CN110092655A - 一种钡钐钛系低损耗微波介质陶瓷及其制备方法 - Google Patents

一种钡钐钛系低损耗微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN110092655A
CN110092655A CN201910492580.3A CN201910492580A CN110092655A CN 110092655 A CN110092655 A CN 110092655A CN 201910492580 A CN201910492580 A CN 201910492580A CN 110092655 A CN110092655 A CN 110092655A
Authority
CN
China
Prior art keywords
ceramics
major ingredient
barium
scythe
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910492580.3A
Other languages
English (en)
Other versions
CN110092655B (zh
Inventor
吉岸
王丹
王晓慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI XINSHENG HUILONG NANOMETER CERAMICS TECHNOLOGY Co Ltd
Original Assignee
WUXI XINSHENG HUILONG NANOMETER CERAMICS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI XINSHENG HUILONG NANOMETER CERAMICS TECHNOLOGY Co Ltd filed Critical WUXI XINSHENG HUILONG NANOMETER CERAMICS TECHNOLOGY Co Ltd
Priority to CN201910492580.3A priority Critical patent/CN110092655B/zh
Publication of CN110092655A publication Critical patent/CN110092655A/zh
Application granted granted Critical
Publication of CN110092655B publication Critical patent/CN110092655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钡钐钛系低损耗微波介质陶瓷,该微波介质陶瓷是由主料和辅料复合而成,主料的组成表达式为Ba7‑xSm(8+2x/3)Ti30O79,其中,0.01≤x≤0.06,所述辅料为Cu‑ZnO、Al2O3和MnO2,其中,Cu‑ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。本发明还公开了该钡钐钛系低损耗微波介质陶瓷的制备方法。本发明的微波介质陶瓷具有优异的微波介电性能,且制备原料无毒又价格低廉,制备工艺简单,具有广泛的应用前景。

Description

一种钡钐钛系低损耗微波介质陶瓷及其制备方法
技术领域
本发明属于电子陶瓷及其制备技术领域,具体地,涉及一种钡钐钛系低损耗微波介质陶瓷及其制备方法。
背景技术
微波是指波长从lm~lmm(相应频率为300MHz~300GHz)的电磁波,它具有波长短、频率高、量子特性明显等特征微波技术是本世纪内得到迅速发展的一门技术,广泛应用于雷达、导航、多路通讯、遥感及电视等方面。
微波陶瓷介质在介质谐振器、介质滤波器、介质天线等微波通信元器件中的应用,使实现无线通信设备小型化和低成本化成为了现实。如今,微波介质陶瓷广泛应用于微波和移动通信领域,研制拥有自主知识产权的微波介质陶瓷新材料,已经成为事关国家长远发展和国家安全的战略性、前沿性和前瞻性高技术问题。近年来,随着5G移动通信、卫星通信、无线网络、全球卫星定位系统、蓝牙等技术的快速发展,微波器件正朝着小型化、高频化和轻量化方向发展,对微波介质陶瓷材料提出了更高的要求:介电常数系列化,以满足不同通信频段器件的需求;Q×f值越高越好,以减少微波元器件的损耗;频率温度系数尽可能小,以减少微波元器件性能随外界环境的变化的影响。因此高介电常数、高品质因数、频率温度系数接近零且烧结温度低是微波介质陶瓷的重点研究发展方向。对于Ba-Sm2O3-TiO2体系陶瓷烧结温度通常大于1350℃,而且损耗较大,这些阻碍了它的大规模实际应用。
发明内容
为解决上述技术问题,本发明的目的在于提供一种钡钐钛系低损耗微波介质陶瓷及其制备方法,该微波介质陶瓷具有优异的微波介电性能,制备原料无毒且价格低廉,制备工艺简单,具有广泛的应用前景。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:一种钡钐钛系低损耗微波介质陶瓷,其是由主料和辅料复合而成,主料的组成表达式为Ba7- xSm(8+2x/3)Ti30O79,其中,0.01≤x≤0.06,所述辅料为Cu-ZnO、Al2O3和MnO2,其中,Cu-ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。
其中,辅料中的Cu-ZnO是通过CuO和ZnO按照1:1的摩尔比配制而成。
作为本发明优选的技术方案,各个辅料相对于主料的质量分数中,1%≤a≤5%,1%≤b≤5%,0.1%≤c≤0.5%。
本发明还提供了一种钡钐钛系低损耗微波介质陶瓷的制备方法,具体的,包括以下步骤:
(1)制备微波介质陶瓷的主料:按照组成表达式Ba7-xSm(8+2x/3)Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中进行焙烧,得到主料,其中,在Ba7-xSm(8+2x/3)Ti30O79中,0.01≤x≤0.06;
(2)制备Cu-ZnO辅料:将ZnO和CuO混合充分后球磨,球磨后烘干、过筛,再放入刚玉坩埚中进行焙烧,得到Cu-ZnO辅料;
(3)制备钡钐钛系低损耗微波介质陶瓷:按照质量百分比分别称取步骤(1)制备的Ba7-xSm(8+2x/3)Ti30O79、步骤(2)制备的Cu-ZnO、Al2O3和MnO2,将主料和所有辅料进行混合,然后充分球磨,再经过烘干、造粒和过筛,将过筛后的混合粉料压制成型,最后烧结得到该钡钐钛系低损耗微波介质陶瓷;其中,Cu-ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。
作为本发明优选的技术方案,步骤(1)中的焙烧过程为在1100~1180℃下焙烧保温3~5小时。
作为本发明优选的技术方案,步骤(2)中的CuO和ZnO的配比为1:1。
作为本发明优选的技术方案,步骤(2)中的焙烧过程为在580~650℃下焙烧保温3~5小时。
作为本发明优选的技术方案,步骤(3)中的的烧结过程为在1200~1280℃下烧结4小时。
作为本发明优选的技术方案,步骤(3)中所述的造粒是将烘干后的粉体与聚乙烯醇水溶液混合,然后制成微米级的球形颗粒。
作为本发明优选的技术方案,步骤(3)中,过筛后的混合粉料被压制成直径为10mm、高度为6mm的圆柱体。
与现有技术相比,本发明具有的以下有益效果:本发明的微波介质陶瓷在制备时采用Cu-ZnO作为助烧剂,并添加适量Al2O3,以增加陶瓷烧结的致密性,从而减少缺陷;而钡钐钛系陶瓷损耗大的一个重要原因是Ti4+的还原,因此本发明添加少量MnO2作为抗还原剂来降低陶瓷损耗;本发明微波介质陶瓷的烧结温度低,Q值达到12000~25500GHz,谐振频率温度系数达到1.5~3.8ppm/℃;该钡钐钛系低损耗微波介质陶瓷具有优异的微波介电性能,所用制备原料无毒且价格低廉,制备工艺简单,具有广泛的应用前景。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本发明提供了一种钡钐钛系低损耗微波介质陶瓷,其是由主料和辅料复合而成,主料的组成表达式为Ba7-xSm(8+2x/3)Ti30O79,其中,0.01≤x≤0.06,所述辅料为Cu-ZnO、Al2O3和MnO2,其中,Cu-ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。
其中,辅料中的Cu-ZnO是通过CuO和ZnO按照1:1的摩尔比配制而成。
作为本发明优选的技术方案,各个辅料相对于主料的质量分数中,1%≤a≤5%,1%≤b≤5%,0.1%≤c≤0.5%。
本发明还提供了一种钡钐钛系低损耗微波介质陶瓷的制备方法,具体的,包括以下步骤:
(1)制备微波介质陶瓷的主料:按照组成表达式Ba7-xSm(8+2x/3)Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中进行焙烧,得到主料,其中,在Ba7-xSm(8+2x/3)Ti30O79中,0.01≤x≤0.06;
(2)制备Cu-ZnO辅料:将ZnO和CuO混合充分后球磨,球磨后烘干、过筛,再放入刚玉坩埚中进行焙烧,得到Cu-ZnO辅料;
(3)制备钡钐钛系低损耗微波介质陶瓷:按照质量百分比分别称取步骤(1)制备的Ba7-xSm(8+2x/3)Ti30O79、步骤(2)制备的Cu-ZnO、Al2O3和MnO2,将主料和所有辅料进行混合,然后充分球磨,再经过烘干、造粒和过筛,将过筛后的混合粉料压制成型,最后烧结得到该钡钐钛系低损耗微波介质陶瓷。
其中,步骤(1)中的焙烧过程为在1100~1180℃下焙烧保温3~5小时。
其中,步骤(2)中的CuO和ZnO的配比为1:1;再者,步骤(2)中的焙烧过程为在580~650℃下焙烧保温3~5小时。
其中,步骤(3)中的的烧结过程为在1200~1280℃下烧结4小时;再者,步骤(3)中所述的造粒是将烘干后的粉体与聚乙烯醇水溶液混合,然后制成微米级的球形颗粒;另外,步骤(3)中,过筛后的混合粉料被压制成直径为10mm、高度为6mm的圆柱体。
以下的实施例将对本发明作进一步的说明,但并不因此限制本发明。
首先,制备微波介质陶瓷的主料。
实施例1
在本实施例1的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.01,从而,按照组成表达式Ba6.99Sm8.007Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中,在1140℃下焙烧保温4小时,得到主料。
实施例2
在本实施例2的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.02,从而,按照组成表达式Ba6.98Sm8.013Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中,在1140℃下焙烧保温4小时,得到主料。
实施例3
在本实施例3的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.03,从而,按照组成表达式Ba6.97Sm8.02Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中,在1140℃下焙烧保温4小时,得到主料。
实施例4
在本实施例4的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.04,即组成表达式为Ba6.96Sm8.027Ti30O79,该主料的制备方法同实施例1。
实施例5
在本实施例5的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.05,即组成表达式为Ba6.95Sm8.033Ti30O79,该主料的制备方法同实施例1。
实施例6
在本实施例6的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0.06,即组成表达式为Ba6.94Sm8.04Ti30O79,该主料的制备方法同实施例1。
对比例
在对比例的组成表达式Ba7-xSm(8+2x/3)Ti30O79中,x=0,从而,按照组成表达式Ba7Sm8Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中,在1140℃下焙烧保温4小时,得到主料。
对实施例1至6和对比例制备的主料进行性能测试,具体测试结果见表1。
表1实施例1至6和对比例制备的主料的性能测试结果
根据性能测试结构,选取最优的技术方案实施例2,即主料的组成表达式为Ba6.98Sm8.013Ti30O79
然后,按1:1的配比称取ZnO和CuO,混合充分后球磨,球磨后烘干、过筛,再放入刚玉坩埚中,在600℃下焙烧保温4小时,得到Cu-ZnO辅料。
下面制备本发明的钡钐钛系低损耗微波介质陶瓷。
实施例7
按照质量百分比分别称取主料Ba6.98Sm8.013Ti30O79、辅料Al2O3、辅料MnO2以及制备的辅料Cu-ZnO,其中,Cu-ZnO相对于主料Ba6.98Sm8.013Ti30O79的质量分数a为1%,Al2O3相对于主料Ba6.98Sm8.013Ti30O79的质量分数b为0%,MnO2相对于主料Ba6.98Sm8.013Ti30O79的质量分数c为0%,将主料和所有辅料进行混合,然后充分球磨,再经过烘干、造粒和过筛,将过筛后的混合粉料压制成直径为10mm、高度为6mm的圆柱体,最后在1260℃下烧结保温4个小时,得到该钡钐钛系低损耗微波介质陶瓷。
本发明还提供了实施例8至20,实施例8至20的制备方法与实施例7类似,不同的是各个质量分数a、b、c的取值,具体的各个实施例中a、b、c的取值见表2。
对实施例7至20所制备的钡钐钛系低损耗微波介质陶瓷进行性能测试,其性能测试结果见表2。
表2实施例7至20所制备的微波介质陶瓷的性能测试结果
由表2中实施例7-20的结果比较可知,优选实施例18,即最终制备的钡钐钛系低损耗微波介质陶瓷的组成表达式为Ba6.98Sm8.013Ti30O79-4%(Cu-ZnO)-3%Al2O3-0.3%MnO2。该微波介质陶瓷的介电常数为61.7,品质因数Q为25500GHZ,谐振频率温度系数为2.333ppm/℃;该微波介质陶瓷的烧结温度低,Q值达到25500GHz,谐振频率温度系数达到2.333ppm/℃,具有优异的微波介电性能,且所用制备原料无毒又价格低廉,制备工艺简单,具有广泛的应用前景。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种钡钐钛系低损耗微波介质陶瓷,其特征在于:该微波介质陶瓷是由主料和辅料复合而成,主料的组成表达式为Ba7-xSm(8+2x/3)Ti30O79,其中,0.01≤x≤0.06,所述辅料为Cu-ZnO、Al2O3和MnO2,其中,Cu-ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。
2.根据权利要求1所述的钡钐钛系低损耗微波介质陶瓷,其特征在于:辅料中的Cu-ZnO是通过CuO和ZnO按照1:1的摩尔比配制而成。
3.根据权利要求1所述的钡钐钛系低损耗微波介质陶瓷,其特征在于:各个辅料相对于主料的质量分数中,1%≤a≤5%,1%≤b≤5%,0.1%≤c≤0.5%。
4.一种钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,包括以下步骤:
(1)制备微波介质陶瓷的主料:按照组成表达式Ba7-xSm(8+2x/3)Ti30O79中各元素的摩尔比对BaCO3、Sm2O3、TiO2进行配料,混合充分后进行球磨,球磨后烘干、过筛,然后放入刚玉坩埚中进行焙烧,得到主料,其中,在Ba7-xSm(8+2x/3)Ti30O79中,0.01≤x≤0.06;
(2)制备Cu-ZnO辅料:将ZnO和CuO混合充分后球磨,球磨后烘干、过筛,再放入刚玉坩埚中进行焙烧,得到Cu-ZnO辅料;
(3)制备钡钐钛系低损耗微波介质陶瓷:按照质量百分比分别称取步骤(1)制备的Ba7- xSm(8+2x/3)Ti30O79、步骤(2)制备的Cu-ZnO、Al2O3和MnO2,将主料和所有辅料进行混合,然后充分球磨,再经过烘干、造粒和过筛,将过筛后的混合粉料压制成型,最后烧结得到该钡钐钛系低损耗微波介质陶瓷;其中,Cu-ZnO相对于主料的质量分数为a,1%≤a≤5%,Al2O3相对于主料的质量分数为b,0%≤b≤5%,MnO2相对于主料的质量分数为c,0%≤c≤0.5%。
5.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(1)中的焙烧过程为在1100~1180℃下焙烧保温3~5小时。
6.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(2)中的CuO和ZnO的配比为1:1。
7.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(2)中的焙烧过程为在580~650℃下焙烧保温3~5小时。
8.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(3)中的的烧结过程为在1200~1280℃下烧结4小时。
9.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(3)中所述的造粒是将烘干后的粉体与聚乙烯醇水溶液混合,然后制成微米级的球形颗粒。
10.根据权利要求4所述的钡钐钛系低损耗微波介质陶瓷的制备方法,其特征在于,步骤(3)中,过筛后的混合粉料被压制成直径为10mm、高度为6mm的圆柱体。
CN201910492580.3A 2019-06-06 2019-06-06 一种钡钐钛系低损耗微波介质陶瓷及其制备方法 Active CN110092655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910492580.3A CN110092655B (zh) 2019-06-06 2019-06-06 一种钡钐钛系低损耗微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910492580.3A CN110092655B (zh) 2019-06-06 2019-06-06 一种钡钐钛系低损耗微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN110092655A true CN110092655A (zh) 2019-08-06
CN110092655B CN110092655B (zh) 2022-01-25

Family

ID=67450431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910492580.3A Active CN110092655B (zh) 2019-06-06 2019-06-06 一种钡钐钛系低损耗微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110092655B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153694A (zh) * 2020-01-06 2020-05-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN111943664A (zh) * 2020-07-29 2020-11-17 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种低烧结温度钡钐钛系微波介质陶瓷及其制备方法
CN114093668A (zh) * 2021-11-16 2022-02-25 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种中介电常数低温共烧多层陶瓷电容器用介质陶瓷及制备方法
CN114133244A (zh) * 2021-12-20 2022-03-04 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数gps定位用微波介质陶瓷及其制备方法
CN114180956A (zh) * 2021-12-20 2022-03-15 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数5g波导用微波介质陶瓷及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242008A (ja) * 1991-01-11 1992-08-28 Oki Electric Ind Co Ltd 複合誘電体材料
CN108821764A (zh) * 2018-08-22 2018-11-16 天津大学 一种谐振器用微波介质陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242008A (ja) * 1991-01-11 1992-08-28 Oki Electric Ind Co Ltd 複合誘電体材料
CN108821764A (zh) * 2018-08-22 2018-11-16 天津大学 一种谐振器用微波介质陶瓷及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
于轩等: "ZnO对BaSm2Ti4O12陶瓷性能的影响", 《电子与封装》 *
姚晓刚等: "Al2O3掺杂对Ba4Sm9.33Ti18O54陶瓷显微结构和介电性能的影响", 《无机材料学报》 *
方志远等: "添加CuO对Ba3.99Sm9.34Ti18O54陶瓷烧结及微波介电性能的影响", 《电子元件与材料》 *
黄春娥等: "MnCO3掺杂对Ba4Sm9.33Ti18O54微波介质陶瓷性能的影响", 《人工晶体学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153694A (zh) * 2020-01-06 2020-05-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN111153694B (zh) * 2020-01-06 2022-04-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN111943664A (zh) * 2020-07-29 2020-11-17 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种低烧结温度钡钐钛系微波介质陶瓷及其制备方法
CN114093668A (zh) * 2021-11-16 2022-02-25 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种中介电常数低温共烧多层陶瓷电容器用介质陶瓷及制备方法
CN114133244A (zh) * 2021-12-20 2022-03-04 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数gps定位用微波介质陶瓷及其制备方法
CN114180956A (zh) * 2021-12-20 2022-03-15 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数5g波导用微波介质陶瓷及其制备方法和应用
CN114133244B (zh) * 2021-12-20 2022-10-18 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数gps定位用微波介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN110092655B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN110092655A (zh) 一种钡钐钛系低损耗微波介质陶瓷及其制备方法
EP2826763B1 (en) Scheelite-type microwave dielectric ceramic material and preparation method therefor
CN108249913A (zh) 一种温度稳定型低损耗微波介质陶瓷及其制备方法和应用
CN104692795B (zh) 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN110540420B (zh) 一种低烧结温度低介微波介质陶瓷及其制备方法
CN110143814A (zh) 一种中介温度稳定型微波介质陶瓷及其制备方法
CN110818406A (zh) 一种高q值低温烧结的微波介质陶瓷及其制备方法
CN110451952A (zh) 一种低损耗高强度微波介质陶瓷及其制备方法
CN102060532B (zh) 一种高品质因数微波介质陶瓷及其制备方法
CN108439968A (zh) 一种低介电常数和超低损耗的微波介质陶瓷及其制备方法
CN108585850A (zh) 一种超低温烧结微波介质陶瓷及制备方法
CN103360050B (zh) 一种中介电常数的微波介质陶瓷及其制备方法
CN106699164B (zh) 微波陶瓷SrO-ZnO(MgO)-TiO2及制法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
CN112573914B (zh) 低温烧结温度稳定型介质波导用微波介质陶瓷及制备方法
CN106938924A (zh) 小介电常数高q值的微波复合陶瓷及其制备方法
CN106866143A (zh) 微波复相陶瓷AWO4‑TiO2及其制备方法
CN102030527B (zh) 一种BaO-TiO 2系微波电容器介质材料及其制备方法
CN112521149A (zh) 高q值微波介质陶瓷粉及微波介质陶瓷、制备方法和应用
CN109534815A (zh) 改性BaO-TiO2-La2O3介电陶瓷的制备方法
CN111377711A (zh) 微波介质陶瓷材料、介质陶瓷块和微波通信设备
CN105399420B (zh) 一种Ti基高介电常数微波介质陶瓷及其制备方法
CN109206132A (zh) 一种高介电常数微波介质陶瓷材料及其制备方法和应用
CN105254291B (zh) 一种高品质因数中k值微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Ji An

Inventor after: Wang Dan

Inventor before: Ji An

Inventor before: Wang Dan

Inventor before: Wang Xiaohui

CB03 Change of inventor or designer information