.5-2);纳米MoO3材料需进行轻微研磨,避免过度研磨导致MoO3载体形貌发生严重变化。
上述步骤(2)中,所述贵金属盐(钯盐或铂盐)与纳米MoO3材料的比例由所需要的负载量确定。
上述步骤(4)中,所述催化剂前体需在400℃以下进行空烧处理,避免温度过高导致纳米MoO3材料升华。
上述步骤(4)中,所述空烧处理过程中的升温速率为2~20℃/min,设定温度为250-350℃,保持2小时。
本发明具有以下优点及有益效果:
1、本发明利用MoO3层间的弱结合力,通过超声处理制备了包裹型NM@MoO3催化剂,为负载型金属催化剂的制备提供了一种新型的策略。
2、本发明通过浸渍法、超声处理制备的NM@MoO3催化剂,在超声处理前后,催化剂形貌没有发生严重变化,并且负载金属始终保持均匀分散状态,未发生团聚现象。此外,MoO3包裹层能够有效地防止纳米颗粒的烧结和浸出。
3、相较于以往的包裹型催化剂的制备,本发明通过简单的超声方法制备得到了包裹型NM@MoO3催化剂,未引入气氛和温度等条件,制备过程非常简便。
附图说明
图1为本发明实施例1中纳米MoO3材料、Pd@MoO3和Pt@MoO3催化剂的透射电镜图及XRD谱图;其中:(a)和(d)分别为纳米MoO3材料的透射电镜图和XRD谱图;(b)和(e)为Pd@MoO3的透射电镜图及高分辨像;(c)和(f)为Pt@MoO3的透射电镜图;
图2为本发明对比例1中Pd/MoO3和Pt/MoO3的透射电镜图;其中:(a)和(b)为Pd/MoO3的透射电镜图及高分辨像;(c)和(d)为Pt/MoO3的透射电镜图及高分辨像;
具体实施方式
本发明提供一种MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,下面结合实施例及附图对本发明做进一步说明。
实施例1:
本实施例制备包裹型NM@MoO3催化剂的过程如下:
1、取2.419g钼酸钠于48ml反应釜中,加入30ml去离子水,磁力搅拌后得到均匀的水溶液;取5ml浓硝酸(70vol%)稀释至25ml,取10ml稀释后的硝酸溶液加入上述钼酸钠溶液中,充分搅拌10min后取出磁子,在130℃保持12小时,冷却至室温后,用去离子水和乙醇进行抽滤洗涤,移至80℃烘箱烘干,然后在300℃空气气氛下处理2小时,轻微研磨后得到纳米MoO3材料。
2、浸渍法:分别取2.86mg的乙酰丙酮钯盐或6.05mg的乙酰丙酮铂盐溶解于40ml无水甲醇中,超声溶解至透明溶液,然后分别将99mg或97mg的MoO3载体加入上述两种贵金属盐溶液中,超声搅拌约1小时完成均匀分散,然后通过旋转蒸发仪去除溶剂甲醇,在80℃烘箱中保温12小时。
3、经步骤2处理后的样品在空气气氛中进行焙烧处理,热处理时,以5℃/min的升温速率升温至300℃并恒温处理2小时,降至室温后分别得到Pd/MoO3或Pt/MoO3催化剂。
4、将步骤3所得的Pd/MoO3或Pt/MoO3催化剂经超声处理30min,得到Pd@MoO3和Pt@MoO3催化剂。
本实施例制备的负载型NM@MoO3催化剂中,贵金属Pd的负载量约为1wt.%,贵金属Pt的负载量约为3wt.%。
对比例1:
与实施例1不同之处在于:省略步骤4,制得负载量为1wt.%的Pd/MoO3催化剂和3wt.%的Pt/MoO3催化剂。
上述实施例1、对比例1制备的NM@MoO3催化剂和NM/MoO3催化剂的透射电镜图片如图1-2所示。
实施例1中所制备的催化剂如图1所示,MoO3载体具有均匀的片层结构;超声处理后,贵金属Pd和Pt分别被载体MoO3均匀包裹,并且载体形貌未发生明显变化,说明超声处理可以导致MoO3迁移至贵金属表面并形成均匀的包裹层。
对比例1中制备的NM/MoO3催化剂如图2所示,没有经过超声处理的催化剂,其贵金属表面较为干净,没有形成明显的包裹层。
以上所述并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种MoO3载体包裹贵金属纳米粒子的负载型催化剂,其特征在于:该催化剂是由贵金属活性组分负载在纳米MoO3载体上并被载体均匀包裹形成;所述MoO3载体为形貌完整的纳米片层结构,所述贵金属活性组分为金属钯或铂。
2.根据权利要求1所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:该方法首先通过水热法合成纳米MoO3材料,然后通过浸渍法将钯盐或铂盐负载到MoO3载体上,经热处理后得到NM/MoO3催化剂;再利用超声波处理得到包裹型NM@MoO3催化剂,即所述MoO3载体包裹贵金属纳米粒子的负载型催化剂。
3.根据权利要求2所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:该方法包括如下步骤:
(1)纳米MoO3的合成:将钼酸钠溶于去离子水中,磁力搅拌,得到钼酸钠溶液,取稀释后的浓硝酸加入所述钼酸钠溶液中,充分搅拌10min后移至反应釜中,在130℃保持12小时,冷却至室温后,用去离子水和乙醇分别抽滤洗涤,将沉淀物移至80℃烘箱烘干,之后在300℃空气气氛下处理2小时,轻微研磨后得到纳米MoO3材料;
(2)将适量钯盐(如乙酰丙酮钯)或铂盐(如乙酰丙酮铂)分别溶于无水甲醇中,充分超声搅拌溶解至透明溶液后,加入适量步骤(1)所制备的纳米MoO3材料,超声搅拌30分钟完成均匀分散,再通过旋转蒸发仪去除溶剂无水甲醇后,获得负载钯或铂盐的催化剂前体;
(3)将步骤(2)所得负载钯或铂盐的催化剂前体置于烘箱中进行干燥,干燥温度50~200℃,干燥时间1~24小时;
(4)将经步骤(3)处理后的催化剂前体在空气气氛中进行焙烧处理,得到NM/MoO3负载型催化剂(Pd/MoO3或Pt/MoO3负载型催化剂);
(5)将步骤(4)得到的NM/MoO3负载型催化剂在超声波仪器中经超声处理30min,得到MoO3载体包裹贵金属纳米粒子的负载型催化剂(Pd@MoO3或Pt@MoO3负载型催化剂)。
4.根据权利要求3所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:步骤(1)中,所述钼酸钠和浓硝酸的投料质量比为1:(0.5-2);纳米MoO3材料需进行轻微研磨,避免过度研磨导致MoO3载体形貌发生严重变化。
5.根据权利要求4所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:步骤(2)中,所述贵金属盐(钯盐或铂盐)与纳米MoO3材料的比例由所需要的负载量确定。
6.根据权利要求4所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:步骤(4)中,所述催化剂前体需要在400℃以下进行空烧处理,避免温度过高导致纳米MoO3材料升华。
7.根据权利要求6所述的MoO3载体包裹贵金属纳米粒子的负载型催化剂的制备方法,其特征在于:步骤(4)中,所述空烧处理过程中的升温速率为2~20℃/min,设定温度为250-350℃,保持2小时。
CN202111025571.7A 2021-09-02 2021-09-02 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法 Active CN113731408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111025571.7A CN113731408B (zh) 2021-09-02 2021-09-02 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111025571.7A CN113731408B (zh) 2021-09-02 2021-09-02 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113731408A true CN113731408A (zh) 2021-12-03
CN113731408B CN113731408B (zh) 2022-08-02

Family

ID=78734894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111025571.7A Active CN113731408B (zh) 2021-09-02 2021-09-02 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113731408B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146706A (zh) * 2021-12-07 2022-03-08 嘉兴学院 一种金/氧化钼复合纳米催化剂及其制备方法与应用
CN114717583A (zh) * 2022-04-19 2022-07-08 浙江师范大学 一种铋纳米片负载钯双金属催化剂的制备方法与应用
CN114768835A (zh) * 2022-05-10 2022-07-22 安徽工业技术创新研究院 一种多级纳米结构复合光催化剂及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065025A1 (en) * 2009-08-10 2011-03-17 Korea University Research And Business Foundation Process of preparing pt/support or pt alloy/support catalyst, thus-prepared catalyst and fuel cell comprising the same
US20160149229A1 (en) * 2013-06-21 2016-05-26 Technical Universit of Denmark Novel Non-Platinum Metal Catalyst Material
CN106076333A (zh) * 2016-06-15 2016-11-09 华南理工大学 一种MoO3负载型脱硫催化剂的制备方法及其燃油脱硫新方法
CN108970608A (zh) * 2018-07-18 2018-12-11 南京大学 具有包覆结构的负载型贵金属催化剂及其制备方法和在Cu(II)液相催化还原中的应用
CN110308136A (zh) * 2019-06-25 2019-10-08 中国计量大学 一种贵金属和MoO3自组装材料的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065025A1 (en) * 2009-08-10 2011-03-17 Korea University Research And Business Foundation Process of preparing pt/support or pt alloy/support catalyst, thus-prepared catalyst and fuel cell comprising the same
US20160149229A1 (en) * 2013-06-21 2016-05-26 Technical Universit of Denmark Novel Non-Platinum Metal Catalyst Material
CN106076333A (zh) * 2016-06-15 2016-11-09 华南理工大学 一种MoO3负载型脱硫催化剂的制备方法及其燃油脱硫新方法
CN108970608A (zh) * 2018-07-18 2018-12-11 南京大学 具有包覆结构的负载型贵金属催化剂及其制备方法和在Cu(II)液相催化还原中的应用
CN110308136A (zh) * 2019-06-25 2019-10-08 中国计量大学 一种贵金属和MoO3自组装材料的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. KOLODZIEJ等: "Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method", 《MATERIALS CHEMISTRY AND PHYSICS》 *
孙振宇等: "高能量超声辅助制备负载型贵金属纳米催化材料", 《中国科学:化学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146706A (zh) * 2021-12-07 2022-03-08 嘉兴学院 一种金/氧化钼复合纳米催化剂及其制备方法与应用
CN114717583A (zh) * 2022-04-19 2022-07-08 浙江师范大学 一种铋纳米片负载钯双金属催化剂的制备方法与应用
CN114768835A (zh) * 2022-05-10 2022-07-22 安徽工业技术创新研究院 一种多级纳米结构复合光催化剂及其制备方法和用途
CN114768835B (zh) * 2022-05-10 2023-10-13 安徽工业技术创新研究院 一种多级纳米结构复合光催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN113731408B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN113731408B (zh) MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
WO2018064960A1 (zh) 一种微波辅助碳模板法制备负载型纳米金属材料的方法
Jung et al. Recent progress on carbon quantum dots based photocatalysis
CN107486135B (zh) 一种膨润土包覆四氧化三铁纳米材料及其制备方法和应用
CN109621961B (zh) 一种生长二维纳米片原位制备金属高分散催化剂的方法
CN107413354B (zh) 一种负载银的氧化铜纳米复合材料的制备方法
CN104307512A (zh) 一种负载型钯催化剂及其制备方法和应用
CN113522279A (zh) 一种用于十二氢乙基咔唑放氢的金钯催化剂及其制备方法
CN111569882A (zh) 一种四氧化三钴负载铜纳米催化剂及其制备方法
Badma Priya et al. Catalytic reduction in 4‐nitrophenol using Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles
Liu et al. Facile synthesis of silver nanocatalyst decorated Fe 3 O 4@ PDA core–shell nanoparticles with enhanced catalytic properties and selectivity
CN113181915A (zh) 一步合成石墨烯包裹Fe@C核壳材料的制备方法、应用及产品
Shen et al. Highly dispersed silver nanoparticles confined in a nitrogen-containing covalent organic framework for 4-nitrophenol reduction
CN109621949B (zh) 一种镁铝水滑石负载型超细纳米钯催化剂及其制备方法
CN114653370A (zh) 金属氧化物基金属单原子催化剂及其制备方法和应用
CN104549263A (zh) 一种Pd/铌酸纳米片催化剂及其制备方法和应用
CN105289748A (zh) 一种软模板辅助合成磁性限域贵金属催化剂的制备方法
CN104383920B (zh) 一种MnOOH/Ag纳米复合材料的制备方法及其应用
JP2010253408A (ja) 貴金属触媒担持方法
Banda et al. Palladium-Supported Polydopamine-Coated NiFe2O4@ TiO2: A Sole Photocatalyst for Suzuki and Sonogashira Coupling Reactions under Sunlight Irradiation
CN111569895A (zh) 一种具有活化多种催化作用的纳米结构化催化剂及其应用
WO2023039948A1 (zh) 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法
EP2954578B1 (en) Fuel cell catalyst treatment
CN105720273A (zh) 一种高载量、高分散担载型金纳米催化剂的一步可控制备方法和应用
Roselin et al. Transformation of Commercial TiO2 into Anatase with Improved Activity of Fe, Cu and Cu–Fe Oxides Loaded TiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant