CN110071340B - 一种锂离子电池的注液化成方法 - Google Patents

一种锂离子电池的注液化成方法 Download PDF

Info

Publication number
CN110071340B
CN110071340B CN201910358647.4A CN201910358647A CN110071340B CN 110071340 B CN110071340 B CN 110071340B CN 201910358647 A CN201910358647 A CN 201910358647A CN 110071340 B CN110071340 B CN 110071340B
Authority
CN
China
Prior art keywords
voltage
charging
electrolyte
discharge
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910358647.4A
Other languages
English (en)
Other versions
CN110071340A (zh
Inventor
袁永华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Mingmei new energy Co., Ltd
Original Assignee
Guangzhou Mingmei New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Mingmei New Energy Co Ltd filed Critical Guangzhou Mingmei New Energy Co Ltd
Priority to CN201910358647.4A priority Critical patent/CN110071340B/zh
Publication of CN110071340A publication Critical patent/CN110071340A/zh
Application granted granted Critical
Publication of CN110071340B publication Critical patent/CN110071340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种锂离子电池的注液化成方法,所述锂离子电池的正极材料包括含有镍过渡金属元素的活性材料,其中所述方法包括注入第一电解液,预化成,所述预化成包括脉冲化成,注入第二电解液,高温化成,通过本发明的方法,能够在正极表面形成稳定的SEI膜,从而提高所述锂离子电池的高温循环性能。

Description

一种锂离子电池的注液化成方法
技术领域
本发明涉及锂离子电池技术领域,特别是涉及一种锂离子电池的注液化成方法。
背景技术
锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中高镍的三元锂离子电池是指正极材料使用镍占镍钴锰总量达到50%以上的三元正极材料的锂电池,因具有较高的工作电压和能量密度,逐步成为三元材料的主流技术路线。而三元材料的高温循环性能较差,在温度较高的环境下,充放电容量衰减较为严重。
经过发明人长期的研究发现,高镍三元材料作为锂离子电池的正极,在电池循环的过程中,电解液容易在正极表面分解,尤其是在高温的环境下,电解液的分解现象尤为明显,从而导致循环寿命衰减严重。
发明内容
针对上述问题,本发明提供了一种锂离子电池的注液化成方法,所述锂离子电池的正极材料包括含有镍过渡金属元素的活性材料,其中所述方法包括注入第一电解液,预化成,所述预化成包括脉冲化成,注入第二电解液,高温化成,通过本发明的方法,能够在正极表面形成稳定的SEI膜,从而提高所述锂离子电池的高温循环性能。
具体的方案如下:
一种锂离子电池的注液化成方法,所述锂离子电池的正极材料包括含有镍过渡金属元素的活性材料,所述方法包括:
1)、注入第一电解液,所述第一电解液的占总电解液体积的65-70%,所述第一电解液包括氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1-0.2C,直至电压至第一预定电压;
3)、脉冲放电,所述脉冲放电的电流为0.1-0.2C,直至电压至第二预定电压;
4)、重复步骤2和3若干次,静置;
5)、注入作为余量的第二电解液,所述第二电解液包括二甲基砜(MSM)及甲基二磺酸亚甲酯(MMDS);
6)、恒流充电至第三预定电压,然后以第三预定电压恒压充电,直至充电电流低于0.05C;
7)、提高化成环境温度至40℃以上,恒流放电至放电截止电压,然后在充电截止电压和放电截止电压之间恒流充放电循环若干次;
8)、将化成后的电池取下,封口。
进一步的,所述第一电解液包括4-6%的氟代碳酸乙烯酯(FEC)。
进一步的,所述第二电解液包括4-6%的二甲基砜(MSM),以及6-12%的甲基二磺酸亚甲酯(MMDS),且二甲基砜(MSM)与甲基二磺酸亚甲酯(MMDS)的含量比为2:3-4。
进一步的,所述步骤2中,所述第一预定电压为3.2-3.3V。
进一步的,所述第二预定电压为3.0-3.1V。
进一步的,所述第三预定电压为4.3V。
进一步的,所述放电截止电压为2.7V,所述充电截止电压为4.2V。
进一步的,所述脉冲充电的充电作用时间为0.5-10min,间隔30-60s;所述脉冲放电的放电作用时间为0.5-10min,间隔30-60s。
进一步的,所述含有镍过渡金属元素的活性材料为LiNi0.6Co0.2Mn0.2O2
本发明具有如下有益效果:
1)、初期化成中,在第一和第二预定电压之间进行脉冲充放电循环,消除电极附近的极化效应,能够使氟代碳酸乙烯酯分解得到稳定的SEI膜;
2)、二甲基砜具有较好的高温稳定性,但是其与活性材料的结合性能较差,发明人发现,将其与甲基二磺酸亚甲酯以特定的比例范围内混合共同成膜后能够提高成膜的结合性能,并且在预化成后再加入,在氟代碳酸乙烯酯分解得到的SEI膜继续分解稳定成膜,进一步提高成膜的稳定性。
3)、后期在高温环境下充放电循环有利于电解液进一步分解,形成覆盖较为完整的SEI膜,并且高温条件能够促进电池内部的气体充分排出,提高循环性能。
具体实施方式
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
本发明的实施例和对比例所用锂离子电池,LiNi0.6Co0.2Mn0.2O2(正极)/人造石墨(负极);电解质盐为1.0mol/L的六氟磷酸锂,非水有机溶剂为体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液。
实施例1
1)、注入第一电解液,所述第一电解液的占总电解液体积的65%,所述第一电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为0.5min,间隔30s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.0V,所述脉冲放电的放电作用时间为0.5min,间隔30s;
4)、重复步骤2)和3)5次,静置4h;
5)、注入作为余量的第二电解液,所述第二电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%的二甲基砜(MSM),和6%的甲基二磺酸亚甲酯(MMDS);
6)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
7)、调整化成环境温度至40℃,0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
8)、将化成后的电池取下,封口。
实施例2
1)、注入第一电解液,所述第一电解液的占总电解液体积的70%,所述第一电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及6%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.2C,直至电压至3.3V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.2C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、注入作为余量的第二电解液,所述第二电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及6%的二甲基砜(MSM),和12%的甲基二磺酸亚甲酯(MMDS);
6)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
7)、调整化成环境温度至40℃,以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
8)、将化成后的电池取下,封口。
实施例3
1)、注入第一电解液,所述第一电解液的占总电解液体积的65%,所述第一电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及6%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.2C,直至电压至3.2V,所述脉冲充电的充电作用时间为5min,间隔30s;
3)、脉冲放电,所述脉冲放电的电流为0.2C,直至电压至3.1V,所述脉冲放电的放电作用时间为5min,间隔30s;
4)、重复步骤2)和3)5次,静置4h;
5)、注入作为余量的第二电解液,所述第二电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及5%的二甲基砜(MSM),和10%的甲基二磺酸亚甲酯(MMDS);
6)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
7)、调整化成环境温度至50℃,以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
8)、将化成后的电池取下,封口。
实施例4
1)、注入第一电解液,所述第一电解液的占总电解液体积的70%,所述第一电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、注入作为余量的第二电解液,所述第二电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及5%的二甲基砜(MSM),和8%的甲基二磺酸亚甲酯(MMDS);
6)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
7)、调整化成环境温度至50℃,以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
8)、将化成后的电池取下,封口。
对比例1
1)、注入电解液,所述电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%氟代碳酸乙烯酯(FEC);5%的二甲基砜(MSM),和8%的甲基二磺酸亚甲酯(MMDS);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
6)、调整化成环境温度至50℃,以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
7)、将化成后的电池取下,封口。
对比例2
1)、注入电解液,所述电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及5%的二甲基砜(MSM),和8%的甲基二磺酸亚甲酯(MMDS);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
6)、以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
7)、将化成后的电池取下,封口。
对比例3
1)、注入电解液,所述电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
6)、以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
7)、将化成后的电池取下,封口。
对比例4
1)、注入第一电解液,所述第一电解液的占总电解液体积的70%,所述第一电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1C,直至电压至3.2V,所述脉冲充电的充电作用时间为10min,间隔60s;
3)、脉冲放电,所述脉冲放电的电流为0.1C,直至电压至3.1V,所述脉冲放电的放电作用时间为10min,间隔60s;
4)、重复步骤2)和3)5次,静置4h;
5)、注入作为余量的第二电解液,所述第二电解液包括1.0mol/L的六氟磷酸锂,体积比为1:1:1的碳酸甲乙酯,碳酸二乙酯和碳酸乙酯的混合溶液,以及4%的二甲基砜(MSM),和12%的甲基二磺酸亚甲酯(MMDS);
6)、以0.2C恒流充电至4.3V,然后以4.3V恒压充电,直至充电电流低于0.05C;
7)、调整化成环境温度至50℃,以0.2C恒流放电至2.7V,然后在4.2V和2.7V之间以0.2C恒流充放电循环3次;
8)、将化成后的电池取下,封口。
实验与数据
将实施例1-4和对比例1-4的电池,分别在25和50℃下循环300次后的容量保持率。由表1可见,在常温下,实施例和对比例的电池循环保持率相差不大,并且见对比例2和3,仅添加部分添加剂的电池在常温下的保持率反而稍好,但是在高温环境下,实施例的电池容量保持性下降不大,而对比例的电池出现了较明显的容量下降,证明本发明的添加剂的添加方式,以及添加剂之间的比例对于高温循环性有较为明显的影响。
表1
Figure BDA0002046216540000101
Figure BDA0002046216540000111
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。

Claims (9)

1.一种锂离子电池的注液化成方法,所述锂离子电池的正极材料包括含有镍过渡金属元素的活性材料,所述方法包括:
1)、注入第一电解液,所述第一电解液占总电解液体积的65-70%,所述第一电解液包括氟代碳酸乙烯酯(FEC);
2)、脉冲充电,所述脉冲充电的电流为0.1-0.2C,直至电压至第一预定电压;
3)、脉冲放电,所述脉冲放电的电流为0.1-0.2C,直至电压至第二预定电压;
4)、重复步骤2和3若干次,静置;
5)、注入作为余量的第二电解液,所述第二电解液包括二甲基砜(MSM)及甲基二磺酸亚甲酯(MMDS);
6)、恒流充电至第三预定电压,然后以第三预定电压恒压充电,直至充电电流低于0.05C;
7)、提高化成环境温度至40℃以上,恒流放电至放电截止电压,然后在充电截止电压和放电截止电压之间恒流充放电循环若干次;
8)、将化成后的电池取下,封口。
2.如上述权利要求1所述的方法,所述第一电解液包括4-6%的氟代碳酸乙烯酯(FEC)。
3.如上述权利要求2所述的方法,所述第二电解液包括4-6%的二甲基砜(MSM),以及6-12%的甲基二磺酸亚甲酯(MMDS),且二甲基砜(MSM)与甲基二磺酸亚甲酯(MMDS)的含量比为2:3-4。
4.如上述权利要求所述的方法,所述步骤2中,所述第一预定电压为3.2-3.3V。
5.如上述权利要求4所述的方法,所述第二预定电压为3.0-3.1V。
6.如上述权利要求5所述的方法,所述第三预定电压为4.3V。
7.如上述权利要求1所述的方法,所述放电截止电压为2.7V,所述充电截止电压为4.2V。
8.如上述权利要求1所述的方法,所述脉冲充电的充电作用时间为0.5-10min,间隔30-60s;所述脉冲放电的放电作用时间为0.5-10min,间隔30-60s。
9.如上述权利要求1所述的方法,所述含有镍过渡金属元素的活性材料为LiNi0.6Co0.2Mn0.2O2
CN201910358647.4A 2019-04-30 2019-04-30 一种锂离子电池的注液化成方法 Active CN110071340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910358647.4A CN110071340B (zh) 2019-04-30 2019-04-30 一种锂离子电池的注液化成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910358647.4A CN110071340B (zh) 2019-04-30 2019-04-30 一种锂离子电池的注液化成方法

Publications (2)

Publication Number Publication Date
CN110071340A CN110071340A (zh) 2019-07-30
CN110071340B true CN110071340B (zh) 2020-12-22

Family

ID=67369731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910358647.4A Active CN110071340B (zh) 2019-04-30 2019-04-30 一种锂离子电池的注液化成方法

Country Status (1)

Country Link
CN (1) CN110071340B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416626B (zh) * 2019-08-05 2020-12-22 广州明美新能源股份有限公司 一种锂离子电池化成方法
CN110783528A (zh) * 2019-09-29 2020-02-11 天津力神电池股份有限公司 一种锂电池及其制备方法
CN111293349B (zh) * 2020-02-19 2021-07-02 江西迪比科股份有限公司 一种锂离子电池的化成方法
CN111384450B (zh) * 2020-03-20 2021-05-11 广州明美新能源股份有限公司 一种锂离子电池的注液化成方法
CN111416157B (zh) * 2020-04-09 2021-07-06 漳州雷天温斯顿动力电池研发中心有限公司 一种三元锂离子电池的制备方法
CN112186260A (zh) * 2020-09-28 2021-01-05 苏州酷卡环保科技有限公司 一种锂离子电池的化成方法
CN112201869B (zh) * 2020-10-19 2022-10-11 苏州极闪控电信息技术有限公司 一种三元锂离子电池的化成方法
CN114335925B (zh) * 2022-03-15 2022-06-03 瑞浦能源有限公司 高功率型二次动力电池的二次注液的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391960A3 (en) * 2002-08-22 2005-01-19 Wilson Greatbatch Technologies, Inc. Discharge methodologies for lithium/silver vanadium oxide cells
CN102637903A (zh) * 2012-04-06 2012-08-15 宁德新能源科技有限公司 一种锂离子电池的化成方法
CN104798245B (zh) * 2012-11-20 2017-06-23 日本电气株式会社 锂离子二次电池
JP5773226B2 (ja) * 2013-02-04 2015-09-02 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
KR102143100B1 (ko) * 2016-03-29 2020-08-10 주식회사 엘지화학 비수성 전해액, 이를 포함하는 리튬 이차전지 및 이의 제조방법
CN106784589A (zh) * 2016-12-08 2017-05-31 宁德时代新能源科技股份有限公司 一种二次电池及注液方法
JP6743755B2 (ja) * 2017-05-01 2020-08-19 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
CN107293812B (zh) * 2017-06-29 2021-02-05 青岛恒金源电子科技有限公司 一种锂离子电池的化成与配组方法
CN109216642A (zh) * 2017-06-29 2019-01-15 青岛恒金源电子科技有限公司 一种锂离子电池的注液方法
CN109273662A (zh) * 2018-09-10 2019-01-25 江西安驰新能源科技有限公司 一种锂离子电池的预充电式高效注液工艺
CN109560323B (zh) * 2018-11-26 2021-01-19 宁德新能源科技有限公司 一种凝胶聚合物电解质及包含其的电化学装置
CN109616711A (zh) * 2018-12-18 2019-04-12 国联汽车动力电池研究院有限责任公司 一种用于锂离子电池的脉冲化成方法

Also Published As

Publication number Publication date
CN110071340A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110071340B (zh) 一种锂离子电池的注液化成方法
CN110600804B (zh) 适用于NCM811和SiO-C材料体系的锂离子电池电解液及制备方法
CN109599595B (zh) 一种锂离子电池的化成方法
CN104766995A (zh) 一种电解液添加剂及其在锂离子电池中的应用
CN102637903A (zh) 一种锂离子电池的化成方法
CN110571489B (zh) 一种锂离子电池的分步化成方法
CN110504489B (zh) 一种5v高电压镍锰酸锂正极用锂离子电池电解液
CN103633284A (zh) 锂离子电池注液方法
CN109309227A (zh) 锂离子电池及其正极活性材料
CN111162335B (zh) 一种锂离子电池的化成方法
CN112259797A (zh) 一种锂离子电池的化成方法
CN108390098A (zh) 一种高电压锂离子电池电解液及高电压锂离子电池
CN111276758A (zh) 一种锂离子电池的制备方法
CN112216890B (zh) 一种锰酸锂电池的化成方法
CN111477961B (zh) 一种锂离子电池非水电解液及含该非水电解液的锂离子电池
CN109428120A (zh) 锂离子电池用非水电解液及锂离子电池
CN111710857A (zh) 一种锰酸锂电池的高温存储方法
CN111554921A (zh) 一种含有亚硫酸乙烯酯的锂离子电池的存储方法
CN110707389A (zh) 一种具有镍钴锰酸锂正极的锂离子电池的化成方法
CN112201869B (zh) 一种三元锂离子电池的化成方法
CN112038702B (zh) 一种锂离子电池的化成方法
CN112909317A (zh) 一种锂离子电池的老化方法
CN106941191A (zh) 锂离子电池及其非水电解液
CN113764731A (zh) 二恶唑酮类化合物于电池电解液中的应用
CN111900472A (zh) 一种锂离子电池非水电解液

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201130

Address after: 510000 the first floor, second floor and third floor of Building 1, No.39, Yunsan Road, Science City, Guangzhou high tech Industrial Development Zone, Guangdong Province

Applicant after: Guangzhou Mingmei new energy Co., Ltd

Address before: 223400 Songzhuang village, Songzhuang village, Lianshui Economic Development Zone, Huaian, Jiangsu, 25

Applicant before: Yuan Yonghua

GR01 Patent grant
GR01 Patent grant