CN110180216B - 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置 - Google Patents

一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置 Download PDF

Info

Publication number
CN110180216B
CN110180216B CN201910502851.9A CN201910502851A CN110180216B CN 110180216 B CN110180216 B CN 110180216B CN 201910502851 A CN201910502851 A CN 201910502851A CN 110180216 B CN110180216 B CN 110180216B
Authority
CN
China
Prior art keywords
adsorption
ultrasonic
desorption
fluidized bed
anthocyanin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910502851.9A
Other languages
English (en)
Other versions
CN110180216A (zh
Inventor
陶阳
吴越
韩永斌
卢国宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201910502851.9A priority Critical patent/CN110180216B/zh
Publication of CN110180216A publication Critical patent/CN110180216A/zh
Application granted granted Critical
Publication of CN110180216B publication Critical patent/CN110180216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/203Equilibration or regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/22Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans

Abstract

本发明公开了一种超声波强化流化床式树脂吸附‑解析提取纯化花色苷的方法及装置。该方法包括在采用流化床设备对浆果废弃物花色苷进行吸附/解析的同时,借助超声波直接作用于吸附/解析液,强化大孔树脂对吸附液中花色苷的吸附和解析。本发明将超声技术与流化床设备联合应用于浆果废弃物花色苷的吸附和解析过程中,在超声空化效应和机械效应的联合作用下,在吸附/解析过程中改变了大孔树脂的质构,从而强化了大孔树脂对花色苷的吸附和解析作用,显著缩短吸附/解析时间和提高吸附/解析量,可节省约20%‑40%的吸附/解析时间,提高40%‑100%的吸附/解析量。

Description

一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的 方法及装置
技术领域
本发明属于食品加工技术领域,具体涉及一种超声波强化流化床式树脂吸附-解析纯化花色苷的方法及装置。
背景技术
浆果在果树学中被定义为一种多汁小型的可食用水果,其外观通常为圆形,果肉内有种子,酸甜可口,颜色主要有红色、蓝色、紫色和黑色四种。常见的浆果有蓝莓、蔓越莓、覆盆子、黑莓和葡萄等。因浆果具有诱人的风味和颜色,并且对人类健康有益,所以在我们日常饮食的水果中浆果占比最大。浆果除含有一般水果中的有机酸、维生素和矿物质外,还含有丰富的不饱和脂肪酸及Mn、Cu、K、Fe等微量元素,维生素K1和B族维生素在浆果中含量尤为突出。除此之外,浆果中还含有多种活性成分,如花色苷、原花青素、类黄酮、酚酸、黄酮醇和单宁,这些生物活性成分使其具有清除自由基、抗癌、抗突变、抗菌、抗炎症、抗衰老、软化血管、增强人体免疫力等多种药理活性。其除了鲜食外,多被加工成果汁和果酒等产品,而这些产品生产过程中会产生大量的废弃果渣,这些果渣一般用来作为动物饲料或者植物肥料,但是大多数果渣都作为废物而弃之,而这些果渣中富含花色苷等酚类物质,是天然色素和天然抗氧化剂的丰富来源,可用作功能性保健食品的配料,特别是其中的花色苷更具有研究和应用价值。因此,浆果渣综合利用已成为浆果加工产业增值的新方向。而从果渣中提取其功能性成分如花色苷等已成为提高其综合利用的方式之一。
在现有技术中,专利CN 201610379962.1公开了一种流化床气体吸附系统及其处理方法,其装置包括吸附及再生流化床、吸附侧及脱附侧气固分离器和分料装置,可提高吸附效率和操作连续性,但其设备只针对气体的吸附,不适用于液体及其它物质的吸附。专利CN201610049481.4公开了一种茶多酚提取循环利用方法,包括连续逆流提取,同时采用超滤膜、反渗透膜来分离并收集儿茶素渣中的茶氨酸;将分离的茶氨酸后的儿茶素渣经超临界CO2萃取得到咖啡碱、茶多酚,并冷冻干燥后得到产品。该方法虽能制得纯度较高的茶多酚,但操作繁琐,且能耗高,不适于工厂大规模提取多酚类物质。
发明内容
为了解决现有技术中存在传统方法对浆果废弃物中功能性成分利用率低,大孔树脂对废弃物中花色苷类物质吸附效率低等问题,本发明的目的是提供一种超声波强化流化床式树脂吸附-解析纯化花色苷技术,该方法不仅缩短了吸附时间、提高吸附/解析效率、降低能耗,而且能同时大批量处理浆果废弃物。本发明的另一个目的是提供一种实施该方法的流化床装置。
为了实现上述目的,本发明采用以下技术方案:
一种超声波强化流化床式树脂吸附-解析纯化花色苷的方法,在采用流化床设备对浆果废弃物花色苷进行吸附和解析的同时,借助超声波直接作用于吸附和解析液提高大孔树脂的吸附和解析效率。
本发明所述的超声波强化流化床式树脂吸附-解析纯化花色苷的方法,包括以下步骤:
(1)浆果废弃物的预处理:
将浆果废弃物按料液比1:10-1:20(g/mL)用40-50%的乙醇水溶液浸提24h,过滤滤渣,并旋转蒸发去除乙醇,所得液体为吸附液;
(2)吸附花色苷:
将吸附液与大孔树脂加入带超声设备的流化床中,在流化床中借助超声波直接作用于流化状态的吸附液,强化大孔树脂对浆果废弃物花色苷进行吸附;
(3)解析花色苷
分离出吸附液后,向流化床中加入解析液,在流化床中借助超声波直接作用于流化状态的解析液,强化大孔树脂对浆果废弃物花色苷进行解析。
其中,步骤(1)中所述的浆果废弃物为蓝莓渣、黑莓渣、草莓渣、葡萄渣、树莓渣、桑葚渣、黑加仑渣中的一种或多种。
步骤(2)中所述大孔树脂与吸附液的比值为6-10g/L,冷却温度为0-35℃,吸附温度为5-40℃,吸附时间为1-5h。
步骤(3)中所述的大孔树脂与解析液的比值为6-10g/L,冷却温度为0-35℃,解析温度为5-40℃,解析时间为0.5-2h。
步骤(2)和(3)中所述超声功率为100-400W/L,优选190-280W/L,超声波频率为20-25kHz。
一种超声波强化流化床式树脂吸附-解析纯化花色苷装置,是在流化床式树脂吸附-解析设备的基础上,在流化床容器壁内侧增加超声波探头。
作为本发明的进一步优选,所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置是在流化床式树脂吸附-解析设备的基础上,在流化床容器壁内侧增加温度传感器,外壁增设冷却装置。
本发明超声波强化流化床式树脂吸附-解析纯化花色苷装置可以在现有的流化床设备的基础上改装得到。
所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置,优选包括超声吸附/解析主体设备、控制单元、循环装置和送料装置,其特征在于,所述超声吸附/解析主体设备由流化床式吸附/解析容器组成,温度传感器和超声波探头分别焊接于化床式吸附/解析容器内的前后和左右两侧;所述控制单元由超声发生器和冷却温度控制器并联;所述循环装置由低温冷却循环泵和管路组成;所述送料装置由蠕动泵送料装置和管路组成;其中,超声吸附/解析主体设备、循环装置和送料装置依次通过管道串联,控制单元通过电路与超声吸附/解析主体设备连接。
所述超声吸附/解析主体设备吸附容器内侧为超声波探头和温度传感器,超声波探头和温度传感器直接接触吸附液。
所述超声吸附/解析主体设备吸附/解析容器外侧为装有冷却循环水的冷却管,可实时保持吸附液的温度,防止因超声波产生局部过热现象。
所述吸附液/解析液和大孔树脂由蠕动泵送料循环,可使大孔树脂与吸附液/解析液接触完全,提高吸附/解析速率。
与现有技术相比,本发明具有以下有益效果:
(1)本发明将超声技术与流化床设备联合应用于浆果废弃物花色苷的吸附和解析过程中,在超声空化效应和机械效应的联合作用下,在吸附/解析过程中改变了大孔树脂的质构,从而强化了大孔树脂对花色苷的吸附和解析作用,显著缩短吸附/解析时间和提高吸附/解析量,与仅用流化床吸附/解析相比,可节省约20%-40%的吸附/解析时间,提高40%-100%的吸附/解析量。
(2)接触式超声辅助大孔树脂吸附/解析浆果废弃物花色苷,在提高传热传质速率,缩短吸附/解析时间的同时,有效的减少了浆果废弃物中花色苷的损失,而且本方法操作简便,能耗低,优于传统水浴震荡吸附浆果花色苷。
附图说明
图1超声波强化流化床式树脂吸附-解析纯化花色苷装置示意图
1-流化床式超声吸附/解析容器,2-超声波发生器和温度控制器,3-低温冷却循环泵,4-温度传感器,5-超声波探头,6-蠕动泵,7-三通阀门,8-冷却管,9-液体进料口,10-大孔树脂进料口,11-大孔树脂,12-传输管路,13-液体出料口(带滤膜),14-大孔树脂出料口。
图2实施1~3与对比例1~3吸附曲线比较
吸附温度20℃,吸附时间5h,只流化床、106W/L超声联合流化床装置、199W/L超声联合流化床装置和279W/L超声联合流化床装置吸附曲线
图3实施1~3与对比例1~3解析曲线比较
解析温度20℃,解析时间1h,只流化床、106W/L超声联合流化床装置、199W/L超声联合流化床装置和279W/L超声联合流化床装置解析曲线
具体实施方式
实施例1
一种超声波强化流化床式树脂吸附-解析纯化花色苷装置,包括超声吸附/解析主体设备、控制单元、循环装置和送料装置,所述超声吸附/解析主体设备为流化床式吸附/解析容器1,温度传感器4和超声波探头5分别焊接于容器内的前后和左右两侧,超声波探头4和温度传感器5直接接触吸附液,所述超声波探头4沿水平方向发射超声波作用于吸附液;冷却管8位于容器1外侧的夹层中;可实时保持吸附液和解析液的温度,防止因超声波产生局部过热现象;所述控制单元由超声发生器和冷却温度控制器2并联;所述循环装置由低温冷却循环泵3及相连的管道组成;所述送料装置由蠕动泵6和相关管道组成,吸附液/解析液和大孔树脂由蠕动泵6送料循环,可使大孔树脂与吸附液/解析液接触完全,提高吸附/解析速率。其中,超声吸附/解析主体设备、循环装置和送料装置依次串联,控制单元通过电路与超声吸附/解析主体设备连接。
实施例2
(1)将蓝莓渣废弃物收集,按料液比1:15(g/mL)用50%的乙醇浸提24h,过滤滤渣,并旋转蒸发去除乙醇;
(2)将低温冷却液循环泵的水槽中装入清水,打开冷却循环泵并设定冷却温度15℃,将1.5L滤液和10g大孔树脂依次通过进料口倒入吸附容器,打开冷却和超声总开关,设定吸附容器的吸附温度20℃,待冷却温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率为106W/L,超声波频率为20kHz,随即进行5h的吸附;
(3)将超声功率旋钮调回0W,依次关闭超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出的液体,收料完成后关闭蠕动泵和送料阀门;
(4)将1.5L 80%的乙醇倒入进液口,打开超声总开关,设定吸附容器的解析温度20℃,待解析温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率106W/L,超声波频率为20kHz,随即进行1h的解析;
(5)将超声功率旋钮调回0W,依次关闭冷却开关、超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出解析完成后的花色苷提取液,从大孔树脂出料口收集树脂,收料完成后关闭蠕动泵和送料阀门。
(6)打开送料阀门,将洗涤水通过进料口倒入吸附容器,打开冷却和超声总开关,打开超声和蠕动泵进行30min清洗,随后关闭冷却泵电源,将水槽下方的排水口阀门打开排水。
实施例3
(1)将蓝莓渣废弃物收集,按料液比1:15(g/mL)用50%的乙醇浸提24h,过滤滤渣,并旋转蒸发去除乙醇;
(2)将低温冷却液循环泵的水槽中装入清水,打开冷却循环泵并设定冷却温度15℃,将1.5L滤液和10g大孔树脂依次通过进料口倒入吸附容器,打开冷却和超声总开关,设定吸附容器的吸附温度20℃,待冷却温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率为199W/L,超声波频率为20kHz,随即进行5h的吸附;
(3)将超声功率旋钮调回0W,依次关闭超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出的液体,收料完成后关闭蠕动泵和送料阀门;
(4)将1.5L 80%的乙醇倒入进液口,打开超声总开关,设定吸附容器的解析温度20℃,待解析温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率199W/L,超声波频率为20kHz,随即进行1h的解析;
(5)将超声功率旋钮调回0W,依次关闭冷却开关、超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出解析完成后的花色苷提取液,从大孔树脂出料口收集树脂,收料完成后关闭蠕动泵和送料阀门。
(6)打开送料阀门,将洗涤水通过进料口倒入吸附容器,打开冷却和超声总开关,打开超声和蠕动泵进行30min清洗,随后关闭冷却泵电源,将水槽下方的排水口阀门打开排水。
实施例4
(1)将蓝莓渣废弃物收集,按料液比1:15(g/mL)用50%的乙醇浸提24h,过滤滤渣,并旋转蒸发去除乙醇;
(2)将低温冷却液循环泵的水槽中装入清水,打开冷却循环泵并设定冷却温度15℃,将1.5L滤液和10g大孔树脂依次通过进料口倒入吸附容器,打开冷却和超声总开关,设定吸附容器的吸附温度20℃,待冷却温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率为279W/L,超声波频率为20kHz,随即进行5h的吸附;
(3)将超声功率旋钮调回0W,依次关闭超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出的液体,收料完成后关闭蠕动泵和送料阀门;
(4)将1.5L 80%的乙醇倒入进液口,打开超声总开关,设定吸附容器的解析温度20℃,待解析温度达到设定要求,打开蠕动泵电源,设定送料流速50mL/min,旋动超声旋钮设定超声功率279W/L,超声波频率为20kHz,随即进行1h的解析;
(5)将超声功率旋钮调回0W,依次关闭冷却开关、超声总开关、蠕动泵和送料阀门停止吸附;将吸附容器送料出口三通阀旋转至出液口,打开阀门和蠕动泵并用容器收集放出解析完成后的花色苷提取液,从大孔树脂出料口收集树脂,收料完成后关闭蠕动泵和送料阀门。
(6)打开送料阀门,将洗涤水通过进料口倒入吸附容器,打开冷却和超声总开关,打开超声和蠕动泵进行30min清洗,随后关闭冷却泵电源,将水槽下方的排水口阀门打开排水。
表1实施例1~3与水浴震荡吸附/解析后花色苷纯度比较
处理组 花色苷纯度(%)
纯化前 0.71±0.22b
仅流化床 29.44±0.45a
流化床联合超声106W/L 29.97±0.82a
流化床联合超声199W/L 30.02±0.77a
流化床联合超声279W/L 30.13±0.71a
由表1可知,在经过吸附/解析纯化前花色苷的纯度仅为0.71%,而经过大孔树脂纯化后,花色苷提取液中花色苷的纯度显著提高为30%左右,表明超声联合流化床装置可以有效快速的提高花色苷的纯度。
对比例1
除不开超声波探头,其余条件同实施例2,进行仅用流化床不开超声提取蓝莓渣中的花色苷。
对比例2
除不开超声波探头,其余条件同实施例3,进行仅用流化床不开超声提取蓝莓渣中的花色苷。
对比例3
除不开超声波探头,其余条件同实施例4,进行仅用流化床不开超声提取蓝莓渣中的花色苷。
由图2可知,超声联合流化床吸附可有效提高吸附速率,缩短吸附到达平衡的时间及提高吸附量。达到吸附平衡时,仅开流化床在270min之后到达吸附平衡,吸附量为2.59mg/g,279W/L超声吸附仅需180min到达吸附平衡,吸附量高达5.30mg/g。
由图3可知,超声联合流化床吸附可有效提高解析速率,显著提高解析量。达到解析平衡时,仅用流化床处理下的解析量为1.15mg/g,279W/L超声解析时解析量则高达2.56mg/g。
以上详细说明了本发明的实施方式,但这只是为了便于理解而举的实例,不应被视为是对本发明范围的限制。同样,任何所属技术领域的技术人员均可根据本发明的技术方案及其较佳实施例的描述,做出各种可能的等同改变或替换,但所有这些改变或替换都应属于本发明的权利要求的保护范围。

Claims (8)

1.一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法,其特征在于,在采用流化床设备对浆果废弃物花色苷进行大孔树脂吸附/解析的同时,借助超声波直接作用于吸附/解析液,强化大孔树脂对吸附液中花色苷的吸附和解析;其中所述的超声波功率为100-400 W/L, 超声波频率为20-25 kHz; 吸附时大孔树脂与吸附液的比值为6-10 g/L,吸附温度为5-40℃; 解析时大孔树脂与解析液的比值为6-10 g/L, 解析温度为5-40℃。
2.根据权利要求1所述的方法,其特征在于包括如下步骤:
(1)浆果废弃物的预处理:
将浆果废弃物按料液比1:10-1:20 (g/mL)用体积百分含量为40-50 %的乙醇水溶液浸提24 h,过滤滤渣,并旋转蒸发去除乙醇,所得液体为吸附液;
(2)吸附花色苷:
将吸附液与大孔树脂加入带超声设备的流化床中,开启蠕动泵,在流化床中借助超声波直接作用于流动状态的吸附液,强化大孔树脂对浆果废弃物花色苷的吸附;
(3)解析花色苷
吸附结束后,分离出上清液,将树脂颗粒截留在设备内,向流化床中加入解析液,在流化床中借助超声波直接作用于流化状态的解析液,强化大孔树脂对浆果废弃物花色苷进行解析;最终所得解析液即为纯化后的花色苷提取液。
3.根据权利要求2所述的方法,其特征在于所述的超声波功率为190-280 W/L,超声波频率为20 kHz。
4.根据权利要求2所述的方法,其特征在于所述浆果废弃物为蓝莓渣、黑莓渣、草莓渣、葡萄渣、树莓渣、桑葚渣、黑加仑渣中的一种或多种。
5.一种在权利要求1所述的方法中使用的超声波强化流化床式树脂吸附-解析纯化花色苷装置,其特征在于所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置是在流化床式树脂吸附-解析设备的基础上,在流化床容器壁内侧增加超声波探头。
6.根据权利要求5所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置,其特征在于所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置是在流化床式树脂吸附-解析设备的基础上,在流化床容器壁内侧增加温度传感器,外壁增设冷却装置。
7.根据权利要求5所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置,包括超声吸附/解析主体设备、控制单元、循环装置和送料装置,其特征在于,所述超声吸附/解析主体设备由流化床式吸附/解析容器组成,温度传感器和超声波探头分别焊接于化床式吸附/解析容器内的前后和左右两侧;所述控制单元由超声发生器和冷却温度控制器并联;所述循环装置由低温冷却循环泵和管路组成;所述送料装置由蠕动泵和管路组成;其中,超声吸附/解析主体设备、循环装置和送料装置依次通过管道串联,控制单元通过电路与超声吸附/解析主体设备连接。
8.根据权利要求7所述的超声波强化流化床式树脂吸附-解析纯化花色苷装置,其特征在于,所述流化床式吸附/解析容器的外壳设置装有冷却循环水的冷却管。
CN201910502851.9A 2019-06-11 2019-06-11 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置 Active CN110180216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910502851.9A CN110180216B (zh) 2019-06-11 2019-06-11 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910502851.9A CN110180216B (zh) 2019-06-11 2019-06-11 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置

Publications (2)

Publication Number Publication Date
CN110180216A CN110180216A (zh) 2019-08-30
CN110180216B true CN110180216B (zh) 2021-05-25

Family

ID=67721289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910502851.9A Active CN110180216B (zh) 2019-06-11 2019-06-11 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置

Country Status (1)

Country Link
CN (1) CN110180216B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627842A (zh) * 2019-10-12 2019-12-31 武汉轻工大学 一种从覆盆子中提取花色苷的方法
CN112022935A (zh) * 2020-09-14 2020-12-04 南京农业大学 一种纯化回收葡萄渣多酚的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445529A (zh) * 2008-12-19 2009-06-03 山东理工大学 同时制备桔梗花色苷和多糖单组分的工艺
CN101723996A (zh) * 2009-12-03 2010-06-09 中山大学 一种从黑米中分离制备高纯度花色苷单体的方法
CN102600216A (zh) * 2011-12-30 2012-07-25 北京农学院 一种从板栗总苞提取植物多酚的方法
CN109053833A (zh) * 2018-07-03 2018-12-21 暨南大学 一种利用中压液相色谱从桑葚中制备矢车菊素-3-葡萄糖苷的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2186278A1 (en) * 1973-04-05 1974-01-11 Dart Ind Inc Liq-solid contact exchanger control system - using pulsed hydraulic circuit for recycling
JP2962594B2 (ja) * 1991-06-12 1999-10-12 オルガノ株式会社 複数成分の分離方法
NZ517979A (en) * 2000-07-28 2003-11-28 Euroflow Uk Ltd packing chromatography column(s) with ultrasound used for packing and control or automation
CN100427500C (zh) * 2004-04-29 2008-10-22 中国人民解放军军事医学科学院放射医学研究所 知母皂苷bⅱ的制备方法
CN100390188C (zh) * 2005-08-09 2008-05-28 广东省农业科学院农业生物技术研究所 一种黑大豆种皮花色苷的制备方法
CN101053825A (zh) * 2007-05-21 2007-10-17 天津大学 一种液固循环流化床大孔树脂吸附装置
US8877050B2 (en) * 2008-05-28 2014-11-04 Osead Hydrocarbon Technologies, Sas Process for the treatment of liquid effluents laden with hydrocarbons
US20150344512A1 (en) * 2011-12-19 2015-12-03 Purecircle Usa Inc. Methods of purifying steviol glycosides and uses of the same
JP2013524240A (ja) * 2010-04-05 2013-06-17 パーデュー リサーチ ファウンデーション クロマトグラフカラムに充填する方法
CN105061529A (zh) * 2015-08-31 2015-11-18 桂林茗兴生物科技有限公司 桑葚花色苷的提取工艺
CN105541601B (zh) * 2015-12-14 2017-07-04 山东省分析测试中心 一种松萝中有机酸单体的分离制备方法及应用
JP2019534021A (ja) * 2016-11-11 2019-11-28 ファイファー・ウント・ランゲン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディートゲゼルシャフト D−アルロースの合成
CN107011309A (zh) * 2017-04-21 2017-08-04 沈阳市皇冠蓝莓产业有限公司 一种蓝莓花色苷的制备方法
CN107373223B (zh) * 2017-07-13 2020-03-27 百色学院 一种西番莲柠檬复合果汁及其制备工艺
CN107312047B (zh) * 2017-08-06 2020-05-01 中国科学院兰州化学物理研究所 一种从红景天中同步分离制备红景天苷和络塞维的方法
CN108434783B (zh) * 2018-03-12 2021-01-19 甘肃省商业科技研究所有限公司 固相萃取柱和固相萃取柱填料的制作方法及利用该固相萃取柱检测黄曲霉毒素的方法
CN108499158A (zh) * 2018-04-25 2018-09-07 西安蓝朔新材料科技有限公司 一种连续的可移动的吸附单元
CN109053849B (zh) * 2018-06-21 2021-04-16 长沙湘资生物科技有限公司 山茱萸综合利用的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445529A (zh) * 2008-12-19 2009-06-03 山东理工大学 同时制备桔梗花色苷和多糖单组分的工艺
CN101723996A (zh) * 2009-12-03 2010-06-09 中山大学 一种从黑米中分离制备高纯度花色苷单体的方法
CN102600216A (zh) * 2011-12-30 2012-07-25 北京农学院 一种从板栗总苞提取植物多酚的方法
CN109053833A (zh) * 2018-07-03 2018-12-21 暨南大学 一种利用中压液相色谱从桑葚中制备矢车菊素-3-葡萄糖苷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超声波应用于吸附/脱附过程的研究进展;刘雪粉;《化工进展》;20060625;第25卷(第6期);引言,第1章 *

Also Published As

Publication number Publication date
CN110180216A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN104194920B (zh) 一种火麻仁油的制备方法
CN103923152B (zh) 一种罗汉果甙v的提取方法
US20210274822A1 (en) Method for preparing luo han guo sweetening composition from siraitia grosvenorii and use thereof
Suwal et al. Technologies for the Extraction, Separation and Purification of polyphenols–A Review
CN104961783B (zh) 一种有效提取花青素和花色苷的方法
CN103571729B (zh) 一种青梅酒降酸及除杂醇油的方法
CN101912480A (zh) 一种黑果枸杞原花青素提取物的制备方法
CN110180216B (zh) 一种超声波强化流化床式树脂吸附-解析提取纯化花色苷的方法及装置
CN104561223B (zh) 一种蓝莓花青素高效合成提取方法
CN102718737B (zh) 一种用刺梨果肉制备刺梨原花青素的方法
WO2010009667A1 (zh) 生产高orac值的葡萄提取物的方法以及所生产的葡萄提取物
CN105062665A (zh) 稻米油超临界萃取工艺
CN104513745A (zh) 一种火龙果酒及其制备方法
CA2852026A1 (en) Xyloglucan extraction process
CN103980244A (zh) 一种紫薯提取分离紫薯花青素生产新方法
CN104886697B (zh) 高果肉含量果汁一步脱苦降酸的方法
CN109601791A (zh) 一种无花果鲜果浓缩汁的制备方法
CN102273517A (zh) 一种吊瓜子植物蛋白饮料及其生产方法
CN207294797U (zh) 一种水产动物蛋白粉酶解提取系统
CN100456960C (zh) 一种同时制备仙蜜果红色素和仙蜜果饮料的方法
CN210261602U (zh) 一种从咖啡豆中提取绿原酸的装置
CN113142439A (zh) 多营养浓缩山楂汁的加工方法
CN107245046A (zh) 一种从辣椒中提取分离辣椒总生物碱和辣椒红色素的方法
CN112707881A (zh) 一种蓝莓花青素的制备方法
CN110841330A (zh) 一种基于含茶日化产品工艺的提取物纯化设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant