CN114768835A - 一种多级纳米结构复合光催化剂及其制备方法和用途 - Google Patents

一种多级纳米结构复合光催化剂及其制备方法和用途 Download PDF

Info

Publication number
CN114768835A
CN114768835A CN202210508024.2A CN202210508024A CN114768835A CN 114768835 A CN114768835 A CN 114768835A CN 202210508024 A CN202210508024 A CN 202210508024A CN 114768835 A CN114768835 A CN 114768835A
Authority
CN
China
Prior art keywords
mos
composite photocatalyst
cain
nano
moo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210508024.2A
Other languages
English (en)
Other versions
CN114768835B (zh
Inventor
丁建军
陈林
张献
田兴友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Institute Of Industrial Technology Innovation
Original Assignee
Anhui Institute Of Industrial Technology Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Institute Of Industrial Technology Innovation filed Critical Anhui Institute Of Industrial Technology Innovation
Priority to CN202210508024.2A priority Critical patent/CN114768835B/zh
Publication of CN114768835A publication Critical patent/CN114768835A/zh
Application granted granted Critical
Publication of CN114768835B publication Critical patent/CN114768835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂制备技术领域,具体公开了一种多级纳米结构复合光催化剂及其制备方法及应用,其制备方法为通过低温热还原法将单原子Pt纳米颗粒负载到MoO3纳米片表面得到Pt@MoO3,然后将Pt@MoO3与CaIn2O4纳米棒均匀混合,在硫的气氛中还原,得到Pt@MoS2@CaIn2S4多级纳米结构复合光催化剂。其中,单原子Pt负载在层状半导体态的2H‑MoS2表面,而Pt@MoS2又负载在单斜相CaIn2S4表面。这种多级纳米结构的合理设计可以有效抑制光生载流子的复合,同时单原子Pt的负载可以降低光催化反应的活化能、提高Pt原子的利用率。本发明所制备的多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4在可见光下表现出优异的光催化制氢性能和光催化制氢稳定性,是一种极具有潜力的新型光催化制氢材料。

Description

一种多级纳米结构复合光催化剂及其制备方法和用途
技术领域
本发明属于光催化技术领域,涉及一种多级纳米结构复合光催化剂及其制备方法和用途。
背景技术
氢能具有环境友好、热值高、无毒无污染等优点,是替代化石能源实现碳中和、碳达峰目标的重要选择,在21世纪世界能源舞台上将成为一种举足轻重的二次能源。利用太阳能光催化分解水制氢是目前最有前途的无污染、可再生的太阳能转换途经,也是全球能源科学技术的研究热点和战略方向。该技术可以将低密度的太阳能转化为高密度的化学能、电能,同时可以直接利用低密度的太阳能分解水制氢,降解和矿化水和空气中的各种有机污染物,甚至还原重金属离子。该技术具有在室温下反应、可直接利用太阳能、无二次污染等优点,对于从根本上解决环境污染和能源短缺问题具有不可估量的意义。
硫化物光催化剂,因具有较窄的禁带宽度、合适的价带导带电位,是一类很好的可见光响应型光催化剂。其中,具有单斜相结构的CaIn2S4光催化剂,在可见光下比立方相CaIn2S4表现出更好的光催化制氢性能,其产氢活性为30.2μmol/h(0.5wt%Pt的负载)(Journal of Physical Chemistry C,2014,118,27690)。但是,对于单组份CaIn2S4光催化剂,因较高的光生载流子复合几率,使得其光催化性能偏低,限制了其应用。
发明内容
本发明目的之一是提供一种基于单斜相CaIn2S4的多级纳米结构复合光催化剂,用于解决单斜相CaIn2S4光催化性能低的不足问题。
为实现上述目的,本发明采用了以下技术方案:
一种多级纳米结构复合光催化剂,由分级结构的单原子Pt、层状半导体态的MoS2和单斜相的CaIn2S4组成,所述单原子Pt负载在层状半导体态的MoS2表面形成Pt@MoS2,所述Pt@MoS2负载在单斜相CaIn2S4表面。
作为上述多级纳米结构复合光催化剂进一步的改进:
优选的,所述单原子Pt的粒径在0.1-0.2纳米,其在Pt@MoS2中的负载量为0.1-10wt%。
优选的,所述Pt@MoS2在单斜相CaIn2S4上的负载量为0.5-10wt%。
本发明的目的之二是提供一种上述多级纳米结构复合光催化剂的制备方法,其包括如下步骤:
(1)将MoO3纳米片加入到含有金属Pt前驱体的水溶液中,搅拌反应后,经过过滤、洗涤、干燥,得到单原子Pt负载的Pt@MoO3粉体。
(2)将步骤1得到的Pt@MoO3粉体与CaIn2O4纳米棒粉体均匀混合,然后置于管式炉中,在硫源的条件下进行退火反应,即可得到Pt@MoS2@CaIn2S4多级纳米结构复合光催化剂。
作为上述多级纳米结构复合光催化剂的制备方法进一步的改进:
优选的,步骤(1)中所述搅拌反应的温度为50-160℃,反应时间为0.5-24小时。
优选的,步骤(1)中所述的金属Pt前驱体为金属Pt的氯化物、硝酸盐和/或金属Pt的其他水溶性盐。
优选的,步骤(1)中所述的金属Pt前驱体为如H2PtCl6、K2PtCl6、Na2PtCl4、K2PtCl4、N2H8PtCl6中的一种或两种以上。
优选的,所述步骤(2)中所述的硫源为H2S、硫粉、硫脲、硫代乙酰胺中的一种或两种以上。
优选的,步骤(2)中所述退火反应的设备为管式炉,温度为600-1000℃,反应时间为0.5-24小时。
本发明的目的之二是提供一种上述多级纳米结构复合光催化剂在光催化制氢领域的用途。
本发明相比现有技术的有益效果在于:
本发明提供了一种由贵金属Pt和二维层状材料MoS2协同负载单斜相CaIn2S4的多级纳米结构复合光催化剂。本发明复合光催化剂的特色在于:二维层状材料MoS2负载于单斜相CaIn2S4表面,单原子Pt纳米颗粒负载于二维层状材料MoS2表面,Pt、MoS2和CaIn2S4形成多级纳米复合结构。该多级纳米结构复合光催化剂通过界面工程,能有效促进光生载流子的分离和传输,降低光催化制氢反应的表观活化能,同时还能最大限度发挥贵金属助催化剂的利用率,从而能大幅增强单斜相CaIn2S4的光催化制氢性能。
在可见光照射下,在单斜相CaIn2S4价带和导带分别生成光生空穴和光生电子。由于MoS2的费米能级低于单斜相CaIn2S4的导带电位,单斜相CaIn2S4表面的光生电子会迁移到MoS2表面,促进光生电荷的分离;由于金属Pt的费米能级低于MoS2的费米能级,迁移到MoS2表面的光生电子会进一步迁移至Pt表面,从而大幅降低光生电荷的复合几率。同时,MoS2表面的单原子Pt,不仅能降低光催化制氢反应的活化能,还能最大限度发挥贵金属Pt的利用率。因此,多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4在可见光下表现出优异的光催化制氢性能,贵金属Pt发挥助催化剂的作用,整体的催化性能远优于单斜相CaIn2S4,是一种非常具有潜力的新型光催化制氢材料。
本发明提供了一种Pt@MoS2@CaIn2S4多级纳米复合结构光催化剂的制备方法,通过低温热还原法将单原子Pt纳米颗粒负载到MoO3纳米片表面得到Pt@MoO3,然后将Pt@MoO3与CaIn2O4纳米棒均匀混合,在硫的气氛中还原,得到Pt@MoS2@CaIn2S4多级纳米结构复合光催化剂。
附图说明
图1所示为实施例1制备的单斜相CaIn2S4和多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4的X射线衍射谱图。
图2所示为实施例2制备的CaIn2S4、MoS2@CaIn2S4、Pt@CaIn2S4和Pt@MoS2@CaIn2S4在可见光下光催化制氢的性能。
图3所示为实施例2制备的多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4在可见光下光催化制氢的稳定性。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
称取0.1克的MoO3纳米片粉末,加入到含有100毫升去离子水的烧杯中,再加入0.015克的氯铂酸粉末,搅拌30分钟。然后将烧杯放入70℃的水浴锅中,搅拌4小时。反应结束后,将悬浮液过滤、洗涤、干燥,得到单原子Pt负载的Pt@MoO3。通过电感耦合等离子体原子发射光谱仪,测出Pt@MoO3中Pt的含量为5.9wt%。
取上述Pt@MoO3粉末0.045克,加入到0.1克的CaIn2O4纳米棒(制备方法参考ZL200510039255.X)粉末中,研磨1小时,使得Pt@MoO3与CaIn2O4纳米棒混合均匀。然后将混合后的粉末置入管式炉中,通入15%H2S+85%N2混合气氛,在700℃下退火6小时。在退火过程中,MoO3和CaIn2O4纳米棒中的O原子全部被S原子取代,从而分别被还原为MoS2和单斜相CaIn2S4。同时,单原子Pt负载于MoS2表面,而MoS2负载于单斜相CaIn2S4表面,生成多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4,其中Pt、MoS2和CaIn2S4的质量比为0.003:0.05:1。
对上述制得的单斜相CaIn2S4和Pt@MoS2@CaIn2S4的晶体结构进行X射线衍射分析,结果如图1所示。对于单斜相CaIn2S4而言,其XRD谱图与标准卡片#72-0875完全一致。对于Pt@MoS2@CaIn2S4,其XRD谱图与单斜相CaIn2S4完全一致,表明单原子Pt和MoS2的负载并未改变单斜相CaIn2S4的晶体结构,同时也未观察到单原子Pt和MoS2的衍射峰。
实施例2
称取0.15克的MoO3纳米片粉末,加入到含有120毫升去离子水的烧杯中,再加入0.0025克的氯铂酸钾粉末,搅拌45分钟。然后将烧杯放入60℃的水浴锅中,搅拌6小时。反应结束后,将悬浮液过滤、洗涤、干燥,得到单原子Pt负载的Pt@MoO3。通过电感耦合等离子体原子发射光谱仪,测出Pt@MoO3中Pt的含量为0.38wt%。
取上述Pt@MoO3粉末0.036克,加入到0.2克的CaIn2O4纳米棒粉末中,研磨2小时,使得Pt@MoO3与CaIn2O4纳米棒混合均匀。然后将混合后的粉末置入管式炉中,并加入0.4克的硫粉,在600℃下退火9小时。硫化反应结束后,得到多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4,其中Pt、MoS2和CaIn2S4的质量比为0.000076:0.02:1。同时,采用类似的方法,分别合成Pt@CaIn2S4和MoS2@CaIn2S4复合光催化剂。
以光催化分解水制氢反应来评估上述制得的复合光催化剂在可见光下的光催化性能。具体的光催化制氢反应过程如下:(1)称取10毫克的光催化剂粉末,加入到含有100毫升去离子水的光催化反应器中,再加入3.15克亚硫酸钠和6克硫化钠,搅拌30分钟。光源为PLS-SXE300D型氙灯和UV420型滤光片(北京泊菲莱科技有限公司);(2)搅拌均匀后,密封光催化反应器。通入高纯氮气,以50毫升每分钟的流速吹扫反应器,以消除反应器内残留的氧气。然后开始光催化反应;(3)每隔一段时间,采用气相色谱仪(科晓GC 1690C,分子筛填充柱,高纯氮气为载气)在线检测反应过程中氢气的产量。图2为5小时反应后的平均产氢速率。对于单斜相CaIn2S4,在可见光下的产氢速率为5.9μmol/h。对于MoS2@CaIn2S4和Pt@CaIn2S4复合光催化剂,其产氢速率分别为9.6和76.5μmol/h,表明MoS2在单斜相CaIn2S4表面的负载可以小幅增强CaIn2S4光催化制氢的活性,而单原子Pt在单斜相CaIn2S4表面的负载可以显著增强CaIn2S4光催化制氢的活性,这是因为与MoS2相比,Pt是一种更好的产氢助催化剂。特别是当Pt以单原子形态存在时,可以最大限度地发挥Pt的催化作用。对于多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4,在可见光下的产氢速率可以达到1083.5μmol/h,分别是单斜相CaIn2S4、MoS2@CaIn2S4和Pt@CaIn2S4的183.6、112.8和14.2倍。这是因为在多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4中,光生电子会先从单斜相CaIn2S4表面迁移至MoS2表面,然后再迁移至Pt表面,有效降低了光生载流子的复合几率;同时,单原子Pt的负载可以降低光催化制氢反应的活化能并提高Pt的原子利用率。因此,多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4在可见光下表现出优异的光催化制氢性能,是一种非常具有潜力的新型光催化制氢材料。
图3是多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4光催化制氢的稳定性。经过5轮反应,氢气的生成总量分别是5417、5460、5421、5467和5341μmol,表明本发明合成的多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4具有良好的光催化稳定性。
实施例3
称取0.2克的MoO3纳米片粉末,加入到含有80毫升去离子水的烧杯中,再加入0.012克的氯铂酸铵粉末,搅拌60分钟。然后将烧杯放入80℃的水浴锅中,搅拌5小时。反应结束后,将悬浮液过滤、洗涤、干燥,得到单原子Pt负载的Pt@MoO3。通过电感耦合等离子体原子发射光谱仪,测出Pt@MoO3中Pt的含量为2.7wt%。
取上述Pt@MoO3粉末0.09克,加入到0.1克的CaIn2O4纳米棒粉末中,研磨3小时,使得Pt@MoO3与CaIn2O4纳米棒混合均匀。然后将混合后的粉末置入管式炉中,并加入0.96克的硫脲粉末,在700℃下退火6小时。硫化反应结束后,得到多级纳米结构复合光催化剂Pt@MoS2@CaIn2S4,其中Pt、MoS2和CaIn2S4的质量比为0.0027:0.1:1。
本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。

Claims (10)

1.一种多级纳米结构复合光催化剂,其特征在于,由分级结构的单原子Pt、层状半导体态的MoS2和单斜相的CaIn2S4组成,所述单原子Pt负载在层状半导体态的MoS2表面形成Pt@MoS2,所述Pt@MoS2负载在单斜相CaIn2S4表面。
2.根据权利要求1所述的多级纳米结构复合光催化剂,其特征在于,所述单原子Pt的粒径在0.1-0.2纳米,其在MoS2上的负载量为0.1-10wt%。
3.根据权利要求1或2所述的多级纳米结构复合光催化剂,其特征在于,所述Pt@MoS2在单斜相CaIn2S4上的负载量为0.5-10wt%。
4.一种权利要求1-3任意一项所述多级纳米结构复合光催化剂的制备方法,其特征在于,包括如下步骤:
(1)将MoO3纳米片加入到含有金属Pt前驱体的水溶液中,搅拌反应后,经过过滤、洗涤、干燥,得到单原子Pt负载的Pt@MoO3粉体。
(2)将步骤1得到的Pt@MoO3粉体与CaIn2O4纳米棒粉体均匀混合,然后在硫源的条件下进行退火反应,即可得到Pt@MoS2@CaIn2S4的多级纳米结构复合光催化剂。
5.根据权利要求4所述的多级纳米结构复合光催化剂的制备方法,其特征在于,步骤(1)中所述搅拌反应的温度为50-160℃,反应时间为0.5-24小时。
6.根据权利要求4所述的多级纳米结构复合光催化剂的制备方法,其特征在于,步骤(1)中所述的金属Pt前驱体为金属Pt的氯化物、硝酸盐和/或金属Pt的其他水溶性盐。
7.根据权利要求6所述的多级纳米结构复合光催化剂的制备方法,其特征在于,步骤(1)中所述的金属Pt前驱体为H2PtCl6、K2PtCl6、Na2PtCl4、K2PtCl4、N2H8PtCl6中的一种或两种以上。
8.根据权利要求4所述的多级纳米结构复合光催化剂的制备方法,其特征在于,所述步骤(2)中所述的硫源为H2S、硫粉、硫脲、硫代乙酰胺中的一种或两种以上。
9.根据权利要求4所述的多级纳米结构复合光催化剂的制备方法,其特征在于,步骤(2)中所述退火反应的设备为管式炉,温度为600-1000℃,反应时间为0.5-24小时。
10.一种权利要求1-3任意一项所述多级纳米结构复合光催化剂在光催化制氢领域的用途。
CN202210508024.2A 2022-05-10 2022-05-10 一种多级纳米结构复合光催化剂及其制备方法和用途 Active CN114768835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210508024.2A CN114768835B (zh) 2022-05-10 2022-05-10 一种多级纳米结构复合光催化剂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210508024.2A CN114768835B (zh) 2022-05-10 2022-05-10 一种多级纳米结构复合光催化剂及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN114768835A true CN114768835A (zh) 2022-07-22
CN114768835B CN114768835B (zh) 2023-10-13

Family

ID=82436971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210508024.2A Active CN114768835B (zh) 2022-05-10 2022-05-10 一种多级纳米结构复合光催化剂及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN114768835B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200581A (zh) * 1997-05-22 1998-12-02 松下电器产业株式会社 非水电解质二次电池
CN103071513A (zh) * 2013-02-27 2013-05-01 福州大学 一种产氢光催化剂MoS2/ZnIn2S4及其制备方法
CN113351229A (zh) * 2021-07-13 2021-09-07 上海理工大学 一种硫化镉和铂修饰的硫铟铜纳米盘光催化剂的制备方法
CN113731408A (zh) * 2021-09-02 2021-12-03 中国科学院金属研究所 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
CN114042451A (zh) * 2021-11-09 2022-02-15 上海理工大学 一种光催化剂上负载金属团簇的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200581A (zh) * 1997-05-22 1998-12-02 松下电器产业株式会社 非水电解质二次电池
CN103071513A (zh) * 2013-02-27 2013-05-01 福州大学 一种产氢光催化剂MoS2/ZnIn2S4及其制备方法
CN113351229A (zh) * 2021-07-13 2021-09-07 上海理工大学 一种硫化镉和铂修饰的硫铟铜纳米盘光催化剂的制备方法
CN113731408A (zh) * 2021-09-02 2021-12-03 中国科学院金属研究所 MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
CN114042451A (zh) * 2021-11-09 2022-02-15 上海理工大学 一种光催化剂上负载金属团簇的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAYATRI SWAIN,ET AL.: "Fabrication of Hierarchical Two-Dimensional MoS2 Nanoflowers Decorated upon Cubic CaIn2S4 Microflowers: Facile Approach To Construct Novel Metal-Free p−n Heterojunction Semiconductors with Superior Charge Separation Efficiency", 《INORG. CHEM.》, vol. 57, pages 10059 - 10071 *
JIANJUN DING,ET AL.: "Mesoporous Monoclinic CaIn2S4 with Surface Nanostructure: An Efficient Photocatalyst for Hydrogen Production under Visible Light", 《J. PHYS. CHEM. C》, vol. 118, no. 48, pages 27690 - 27697 *
葛道文等: "MoS2/CaIn2S4的制备及光催化降解VOCs性能研究", 《环境科学与技术》, vol. 43, no. 10, pages 140 - 147 *

Also Published As

Publication number Publication date
CN114768835B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN110449176B (zh) 一种非贵金属单原子催化剂的制备方法及应用
Liu et al. Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets
Tahir et al. Au-NPs embedded Z–scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution
Liu et al. Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification
Wang et al. Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
Feng et al. Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination
Li et al. Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production
Li et al. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
Sun et al. Uniform Pt quantum dots-decorated porous g-C3N4 nanosheets for efficient separation of electron-hole and enhanced solar-driven photocatalytic performance
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Cai et al. Activation of MoS2 via tungsten doping for efficient photocatalytic oxidation of gaseous mercury
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Li et al. Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst
CN107308967B (zh) 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法
CN112473712A (zh) 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用
Kozlova et al. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN111790431A (zh) 一种以Al2O3修饰的g-C3N4光催化材料的制备方法
CN111151275B (zh) MoS2/Mo2C复合物、MoS2/Mo2C/CdS复合材料及其制备方法和应用
CN109553067B (zh) 一种光催化分解甲酸的方法
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
CN113666333A (zh) 铑诱导生长氧化锌-硫化锌异质结构光催化制氢合成方法
CN112121836A (zh) 钯钴/氮化碳复合材料的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant