CN110028523A - 多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置 - Google Patents

多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置 Download PDF

Info

Publication number
CN110028523A
CN110028523A CN201811513324.XA CN201811513324A CN110028523A CN 110028523 A CN110028523 A CN 110028523A CN 201811513324 A CN201811513324 A CN 201811513324A CN 110028523 A CN110028523 A CN 110028523A
Authority
CN
China
Prior art keywords
ring
aryl
carbon number
base
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811513324.XA
Other languages
English (en)
Inventor
畠山琢次
广田敬幸
枝连一志
笹田康幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai College
SK Materials JNC Co Ltd
Original Assignee
JNC Corp
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018193398A external-priority patent/JP7264392B2/ja
Application filed by JNC Corp, Kwansei Gakuin Educational Foundation filed Critical JNC Corp
Publication of CN110028523A publication Critical patent/CN110028523A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种新颖的多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置。通过对利用硼原子与氧原子等将多个芳香族环连结而成的新颖的多环芳香族化合物导入天然存在比以上的重氢,而增加有机EL元件用材料等、有机元件用材料的选择项。另外,通过将新颖的重氢取代多环芳香族化合物用作有机EL元件用材料,而提供例如发光效率或元件寿命优异的有机EL元件。

Description

多环芳香族化合物及其多聚体、有机元件用材料、有机电场发 光元件、显示装置或照明装置
技术领域
本发明涉及一种多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置。再者,本说明书中,有时将“有机电场发光元件”表述为“有机EL(Electroluminescence,电致发光)元件”或简单表述为“元件”。
背景技术
从前,使用进行电场发光的发光元件的显示装置因可实现小电力化或薄型化而得到各种研究,进而,包含有机材料的有机电场发光元件因容易轻量化或大型化而得到积极研究。尤其,关于具有作为光的三原色之一的蓝色等的发光特性的有机材料的开发,及关于具备空穴、电子等的电荷传输能力(具有成为半导体或超导体的可能性)的有机材料的开发,迄今为止,不论高分子化合物、低分子化合物均得到积极研究。
有机EL元件具有如下的结构,所述结构包括:包含阳极及阴极的一对电极,及配置于所述一对电极间、且包含有机化合物的一层或多层。在包含有机化合物的层中,有发光层,或者传输或注入空穴、电子等电荷的电荷传输/注入层等,且已开发有适合于这些层的各种有机材料。
作为发光层用材料,例如开发有苯并芴系化合物等(国际公开第2004/061047号公报)。另外,作为空穴传输材料,例如开发有三苯基胺系化合物等(日本专利特开2001-172232号公报)。另外,作为电子传输材料,例如开发有蒽系化合物等(日本专利特开2005-170911号公报)。
另外,近年来,作为用于有机EL元件或有机薄膜太阳电池的材料,还报告有对三苯基胺衍生物进行改良而成的材料(国际公开第2012/118164号公报)。所述材料为如下的材料,其特征在于:参考已实用化的N,N'-二苯基-N,N'-双(3-甲基苯基)-1,1'-联苯-4,4'-二胺(三苯基二胺(triphenyl diamine,TPD)),使构成三苯基胺的芳香环彼此连结,由此提高其平面性。在所述文献中对例如NO连结系化合物(63页的化合物1)的电荷传输特性进行了评价,但并未记载NO连结系化合物以外的材料的制造方法,另外,若所连结的元素不同,则化合物整体的电子状态不同,因此自NO连结系化合物以外的材料所获得的特性也仍然未知。此种化合物的例子在别处也可看到(国际公开第2011/107186号公报)。例如,具有三重态激子的能量(T1)大的共轭结构的化合物因可发出波长更短的磷光,故作为蓝色的发光层用材料有益。另外,作为夹持发光层的电子传输材料或空穴传输材料,还需要具有T1大的新颖共轭结构的化合物。
有机EL元件的主体材料通常为利用单键或磷原子或硅原子将多个苯或咔唑等现有的芳香环连结而成的分子。其原因在于:通过将多个共轭系比较小的芳香环加以连结,主体材料所需的大的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)-最低未占分子轨道(Lowest Unoccupied Molecular Orbital,LUMO)间隙(薄膜中的带隙Eg)得到担保。进而,在使用磷光材料或热活性型延迟荧光材料的有机EL元件的主体材料中,还需要高的三重态激发能量(ET),但通过将施体性或接受性的芳香环或取代基连结于分子上,而使三重态激发状态(T1)的单占分子轨道(Singly Occupied Molecular Orbital,SOMO)1及SOMO2局部存在化,并减小两轨道间的交换相互作用,由此可提升三重态激发能量(ET)。但是,共轭系小的芳香环的氧化还原稳定性并不充分,将连结有现有的芳香环的分子用作主体材料的元件的寿命并不充分。另一方面,具有扩张π共轭系的多环芳香族化合物通常氧化还原稳定性优异,但HOMO-LUMO间隙(薄膜中的带隙Eg)或三重态激发能量(ET)低,因此被认为不适合主体材料。
现有技术文献
专利文献
专利文献1国际公开第2004/061047号公报
专利文献2日本专利特开2001-172232号公报
专利文献3日本专利特开2005-170911号公报
专利文献4国际公开第2012/118164号公报
专利文献5国际公开第2011/107186号公报
专利文献6国际公开第2015/102118号公报
发明内容
发明所要解决的问题
如上所述,作为用于有机EL元件的材料,已开发有各种材料,但为了增加有机EL元件用材料的选择项,而期望开发一种包含与现有的材料不同的化合物的材料。尤其,自专利文献1~专利文献4中所报告的NO连结系化合物以外的材料所获得的有机EL特性或其制造方法仍然未知。
另外,专利文献6中报告有包含硼的多环芳香族化合物与使用其的有机EL元件,但为了进一步提升元件特性,而需要一种可提升发光效率或元件寿命的发光层用材料、尤其是掺杂剂材料。
解决问题的技术手段
本发明的发明人为了解决所述课题而努力研究的结果,发现了通过将含有导入有天然存在比以上的重氢的多环芳香族化合物的层配置于一对电极间并构成例如有机EL元件,而可获得优异的有机EL元件,从而完成了本发明。即,本发明提供一种如下那样的重氢取代多环芳香族化合物或其多聚体,进而提供包含如下那样的重氢取代多环芳香族化合物或其多聚体的有机EL元件用材料等有机元件用材料。
项1.
一种多环芳香族化合物或多环芳香族化合物的多聚体,其中所述多环芳香族化合物由下述通式(1)表示,所述多环芳香族化合物的多聚体具有多个下述通式(1)所表示的结构,
[化4]
(所述式(1)中,
A环、B环及C环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可被取代,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为芳基、烷基或环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为可被取代的芳基、可被取代的杂芳基、可被取代的烷基或可被取代的环烷基,另外,所述N-R的R可通过连结基或单键而与所述A环、B环和/或C环键结,
式(1)所表示的化合物或结构中的至少一个氢可由氰基或卤素取代,而且
式(1)所表示的化合物或结构中的至少一个氢可由重氢取代)。
项2.
根据项1所述的多环芳香族化合物或其多聚体,其中A环、B环及C环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可由经取代或未经取代的芳基、经取代或未经取代的杂芳基、经取代或未经取代的二芳基氨基、经取代或未经取代的二杂芳基氨基、经取代或未经取代的芳基杂芳基氨基、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的烷氧基或者经取代或未经取代的芳氧基取代,另外,这些环具有与包含Y1、X1及X2的所述式中央的缩合二环结构共有键结的5元环或6元环,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为芳基、烷基或环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为可由烷基或环烷基取代的芳基、可由烷基或环烷基取代的杂芳基、烷基或环烷基,另外,所述N-R的R可通过-O-、-S-、-C(-R)2-或单键而与所述A环、B环和/或C环键结,所述-C(-R)2-的R为氢、烷基或环烷基,
式(1)所表示的化合物或结构中的至少一个氢可由氰基或卤素取代,
在多聚体的情况下为具有2个或3个通式(1)所表示的结构的二聚体或三聚体,而且
式(1)所表示的化合物或结构中的至少一个氢可由重氢取代。
项3.
根据项1所述的多环芳香族化合物,其由下述通式(2)表示,
[化5]
(所述式(2)中,
R1~R11分别独立地为氢、芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,另外,R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成芳基环或杂芳基环,所形成的环中的至少一个氢可由芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为碳数6~12的芳基、碳数1~6的烷基或碳数3~14的环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为碳数6~12的芳基、碳数2~15的杂芳基、碳数1~6的烷基或碳数3~14的环烷基,另外,所述N-R的R可通过-O-、-S-、-C(-R)2-或单键而与所述a环、b环和/或c环键结,所述-C(-R)2-的R为碳数1~6的烷基或碳数3~14的环烷基,
式(2)所表示的化合物中的至少一个氢可由氰基或卤素取代,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代)。
项4.
根据项3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~30的芳基、碳数2~30的杂芳基、二芳基氨基(其中,芳基为碳数6~12的芳基)、碳数1~24的烷基或碳数3~24的环烷基,另外,R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成碳数9~16的芳基环或碳数6~15的杂芳基环,所形成的环中的至少一个氢可由碳数6~10的芳基、碳数1~12的烷基或碳数3~16的环烷基取代,
Y1为B、P、P=O、P=S或Si-R,所述Si-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,
X1及X2分别独立地为O、N-R或S,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,
式(2)所表示的化合物中的至少一个氢可由氰基或卤素取代,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
项5.
根据项3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~16的芳基、碳数2~20的杂芳基、二芳基氨基(其中,芳基为碳数6~10的芳基)、碳数1~12的烷基或碳数3~16的环烷基,
Y1为B、P、P=O或P=S,
X1及X2分别独立地为O或N-R,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
项6.
根据项3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~16的芳基、二芳基氨基(其中,芳基为碳数6~10的芳基)、碳数1~12的烷基或碳数3~16的环烷基,
Y1为B,
X1及X2均为N-R,或者X1为N-R,X2为O,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
项7.
根据项1至6中任一项所述的多环芳香族化合物或其多聚体,其由经重氢取代的二芳基氨基、经重氢取代的咔唑基或经重氢取代的苯并咔唑基取代。
项8.
根据项3至6中任一项所述的多环芳香族化合物,其中R2为经重氢取代的二芳基氨基或经重氢取代的咔唑基。
项9.
根据项1至8中任一项所述的多环芳香族化合物或其多聚体,其中所述卤素为氟。
项10.
一种多环芳香族化合物,其由下述任一结构式表示,
[化6]
项11.
一种有机元件用材料,其含有根据项1至10中任一项所述的多环芳香族化合物或其多聚体。
项12.
根据项11所述的有机元件用材料,其中所述有机元件用材料为有机电场发光元件用材料、有机场效晶体管用材料或有机薄膜太阳电池用材料。
项13.
根据项12所述的有机电场发光元件用材料,其为发光层用材料。
项14.
一种有机电场发光元件,其包括:一对电极,包含阳极及阴极;以及发光层,配置于所述一对电极间、且含有根据项13所述的发光层用材料。
项15.
根据项14所述的有机电场发光元件,其中所述发光层包含主体、及作为掺杂剂的所述发光层用材料。
项16.
根据项15所述的有机电场发光元件,其中所述主体为蒽系化合物、芴系化合物或二苯并系化合物。
项17.
根据项14至16中任一项所述的有机电场发光元件,其具有:配置于所述阴极与所述发光层之间的电子传输层和/或电子注入层,所述电子传输层及电子注入层的至少一层含有选自由硼烷衍生物、吡啶衍生物、荧蒽衍生物、BO系衍生物、蒽衍生物、苯并芴衍生物、氧化膦衍生物、嘧啶衍生物、咔唑衍生物、三嗪衍生物、苯并咪唑衍生物、菲咯啉衍生物及羟基喹啉系金属络合物所组成的群组中的至少一种。
项18.
根据项17所述的有机电场发光元件,其中所述电子传输层和/或电子注入层进而含有选自由碱金属、碱土金属、稀土金属、碱金属的氧化物、碱金属的卤化物、碱土金属的氧化物、碱土金属的卤化物、稀土金属的氧化物、稀土金属的卤化物、碱金属的有机络合物、碱土金属的有机络合物及稀土金属的有机络合物所组成的群组中的至少一种。
项19.
一种显示装置或照明装置,其包括根据项14至18中任一项所述的有机电场发光元件。
发明的效果
根据本发明的优选的实施方式,可提供一种可用作例如有机EL元件用材料等有机元件用材料且新颖的重氢取代多环芳香族化合物,并且通过使用所述重氢取代多环芳香族化合物而可提供一种优异的有机EL元件等有机元件。
具体而言,本发明的发明人发现利用硼、磷、氧、氮、硫等异质元素将芳香环连结而成的多环芳香族化合物(基本骨架部分)具有大的HOMO-LUMO间隙(薄膜中的带隙Eg)与高的三重态激发能量(ET)。可认为其原因在于:含有异质元素的6元环的芳香族性低,因此伴随共轭系的扩张的HOMO-LUMO间隙的减少得到抑制,且因异质元素的电子扰动而使三重态激发状态(T1)的SOMO1及SOMO2局部存在化。另外,本发明的含有异质元素的多环芳香族化合物(基本骨架部分)通过三重态激发状态(T1)中的SOMO1及SOMO2的局部存在化,而减小两轨道间的交换相互作用,因此三重态激发状态(T1)与单重态激发状态(S1)的能量差小,显示出热活性型延迟荧光,故作为有机EL元件的荧光材料也有用。另外,具有高的三重态激发能量(ET)的材料作为磷光有机EL元件或利用热活性型延迟荧光的有机EL元件的电子传输层或空穴传输层也有用。进而,这些多环芳香族化合物(基本骨架部分)通过取代基的导入,而可任意地变动HOMO与LUMO的能量,因此可对应于周边材料而使电离电位或电子亲和力最佳化。
除了此种基本骨架部分的特性以外,本发明的化合物通过导入重氢而可实现如下情况:利用键结形态发生变化带来的同位素效果(自C-H键变为C-D键引起的键结伸缩的变化带来的效果)来提升发光效率、以及利用反应速度论性的同位素效果(自C-H键变为C-D键引起的键结能量的提升所致的化合物劣化的抑制效果)来提升元件寿命。其中,本发明并不特别限定于这些原理。
另外,本发明的化合物通过导入环烷基而可期待熔点或升华温度的降低。此情况是指,在作为要求高纯度的有机EL元件等有机元件用的材料的精制法而基本上不可或缺的升华精制中,为了可以比较低的温度进行精制而避开材料的热分解等。另外,关于作为对于制作有机EL元件等有机元件而言有力的手段的真空蒸镀工艺,此情况也相同,为了可以比较低的温度实施工艺而可避开材料的热分解,结果可获得高性能的有机元件用途。另外,多环芳香族化合物的多聚体大多情况下因分子量或平面性的高度等原因而升华温度高,因此导入环烷基带来的升华温度的降低更有效。另外,通过环烷基的导入而在有机溶剂中的溶解性提升,因此也可应用于利用涂布工艺的元件制作中。其中,本发明并不特别限定于这些原理。
附图说明
图1是表示本实施方式的有机EL元件的概略剖面图。
符号的说明
100:有机电场发光元件;
101:基板;
102:阳极;
103:空穴注入层;
104:空穴传输层;
105:发光层;
106:电子传输层;
107:电子注入层;
108:阴极。
具体实施方式
1.经重氢取代的多环芳香族化合物及其多聚体
本申请发明为下述通式(1)所表示的多环芳香族化合物、或具有多个下述通式(1)所表示的结构的多环芳香族化合物的多聚体,优选为下述通式(2)所表示的多环芳香族化合物、或具有多个下述通式(2)所表示的结构的多环芳香族化合物的多聚体,这些化合物或结构中的至少一个氢由重氢取代。
[化7]
通式(1)中的A环、B环及C环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可由取代基取代。所述取代基优选为经取代或未经取代的芳基、经取代或未经取代的杂芳基、经取代或未经取代的二芳基氨基、经取代或未经取代的二杂芳基氨基、经取代或未经取代的芳基杂芳基氨基(具有芳基与杂芳基的氨基)、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的烷氧基或者经取代或未经取代的芳氧基。作为这些基具有取代基时的取代基,可列举:芳基、杂芳基、烷基或环烷基。另外,所述芳基环或杂芳基环优选为具有与包含Y1、X1及X2的通式(1)中央的缩合二环结构共有键结的5元环或6元环。
此处,所谓“缩合二环结构”,是指通式(1)的中央所示的包含Y1、X1及X2而构成的两个饱和烃环缩合而成的结构。另外,所谓“与缩合二环结构共有键结的6元环”,例如如所述通式(2)中所示那样,是指在所述缩合二环结构中缩合的a环(苯环(6元环))。另外,所谓“(A环)芳基环或杂芳基环具有所述6元环”,是指仅由所述6元环形成A环、或以包含所述6元环的方式在所述6元环中进而缩合其他环等来形成A环。换言之,此处所述的“具有6元环的(A环)芳基环或杂芳基环”是指构成A环的全部或一部分的6元环在所述缩合二环结构中缩合。关于“B环(b环)”、“C环(c环)”、及“5元环”,相同的说明也适用。
通式(1)中的A环(或B环、C环)对应于通式(2)中的a环与其取代基R1~R3(或b环与其取代基R4~R7、c环与其取代基R8~R11)。即,通式(2)对应于选择“具有6元环的A环~C环”作为通式(1)的A环~C环者。以所述含义,由小写字母的a~c来表示通式(2)的各环。
通式(2)中,a环、b环及c环的取代基R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成芳基环或杂芳基环,所形成的环中的至少一个氢可由芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代。因此,通式(2)所表示的多环芳香族化合物根据a环、b环及c环中的取代基的相互的键结形态,如下述式(2-1)及式(2-2)所示,构成化合物的环结构会变化。各式中的A'环、B'环及C'环分别对应于通式(1)中的A环、B环及C环。
[化8]
若以通式(2)进行说明,则所述式(2-1)及式(2-2)中的A'环、B'环及C'环表示取代基R1~R11中的邻接的基彼此键结并分别与a环、b环及c环一同形成的芳基环或杂芳基环(还可称为其他环结构在a环、b环或c环中缩合而成的缩合环)。再者,虽然式中未表示,但也存在a环、b环及c环全部变化成A'环、B'环及C'环的化合物。另外,如根据所述式(2-1)及式(2-2)而可知那样,例如b环的R8与c环的R7、b环的R11与a环的R1、c环的R4与a环的R3等并不符合“邻接的基彼此”,这些不会进行键结。即,“邻接的基”是指在同一环上邻接的基。
所述式(2-1)或式(2-2)所表示的化合物例如为具有苯环、吲哚环、吡咯环、苯并呋喃环或苯并噻吩环相对于作为a环(或b环或c环)的苯环进行缩合而形成的A'环(或B'环或C'环)的化合物,所形成的缩合环A'(或缩合环B'或缩合环C')分别为萘环、咔唑环、吲哚环、二苯并呋喃环或二苯并噻吩环。
通式(1)中的Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为芳基、烷基或环烷基。在P=O、P=S、Si-R或Ge-R的情况下,与A环、B环或C环进行键结的原子为P、Si或Ge。Y1优选为B、P、P=O、P=S或Si-R,特别优选为B。所述说明也同样适用于通式(2)中的Y1
通式(1)中的X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为可被取代的芳基、可被取代的杂芳基、可被取代的烷基或可被取代的环烷基,所述N-R的R可通过连结基或单键而与所述B环和/或C环键结,作为连结基,优选为-O-、-S-或-C(-R)2-。再者,所述“-C(-R)2-”的R为氢、烷基或环烷基。所述说明也同样适用于通式(2)中的X1及X2
此处,通式(1)中的“N-R的R通过连结基或单键而与所述A环、B环和/或C环键结”的规定对应于通式(2)中“N-R的R通过-O-、-S-、-C(-R)2-或单键而与所述a环、b环和/或c环键结”的规定。
所述规定可由如下的化合物来表现,所述化合物由下述式(2-3-1)表示、且具有X1或X2被导入至缩合环B'及缩合环C'中的环结构。即,例如为具有其他环以导入X1(或X2)的方式相对于作为通式(2)中的b环(或c环)的苯环进行缩合而形成的B'环(或C'环)的化合物。所形成的缩合环B'(或缩合环C')例如为吩噁嗪环、吩噻嗪环或吖啶环。
另外,所述规定也可由如下的化合物来表现,所述化合物由下述式(2-3-2)或式(2-3-3)表示、且具有X1和/或X2被导入至缩合环A'中的环结构。即,例如为具有其他环以导入X1(和/或X2)的方式相对于作为通式(2)中的a环的苯环进行缩合而形成的A'环的化合物。所形成的缩合环A'例如为吩噁嗪环、吩噻嗪环或吖啶环。
[化9]
作为通式(1)的A环、B环及C环的“芳基环”例如可列举碳数6~30的芳基环,优选为碳数6~16的芳基环,更优选为碳数6~12的芳基环,特别优选为碳数6~10的芳基环。再者,所述“芳基环”对应于通式(2)中所规定的“R1~R11中的邻接的基彼此键结并与a环、b环或c环一同形成的芳基环”,另外,a环(或b环、c环)已包含碳数6的苯环,因此5元环在其中进行缩合而成的缩合环的合计碳数9成为下限的碳数。
作为具体的“芳基环”,可列举:作为单环系的苯环,作为二环系的联苯环,作为缩合二环系的萘环,作为三环系的三联苯环(间三联苯、邻三联苯、对三联苯),作为缩合三环系的苊环、芴环、非那烯环、菲环,作为缩合四环系的三亚苯环、芘环、并四苯环(naphthacene ring),作为缩合五环系的苝环、并五苯环等。
作为通式(1)的A环、B环及C环的“杂芳基环”例如可列举碳数2~30的杂芳基环,优选为碳数2~25的杂芳基环,更优选为碳数2~20的杂芳基环,进而更优选为碳数2~15的杂芳基环,特别优选为碳数2~10的杂芳基环。另外,作为“杂芳基环”,例如可列举除碳以外含有1个~5个选自氧、硫及氮中的杂原子作为环构成原子的杂环等。再者,所述“杂芳基环”对应于通式(2)中所规定的“R1~R11中的邻接的基彼此键结并与a环、b环或c环一同形成的杂芳基环”,另外,a环(或b环、c环)已包含碳数6的苯环,因此5元环在其中进行缩合而成的缩合环的合计碳数6成为下限的碳数。
作为具体的“杂芳基环”,例如可列举:吡咯环、噁唑环、异噁唑环、噻唑环、异噻唑环、咪唑环、噁二唑环、噻二唑环、三唑环、四唑环、吡唑环、吡啶环、嘧啶环、哒嗪环、吡嗪环、三嗪环、吲哚环、异吲哚环、1H-吲唑环、苯并咪唑环、苯并噁唑环、苯并噻唑环、1H-苯并三唑环、喹啉环、异喹啉环、噌啉环、喹唑啉环、喹喔啉环、酞嗪环、萘啶环、嘌呤环、蝶啶环、咔唑环、吖啶环、吩噁噻环、吩噁嗪环、吩噻嗪环、吩嗪环、吲嗪环、呋喃环、苯并呋喃环、异苯并呋喃环、二苯并呋喃环、噻吩环、苯并噻吩环、二苯并噻吩环、呋咱环、噻蒽环等。
所述“芳基环”或“杂芳基环”中的至少一个氢可由作为第1取代基的经取代或未经取代的“芳基”、经取代或未经取代的“杂芳基”、经取代或未经取代的“二芳基氨基”、经取代或未经取代的“二杂芳基氨基”、经取代或未经取代的“芳基杂芳基氨基”、经取代或未经取代的“烷基”、经取代或未经取代的“环烷基”、经取代或未经取代的“烷氧基”、或者经取代或未经取代的“芳氧基”取代,作为所述第1取代基的“芳基”或“杂芳基”、“二芳基氨基”的芳基、“二杂芳基氨基”的杂芳基、“芳基杂芳基氨基”的芳基与杂芳基、及“芳氧基”的芳基可列举所述“芳基环”或“杂芳基环”的一价的基。
另外,作为第1取代基的“烷基”可为直链及支链的任一种,例如可列举碳数1~24的直链烷基或碳数3~24的支链烷基。优选为碳数1~18的烷基(碳数3~18的支链烷基),更优选为碳数1~12的烷基(碳数3~12的支链烷基),进而更优选为碳数1~6的烷基(碳数3~6的支链烷基),特别优选为碳数1~4的烷基(碳数3~4的支链烷基)。
作为具体的烷基,可列举:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、正己基、1-甲基戊基、4-甲基-2-戊基、3,3-二甲基丁基、2-乙基丁基、正庚基、1-甲基己基、正辛基、叔辛基、1-甲基庚基、2-乙基己基、2-丙基戊基、正壬基、2,2-二甲基庚基、2,6-二甲基-4-庚基、3,5,5-三甲基己基、正癸基、正十一基、1-甲基癸基、正十二基、正十三基、1-己基庚基、正十四基、正十五基、正十六基、正十七基、正十八基、正二十基等。
另外,作为第1取代基的“环烷基”可列举碳数3~24的环烷基、碳数3~20的环烷基、碳数3~16的环烷基、碳数3~14的环烷基、碳数5~10的环烷基、碳数5~8的环烷基、碳数5~6的环烷基、碳数5的环烷基等。
作为具体的环烷基,可列举:环丙基、甲基环丙基、环丁基、甲基环丁基、环戊基、甲基环戊基、环己基、甲基环己基、环庚基、甲基环庚基、环辛基、甲基环辛基、环壬基、甲基环壬基、环癸基、甲基环癸基、双环[1.0.1]丁基、双环[1.1.1]戊基、双环[2.0.1]戊基、双环[1.2.1]己基、双环[3.0.1]己基、双环[2.1.2]庚基、双环[2.2.2]辛基、金刚烷基、二金刚烷基、十氢萘基、十氢薁基等。
另外,作为第1取代基的“烷氧基”例如可列举碳数1~24的直链的烷氧基或碳数3~24的支链的烷氧基。优选为碳数1~18的烷氧基(碳数3~18的支链的烷氧基),更优选为碳数1~12的烷氧基(碳数3~12的支链的烷氧基),进而更优选为碳数1~6的烷氧基(碳数3~6的支链的烷氧基),特别优选为碳数1~4的烷氧基(碳数3~4的支链的烷氧基)。
作为具体的烷氧基,可列举:甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、仲丁氧基、叔丁氧基、戊氧基、己氧基、庚氧基、辛氧基等。
作为第1取代基的经取代或未经取代的“芳基”、经取代或未经取代的“杂芳基”、经取代或未经取代的“二芳基氨基”、经取代或未经取代的“二杂芳基氨基”、经取代或未经取代的“芳基杂芳基氨基”、经取代或未经取代的“烷基”、经取代或未经取代的“环烷基”、经取代或未经取代的“烷氧基”、或者经取代或未经取代的“芳氧基”如说明为经取代或未经取代那样,这些中的至少一个氢可由第2取代基取代。作为所述第2取代基,例如可列举芳基、杂芳基、烷基或环烷基,这些的具体例可参照所述“芳基环”或“杂芳基环”的一价的基、及作为第1取代基的“烷基”或“环烷基”的说明。另外,在作为第2取代基的芳基或杂芳基中,这些中的至少一个氢由苯基等芳基(具体例为以上所述者)或甲基等烷基(具体例为以上所述者)或环己基等环烷基(具体例为以上所述者)取代者也包含于作为第2取代基的芳基或杂芳基中。作为其一例,当第2取代基为咔唑基时,9位上的至少一个氢由苯基等芳基或甲基等烷基或环己基等环烷基取代的咔唑基也包含于作为第2取代基的杂芳基中。
作为通式(2)的R1~R11中的芳基、杂芳基、二芳基氨基的芳基,二杂芳基氨基的杂芳基,芳基杂芳基氨基的芳基与杂芳基,或芳氧基的芳基,可列举通式(1)中所说明的“芳基环”或“杂芳基环”的一价的基。另外,作为R1~R11中的烷基、环烷基或烷氧基,可参照所述通式(1)的说明中的作为第1取代基的“烷基”或“环烷基”或“烷氧基”的说明。进而,作为针对这些基的取代基的芳基、杂芳基、烷基或环烷基也相同。另外,作为R1~R11中的邻接的基彼此键结并与a环、b环或c环一同形成芳基环或杂芳基环时的针对这些环的取代基的杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基,及作为进一步的取代基的芳基、杂芳基、烷基或环烷基也相同。
通式(1)的Y1中的Si-R及Ge-R的R为芳基、烷基或环烷基,可列举作为所述芳基、烷基或环烷基所述者。特别优选为碳数6~10的芳基(例如苯基、萘基等)、碳数1~4的烷基(例如甲基、乙基等)。所述说明也同样适用于通式(2)中的Y1
通式(1)的X1及X2中的N-R的R为可由所述第2取代基取代的芳基、杂芳基、烷基或环烷基,芳基、杂芳基、烷基或环烷基中的至少一个氢例如可由烷基或环烷基取代。作为所述芳基、杂芳基、烷基或环烷基,可列举所述的芳基、杂芳基、烷基或环烷基。特别优选为碳数6~10的芳基(例如苯基、萘基等)、碳数2~15的杂芳基(例如咔唑基等)、碳数1~4的烷基(例如甲基、乙基等)、碳数3~16的环烷基(例如双环辛基或金刚烷基等)。所述说明也同样适用于通式(2)中的X1及X2
作为通式(1)中的连结基的“-C(-R)2-”的R为氢、烷基或环烷基,作为所述烷基或环烷基,可列举所述的烷基或环烷基。特别优选为碳数1~4的烷基(例如甲基、乙基等)。所述说明也同样适用于作为通式(2)中的连结基的“-C(-R)2-”。
另外,本申请发明为具有多个通式(1)所表示的单元结构的多环芳香族化合物的多聚体、优选为具有多个通式(2)所表示的单元结构的多环芳香族化合物的多聚体。多聚体优选为二聚体~六聚体,更优选为二聚体~三聚体,特别优选为二聚体。多聚体只要是在一个化合物中具有多个所述单元结构的形态即可,例如除利用单键、碳数1~3的亚烷基、亚苯基、亚萘基等连结基使多个所述单元结构键结而成的形态以外,可为以由多个单元结构共有所述单元结构中所包含的任意的环(A环、B环或C环,a环、b环或c环)的方式进行键结的形态,另外,也可为以所述单元结构中所包含的任意的环(A环、B环或C环,a环、b环或c环)彼此进行缩合的方式进行键结的形态。
作为此种多聚体,例如可列举下述式(2-4)、式(2-4-1)、式(2-4-2)、式(2-5-1)~式(2-5-4)或式(2-6)所表示的多聚体化合物。下述式(2-4)所表示的多聚体化合物若以通式(2)进行说明,则为以共有作为a环的苯环的方式,在一个化合物中具有多个通式(2)所表示的单元结构的多聚体化合物。另外,下述式(2-4-1)所表示的多聚体化合物若以通式(2)进行说明,则为以共有作为a环的苯环的方式,在一个化合物中具有两个通式(2)所表示的单元结构的多聚体化合物。另外,下述式(2-4-2)所表示的多聚体化合物若以通式(2)进行说明,则为以共有作为a环的苯环的方式,在一个化合物中具有三个通式(2)所表示的单元结构的多聚体化合物。另外,下述式(2-5-1)~式(2-5-4)所表示的多聚体化合物若以通式(2)进行说明,则为以共有作为b环(或c环)的苯环的方式,在一个化合物中具有多个通式(2)所表示的单元结构的多聚体化合物。另外,下述式(2-6)所表示的多聚体化合物若以通式(2)进行说明,则为以例如作为某一单元结构的b环(或a环、c环)的苯环与作为某一单元结构的b环(或a环、c环)的苯环进行缩合的方式,在一个化合物中具有多个通式(2)所表示的单元结构的多聚体化合物。
[化10]
多聚体化合物可为将式(2-4)、式(2-4-1)或式(2-4-2)所表现的多聚化形态与式(2-5-1)~式(2-5-4)的任一者或式(2-6)所表现的多聚化形态组合而成的多聚体,也可为将式(2-5-1)~式(2-5-4)的任一者所表现的多聚化形态与式(2-6)所表现的多聚化形态组合而成的多聚体,也可为将式(2-4)、式(2-4-1)或式(2-4-2)所表现的多聚化形态与式(2-5-1)~式(2-5-4)的任一者所表现的多聚化形态及式(2-6)所表现的多聚化形态组合而成的多聚体。
另外,通式(1)或通式(2)所表示的多环芳香族化合物及其多聚体的化学结构中的氢的全部或一部分可为氰基或卤素。例如,在式(1)中,A环、B环、C环(A环~C环为芳基环或杂芳基环)、针对A环~C环的取代基、Y1为Si-R或Ge-R时的R(=烷基、环烷基、芳基)、以及X1及X2为N-R时的R(=芳基、杂芳基、烷基、环烷基)中的氢可由氰基或卤素取代,这些中,可列举芳基或杂芳基中的全部或一部分的氢由氰基或卤素取代的实施方式。卤素为氟、氯、溴或碘,优选为氟、氯或溴,更优选为氟或氯。
另外,本发明的多环芳香族化合物及其多聚体可用作有机元件用材料。作为有机元件,例如可列举:有机电场发光元件、有机场效晶体管或有机薄膜太阳电池等。尤其,在有机电场发光元件中,作为发光层的掺杂剂材料,优选为Y1为B、X1及X2为N-R的化合物,Y1为B、X1为O、X2为N-R的化合物,Y1为B、X1及X2为O的化合物,作为发光层的主体材料,优选为Y1为B、X1为O、X2为N-R的化合物,Y1为B、X1及X2为O的化合物,作为电子传输材料,可优选地使用Y1为B、X1及X2为O的化合物,Y1为P=O、X1及X2为O的化合物。
另外,通式(1)或通式(2)所表示的多环芳香族化合物及其多聚体的化学结构中的至少一个氢可经重氢取代,全部的氢或一部分氢可为重氢。
作为重氢取代的其他形态,可列举:通式(1)或通式(2)所表示的多环芳香族化合物及其多聚体例如由经重氢取代的二芳基氨基、经重氢取代的咔唑基或经重氢取代的苯并咔唑基取代而成的例子。关于“二芳基氨基”,可列举作为所述“第1取代基”而说明的基。作为针对二芳基氨基、咔唑基及苯并咔唑基的重氢的取代形态,可列举这些基中的芳基环或苯环的一部分或全部的氢由重氢取代的例子。
另外,作为进而具体的例子,可列举通式(2)所表示的多环芳香族化合物及其多聚体中的R2为经重氢取代的二芳基氨基或经重氢取代的咔唑基的例子。
作为其一例,可列举下述通式(2-A)所表示的多环芳香族化合物、或具有多个下述通式(2-A)所表示的结构的多环芳香族化合物的多聚体。结构式中的各符号的定义与通式(2)中的各符号的定义相同。
[化11]
另外,作为本发明的经重氢取代的多环芳香族化合物及其多聚体的具体例,可列举化合物中的一个或多个芳香环中的至少一个氢由一个或多个重氢取代而成的化合物,例如可列举由1个~2个重氢取代而成的化合物。
具体而言,可列举以下的式(1-1-D)~式(1-4401-D)所表示的化合物。下述式中的n分别独立地为0~2、优选为1。再者,下述结构式中的“D”表示重氢,“OPh”表示苯氧基,“Me”表示甲基。
[化12]
[化13]
[化14]
[化15]
[化16]
[化17]
[化18]
[化19]
[化20]
作为本发明的经重氢取代的多环芳香族化合物的进而具体的例子,可列举以下的结构式所表示的化合物。再者,下述结构式中的“D”表示重氢,“Me”表示甲基,“tBu”表示叔丁基。
[化21]
[化22]
[化23]
[化24]
[化25]
[化26]
[化27]
[化28]
[化29]
[化30]
[化31]
[化32]
[化33]
[化34]
[化35]
[化36]
[化37]
[化38]
[化39]
[化40]
[化41]
[化42]
[化43]
[化44]
[化45]
[化46]
2.经重氢取代的多环芳香族化合物及其多聚体的制造方法
通式(1)或通式(2)所表示的多环芳香族化合物及其多聚体基本上首先利用键结基(含有X1或X2的基)使A环(a环)与B环(b环)及C环(c环)键结,由此制造中间物(第1反应),其后,利用键结基(含有Y1的基)使A环(a环)、B环(b环)及C环(c环)键结,由此可制造最终产物(第2反应)。在第1反应中,例如若为醚化反应,则可利用亲核取代反应、乌尔曼反应(Ullmann Reaction)等一般的反应,若为氨基化反应,则可利用布赫瓦尔德-哈特维希反应(Buchwald-Hartwig Reaction)等一般的反应。另外,在第2反应中,可利用串联式杂夫里德耳-夸夫特反应(Tandem Hetero-Friedel-Crafts Reaction)(连续的芳香族亲电子取代反应,以下相同)。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
如下述流程(1)或流程(2)所示,第2反应为导入键结A环(a环)、B环(b环)及C环(c环)的Y1的反应,作为例子,以下表示Y1为硼原子、X1及X2为氧原子的情况。首先,利用正丁基锂、仲丁基锂或叔丁基锂等对X1与X2之间的氢原子进行邻位金属化。继而,添加三氯化硼或三溴化硼等,进行锂-硼的金属交换后,添加N,N-二异丙基乙胺等布忍斯特碱(Bronstedbase),由此进行串联式硼杂夫里德耳-夸夫特反应(Tandem Bora-Friedel-CraftsReaction),而可获得目标物。在第2反应中,为了促进反应,也可添加三氯化铝等路易斯酸(lewis acid)。再者,下述流程(1)及流程(2)中、进而其后的流程(3)~流程(28)中的各结构式中的符号的定义与所述定义相同。
[化47]
[化48]
再者,所述流程(1)或流程(2)主要表示通式(1)或通式(2)所表示的多环芳香族化合物的制造方法,关于其多聚体,可通过使用具有多个A环(a环)、B环(b环)及C环(c环)的中间物来制造。详细情况在下述流程(3)~流程(5)中进行说明。在此情况下,将所使用的丁基锂等试剂的量设为2倍量、3倍量,由此可获得目标物。
[化49]
[化50]
[化51]
在所述流程中,通过邻位金属化而朝所期望的位置上导入锂,但可如下述流程(6)及流程(7)那样在欲导入锂的位置上导入溴原子等,并还通过卤素-金属交换而朝所期望的位置上导入锂。
[化52]
[化53]
另外,关于流程(3)中所说明的多聚体的制造方法,也可如所述流程(6)及流程(7)那样在欲导入锂的位置上导入溴原子或氯原子等卤素,并还通过卤素-金属交换而朝所期望的位置上导入锂(下述流程(8)、流程(9)及流程(10))。
[化54]
[化55]
[化56]
根据所述方法,即便是如因取代基的影响而无法进行邻位金属化的例子,也可合成目标物而有用。
通过适宜选择所述合成法,还适宜选择所使用的原料,而可合成所期望的位置经重氢化且在所期望的位置上具有取代基,Y1为硼原子、X1及X2为氧原子的多环芳香族化合物及其多聚体。
其次,将Y1为硼原子、X1及X2为氮原子的情况作为例子而示于下述流程(11)及流程(12)中。与X1及X2为氧原子的情况同样地,首先,利用正丁基锂等对X1与X2之间的氢原子进行邻位金属化。继而,添加三溴化硼等,进行锂-硼的金属交换后,添加N,N-二异丙基乙胺等布忍斯特碱,由此进行串联式硼杂夫里德耳-夸夫特反应,而可获得目标物。此处,为了促进反应,也可添加三氯化铝等路易斯酸。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
[化57]
[化58]
另外,关于Y1为硼原子、X1及X2为氮原子时的多聚体,也可如所述流程(6)及流程(7)那样在欲导入锂的位置上导入溴原子或氯原子等卤素,并还通过卤素-金属交换而朝所期望的位置上导入锂(下述流程(13)、流程(14)及流程(15))。
[化59]
[化60]
[化61]
继而,将Y1为硫化磷、氧化磷或磷原子,X1及X2为氧原子的情况作为例子而示于下述流程(16)~流程(19)中。与以上所述同样地,首先利用正丁基锂等对X1与X2之间的氢原子进行邻位金属化。继而,依次添加三氯化磷、硫,最后添加三氯化铝等路易斯酸及N,N-二异丙基乙胺等布忍斯特碱,由此进行串联式磷杂夫里德耳-夸夫特反应(Tandem Phospha-Friedel-Crafts Reaction),而可获得Y1为硫化磷的化合物。另外,利用间氯过苯甲酸(m-CPBA)对所获得的硫化磷化合物进行处理,由此可获得Y1为氧化磷的化合物,然后利用三乙基膦进行处理,由此可获得Y1为磷原子的化合物。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
[化62]
[化63]
[化64]
[化65]
另外,关于Y1为硫化磷、X1及X2为氧原子时的多聚体,也可如所述流程(6)及流程(7)那样在欲导入锂的位置上导入溴原子或氯原子等卤素,并还通过卤素-金属交换而朝所期望的位置上导入锂(下述流程(20)、流程(21)及流程(22))。另外,以所述方式形成的Y1为硫化磷、X1及X2为氧原子时的多聚体也如所述流程(18)及流程(19)那样,利用间氯过苯甲酸(m-CPBA)进行处理,由此可获得Y1为氧化磷的化合物,然后利用三乙基膦进行处理,由此可获得Y1为磷原子的化合物。
[化66]
[化67]
[化68]
此处,记载了Y1为B、P、P=O或P=S,X1及X2为O或NR的例子,但通过适宜变更原料,也可合成Y1为Al、Ga、As、Si-R或Ge-R,或X1及X2为S的化合物。
以上的反应中所使用的溶剂的具体例为叔丁基苯或二甲苯等。
另外,通式(2)中,a环、b环及c环的取代基R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成芳基环或杂芳基环,所形成的环中的至少一个氢可由芳基或杂芳基取代。因此,由通式(2)所表示的多环芳香族化合物根据a环、b环及c环中的取代基的相互的键结形态,如下述流程(23)及流程(24)的式(2-1)及式(2-2)所示,构成化合物的环结构会变化。这些化合物可通过将所述流程(1)~流程(19)中所示的合成法应用于下述流程(23)及流程(24)中所示的中间物来合成。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
[化69]
[化70]
所述式(2-1)及式(2-2)中的A'环、B'环及C'环表示取代基R1~R11中的邻接的基彼此键结并分别与a环、b环及c环一同形成的芳基环或杂芳基环(也可称为其他环结构在a环、b环或c环中缩合而成的缩合环)。再者,虽然式中未表示,但还存在a环、b环及c环全部变化成A'环、B'环及C'环的化合物。
另外,通式(2)中的“N-R的R通过-O-、-S-、-C(-R)2-或单键而与所述a环、b环和/或c环键结”的规定可由如下的化合物来表现,所述化合物由下述流程(25)的式(2-3-1)表示、且具有X1或X2被导入至缩合环B'及缩合环C'中的环结构,或由式(2-3-2)或式(2-3-3)表示、且具有X1或X2被导入至缩合环A'中的环结构。这些化合物可通过将所述流程(1)~流程(19)中所示的合成法应用于下述流程(25)中所示的中间物来合成。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
[化71]
另外,在所述流程(1)~流程(17)及流程(20)~流程(25)的合成法中,表示在添加三氯化硼或三溴化硼等之前,利用丁基锂等对X1与X2之间的氢原子(或卤素原子)进行邻位金属化,由此进行串联式杂夫里德耳-夸夫特反应的例子,但也可不进行利用丁基锂等的邻位金属化,而通过三氯化硼或三溴化硼等的添加来进行反应。
另外,在Y1为磷系的情况下,如下述流程(26)或流程(27)所示,利用正丁基锂、仲丁基锂或叔丁基锂等对X1与X2(下述式中为O)之间的氢原子进行邻位金属化,继而添加双-二乙氨基氯膦,进行锂-磷的金属交换后,添加三氯化铝等路易斯酸,由此进行串联式磷杂夫里德耳-夸夫特反应,而可获得目标物。所述反应方法在国际公开第2010/104047号公报(例如27页)中也有记载。另外,在这些反应工序的某处使用经重氢化的原料、或追加重氢化的工序,由此可制造所期望的位置经重氢化的本发明的化合物。
[化72]
[化73]
再者,在所述流程(26)或流程(27)中,相对于中间物1的摩尔量,使用2倍、3倍的摩尔量的丁基锂等邻位金属化试剂,由此也可合成多聚体化合物。另外,在欲导入锂等金属的位置上事先导入溴原子或氯原子等卤素,然后进行卤素-金属交换,由此可朝所期望的位置上导入金属。
此外,关于通式(2-A)所表示的多环芳香族化合物,如下述流程(28)那样,合成经重氢化的中间物并使其环化,由此可合成所期望的位置由重氢取代的多环芳香族化合物。流程(28)中,X表示卤素或氢,此外的符号的定义与通式(2)中的符号的定义相同。
[化74]
流程(28)中的环化前的中间物也可利用流程(1)等中所示的方法来合成。即,可通过将布赫瓦尔德-哈特维希反应或铃木偶合反应、或者利用亲核取代反应或乌尔曼反应等的醚化反应等适宜组合来合成具有所期望的取代基的中间物。在这些反应中,成为经重氢化的前体的原料也可利用市售品。
具有经重氢化的二苯基氨基的通式(2-A)的化合物例如也可利用如下那样的方法来合成。即,对市售的d5-溴代苯与三卤化苯胺通过布赫瓦尔德-哈特维希反应那样的氨基化反应导入经重氢化的二苯基氨基,之后,在X1、X2为N-R的情况下,通过布赫瓦尔德-哈特维希反应那样的氨基化反应来衍生为中间物(M-3),在X1、X2为O的情况下,通过使用苯酚的醚化来衍生为中间物(M-3),其后,例如通过使丁基锂那样的金属化试剂发挥作用而进行反式金属化、之后使三溴化硼那样的卤化硼发挥作用、之后使二乙基异丙胺那样的布忍斯特碱发挥作用的串联式硼杂夫里德耳-夸夫特反应,而可合成通式(2-A)的化合物。这些反应也可应用于其他经重氢化的化合物。
再者,作为所述流程(1)~流程(28)中所使用的邻位金属化试剂,可列举:甲基锂、正丁基锂、仲丁基锂、叔丁基锂等烷基锂,二异丙基酰胺锂、四甲基哌啶化锂、六甲基二硅胺化锂、六甲基二硅胺化钾等有机碱性化合物。
再者,作为所述流程(1)~流程(28)中所使用的金属-Y1的金属交换试剂,可列举:Y1的三氟化物、Y1的三氯化物、Y1的三溴化物、Y1的三碘化物等Y1的卤化物,CIPN(NEt2)2等Y1的氨基化卤化物,Y1的烷氧基化物,Y1的芳氧基化物等。
再者,作为所述流程(1)~流程(28)中所使用的布忍斯特碱,可列举:N,N-二异丙基乙胺、三乙胺、2,2,6,6-四甲基哌啶、1,2,2,6,6-五甲基哌啶、N,N-二甲基苯胺、N,N-二甲基甲苯胺、2,6-二甲吡啶、四苯基硼酸钠、四苯基硼酸钾、三苯基硼烷、四苯基硅烷、Ar4BNa、Ar4BK、Ar3B、Ar4Si(再者,Ar为苯基等芳基)等。
作为所述流程(1)~流程(28)中所使用的路易斯酸,可列举:AlCl3、AlBr3、AlF3、BF3·OEt2、BCl3、BBr3、GaCl3、GaBr3、InCl3、InBr3、In(OTf)3、SnCl4、SnBr4、AgOTf、ScCl3、Sc(OTf)3、ZnCl2、ZnBr2、Zn(OTf)2、MgCl2、MgBr2、Mg(OTf)2、LiOTf、NaOTf、KOTf、Me3SiOTf、Cu(OTf)2、CuCl2、YCl3、Y(OTf)3、TiCl4、TiBr4、ZrCl4、ZrBr4、FeCl3、FeBr3、CoCl3、CoBr3等。
在所述流程(1)~流程(28)中,为了促进串联式杂夫里德耳-夸夫特反应,也可使用布忍斯特碱或路易斯酸。其中,当使用Y1的三氟化物、Y1的三氯化物、Y1的三溴化物、Y1的三碘化物等Y1的卤化物时,随着芳香族亲电子取代反应的进行,而生成氟化氢、氯化氢、溴化氢、碘化氢等酸,因此使用捕捉酸的布忍斯特碱有效。另一方面,当使用Y1的氨基化卤化物、Y1的烷氧基化物时,随着芳香族亲电子取代反应的进行,而生成胺、醇,因此在多数情况下,无需使用布忍斯特碱,但因氨基或烷氧基的脱离能力低,故使用促进其脱离的路易斯酸有效。
另外,在本发明的多环芳香族化合物或其多聚体中,还包含至少一部分的氢原子由氰基取代者或由氟或氯等卤素取代者,此种化合物等通过所期望的位置使用经氰基化、氟化或氯化的原料,而可与所述同样地合成。
3.有机元件
本发明的经重氢取代的多环芳香族化合物可用作有机元件用材料。作为有机元件,例如可列举:有机电场发光元件、有机场效晶体管或有机薄膜太阳电池等。
3-1.有机电场发光元件
以下,根据附图对本实施方式的有机EL元件进行详细说明。图1是表示本实施方式的有机EL元件的概略剖面图。
<有机电场发光元件的结构>
图1所示的有机EL元件100具有:基板101、设置于基板101上的阳极102、设置于阳极102上的空穴注入层103、设置于空穴注入层103上的空穴传输层104、设置于空穴传输层104上的发光层105、设置于发光层105上的电子传输层106、设置于电子传输层106上的电子注入层107、以及设置于电子注入层107上的阴极108。
再者,有机EL元件100也可使制作顺序相反而形成例如以下的构成,所述构成具有:基板101、设置于基板101上的阴极108、设置于阴极108上的电子注入层107、设置于电子注入层107上的电子传输层106、设置于电子传输层106上的发光层105、设置于发光层105上的空穴传输层104、设置于空穴传输层104上的空穴注入层103、以及设置于空穴注入层103上的阳极102。
所述各层并非全部是不可或缺的层,将最小构成单元设为包含阳极102与发光层105及阴极108的构成,空穴注入层103、空穴传输层104、电子传输层106、电子注入层107是可任意设置的层。另外,所述各层可分别包含单一层,也可包含多层。
作为构成有机EL元件的层的实施方式,除所述“基板/阳极/空穴注入层/空穴传输层/发光层/电子传输层/电子注入层/阴极”的构成实施方式以外,也可为“基板/阳极/空穴传输层/发光层/电子传输层/电子注入层/阴极”、“基板/阳极/空穴注入层/发光层/电子传输层/电子注入层/阴极”、“基板/阳极/空穴注入层/空穴传输层/发光层/电子注入层/阴极”、“基板/阳极/空穴注入层/空穴传输层/发光层/电子传输层/阴极”、“基板/阳极/发光层/电子传输层/电子注入层/阴极”、“基板/阳极/空穴传输层/发光层/电子注入层/阴极”、“基板/阳极/空穴传输层/发光层/电子传输层/阴极”、“基板/阳极/空穴注入层/发光层/电子注入层/阴极”、“基板/阳极/空穴注入层/发光层/电子传输层/阴极”、“基板/阳极/发光层/电子传输层/阴极”、“基板/阳极/发光层/电子注入层/阴极”的构成实施方式。
<有机电场发光元件中的基板>
基板101为有机EL元件100的支撑体,通常使用石英、玻璃、金属、塑料等。基板101根据目的而形成为板状、膜状或片状,例如可使用玻璃板、金属板、金属箔、塑料膜、塑料片等。其中,优选为玻璃板及聚酯、聚甲基丙烯酸酯、聚碳酸酯、聚砜等的透明的合成树脂制的板。若为玻璃基板,则可使用钠钙玻璃或无碱玻璃等,另外,厚度也只要是足以保持机械强度的厚度即可,因此例如只要有0.2mm以上即可。厚度的上限值例如为2mm以下,优选为1mm以下。关于玻璃的材质,因来自玻璃的溶出离子越少越好,故优选为无碱玻璃,由于施加了SiO2等的隔离涂层的钠钙玻璃也有市售,因此可使用所述钠钙玻璃。另外,为了提高阻气性,也可在基板101的至少一面上设置细密的氧化硅膜等阻气膜,尤其在将阻气性低的合成树脂制的板、膜或片用作基板101的情况下,优选为设置阻气膜。
<有机电场发光元件中的阳极>
阳极102发挥朝发光层105中注入空穴的作用。再者,当在阳极102与发光层105之间设置有空穴注入层103和/或空穴传输层104时,经由这些层朝发光层105中注入空穴。
作为形成阳极102的材料,可列举无机化合物及有机化合物。作为无机化合物,例如可列举:金属(铝、金、银、镍、钯、铬等)、金属氧化物(铟的氧化物、锡的氧化物、铟-锡氧化物(Indium Tin Oxide,ITO)、铟-锌氧化物(Indium Zinc Oxide,IZO)等)、卤化金属(碘化铜等)、硫化铜、碳黑、ITO玻璃或奈塞(NESA)玻璃等。作为有机化合物,例如可列举:聚(3-甲基噻吩)等聚噻吩、聚吡咯、聚苯胺等导电性聚合物等。此外,可自用作有机EL元件的阳极的物质中适宜选择来使用。
透明电极的电阻只要可对发光元件的发光供给足够的电流即可,因此并无限定,但就发光元件的消耗电力的观点而言,理想的是低电阻。例如,若为300Ω/□以下的ITO基板,则作为元件电极发挥功能,但现在也可供给10Ω/□左右的基板,因此特别理想的是使用例如100Ω/□~5Ω/□,优选为50Ω/□~5Ω/□的低电阻品。ITO的厚度可配合电阻值而任意地选择,但通常在50nm~300nm之间使用的情况多。
<有机电场发光元件中的空穴注入层、空穴传输层>
空穴注入层103发挥将自阳极102迁移而来的空穴高效地注入至发光层105内或空穴传输层104内的作用。空穴传输层104发挥将自阳极102所注入的空穴、或自阳极102经由空穴注入层103所注入的空穴高效地传输至发光层105的作用。空穴注入层103及空穴传输层104分别将空穴注入·传输材料的一种或两种以上加以层叠、混合而形成,或者由空穴注入·传输材料与高分子粘结剂的混合物形成。另外,也可向空穴注入·传输材料中添加如氯化铁(III)那样的无机盐来形成层。
作为空穴注入·传输性物质,必须在已被供给电场的电极间高效地注入·传输来自正极的空穴,理想的是空穴注入效率高、且高效地传输所注入的空穴。因此,优选为电离电位小、且空穴迁移率大、进而稳定性优异、制造时及使用时不易产生成为陷阱的杂质的物质。
作为形成空穴注入层103及空穴传输层104的材料,可自以往以来在光导电材料中作为空穴的电荷传输材料所惯用的化合物,用于p型半导体、有机EL元件的空穴注入层及空穴传输层的公知的化合物中选择使用任意的化合物。这些化合物的具体例为咔唑衍生物(N-苯基咔唑、聚乙烯咔唑等)、双(N-芳基咔唑)或双(N-烷基咔唑)等双咔唑衍生物、三芳基胺衍生物(主链或侧链上具有芳香族三级氨基的聚合物、1,1-双(4-二-对甲苯基氨基苯基)环己烷、N,N'-二苯基-N,N'-二(3-甲基苯基)-4,4'-二氨基联苯、N,N'-二苯基-N,N'-二萘基-4,4'-二氨基联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-4,4'-二苯基-1,1'-二胺、N,N'-二萘基-N,N'-二苯基-4,4'-二苯基-1,1'-二胺、N4,N4'-二苯基-N4,N4'-双(9-苯基-9H-咔唑-3-基)-[1,1'-联苯]-4,4'-二胺、N4,N4,N4',N4'-四[1,1'-联苯]-4-基-[1,1'-联苯]-4,4'-二胺、4,4',4”-三(3-甲基苯基(苯基)氨基)三苯基胺等三苯基胺衍生物、星爆状胺衍生物等)、二苯乙烯衍生物、酞菁衍生物(无金属、铜酞菁等)、吡唑啉衍生物、腙系化合物、苯并呋喃衍生物或噻吩衍生物、噁二唑衍生物、喹喔啉衍生物(例如1,4,5,8,9,12-六氮杂三亚苯-2,3,6,7,10,11-六碳腈等)、卟啉衍生物等杂环化合物、聚硅烷等。聚合物系中,优选为侧链上具有所述单体的聚碳酸酯或苯乙烯衍生物、聚乙烯咔唑及聚硅烷等,但只要是形成发光元件的制作所需的薄膜,可自阳极注入空穴,进而可传输空穴的化合物,则并无特别限定。
另外,有机半导体的导电性因其掺杂而受到强烈影响这一点也为人所知。此种有机半导体基质物质包含供电子性良好的化合物、或电子接受性良好的化合物。为了掺杂供电子物质,已知有四氰基醌二甲烷(7,7,8,8-四氰基苯醌二甲烷(7,7'8,8'-Tetracyanoquino-dimethane,TCNQ))或2,3,5,6-四氟四氰基-1,4-苯醌二甲烷(2,3,5,6-四氟-7,7,8,8-四氰基苯醌二甲烷(2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane,F4TCNQ))等强电子接受体(例如,参照文献“M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,《应用物理学快报(Appl.Phys.Lett.)》,73(22),3202-3204(1998)”及文献“J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,《应用物理学快报(Appl.Phys.Lett.)》,73(6),729-731(1998)”)。这些通过供电子型基础物质(空穴传输物质)中的电子迁移过程而生成所谓的空穴。基础物质的传导性根据空穴的数量及迁移率而产生相当大的变化。作为具有空穴传输特性的基质物质,已知有例如联苯胺衍生物(TPD等)或星爆状胺衍生物(4,4',4”-三(N,N-二苯基氨基)三苯胺(4,4',4”-Tris(N,N-diphenylamino)triphenylamine,TDATA)等)、或者特定的金属酞菁(特别是锌酞菁(ZnPc)等)(日本专利特开2005-167175号公报)。
<有机电场发光元件中的发光层>
发光层105是通过在已被供给电场的电极间,使自阳极102所注入的空穴与自阴极108所注入的电子再结合而发光的层。作为形成发光层105的材料,只要是由空穴与电子的再结合而得到激发来发光的化合物(发光性化合物)即可,优选为可形成稳定的薄膜形状、且在固体状态下显示强的发光(荧光)效率的化合物。在本发明中,作为发光层用的材料,可使用主体材料、与例如作为掺杂剂材料的所述通式(1)所表示的多环芳香族化合物。
发光层可为单一层,也可包含多层,且分别由发光层用材料(主体材料、掺杂剂材料)形成。主体材料与掺杂剂材料分别可为一种,也可为多种的组合,任一者均可。掺杂剂材料可包含于整个主体材料内,也可包含于部分主体材料内,任一者均可。作为掺杂方法,可通过与主体材料的共蒸镀法来形成,也可事先与主体材料混合后同时蒸镀。
主体材料的使用量根据主体材料的种类而不同,只要配合所述主体材料的特性来决定即可。主体材料的使用量的基准优选为整个发光层用材料的50重量%~99.999重量%,更优选为80重量%~99.95重量%,进而更优选为90重量%~99.9重量%。
掺杂剂材料的使用量根据掺杂剂材料的种类而不同,只要配合所述掺杂剂材料的特性来决定即可。掺杂剂的使用量的基准优选为整个发光层用材料的0.001重量%~50重量%,更优选为0.05重量%~20重量%,进而更优选为0.1重量%~10重量%。若为所述范围,则例如就可防止浓度焠灭现象的观点而言优选。
作为主体材料,可列举以前以来作为发光体而已知的蒽、芘、二苯并或芴等的缩合环衍生物、双苯乙烯基蒽衍生物或二苯乙烯基苯衍生物等双苯乙烯基衍生物、四苯基丁二烯衍生物、环戊二烯衍生物等。特别优选为蒽系化合物、芴系化合物或二苯并系化合物。
<蒽系化合物>
作为主体的蒽系化合物例如为下述通式(3)所表示的化合物。
[化75]
通式(3)中,X分别独立地为所述式(3-X1)、式(3-X2)或式(3-X3)所表示的基,式(3-X1)、式(3-X2)或式(3-X3)所表示的基在*处与式(3)的蒽环键结。优选为两个X不会同时为式(3-X3)所表示的基。更优选为两个X也不会同时为式(3-X2)所表示的基。
式(3-X1)及式(3-X2)中的亚萘基部位可由一个苯环缩合。如此缩合而成的结构如以下所述。
[化76]
Ar1及Ar2分别独立地为氢、苯基、联苯基、三联苯基、四联苯基、萘基、菲基、芴基、苯并芴基、基、三亚苯基、芘基、或所述式(A)所表示的基(也包含咔唑基、苯并咔唑基及苯基取代咔唑基)。再者,在Ar1或Ar2为式(A)所表示的基的情况下,式(A)所表示的基在所述*处与式(3-X1)或式(3-X2)中的萘环键结。
Ar3为苯基、联苯基、三联苯基、四联苯基、萘基、菲基、芴基、苯并芴基、基、三亚苯基、芘基、或所述式(A)所表示的基(也包含咔唑基、苯并咔唑基及苯基取代咔唑基)。再者,在Ar3为式(A)所表示的基的情况下,式(A)所表示的基在所述*处与式(3-X3)中的直线所表示的单键键结。即,式(3)的蒽环与式(A)所表示的基直接键结。
另外,Ar3可具有取代基,Ar3中的至少一个氢进而可由苯基、联苯基、三联苯基、萘基、菲基、芴基、基、三亚苯基、芘基、或所述式(A)所表示的基(也包含咔唑基及苯基取代咔唑基)取代。再者,在Ar3所具有的取代基为式(A)所表示的基的情况下,式(A)所表示的基在所述*处与式(3-X3)中的Ar3键结。
Ar4分别独立地为氢、苯基、联苯基、三联苯基、萘基、或者由碳数1~4的烷基(甲基、乙基、叔丁基等)或碳数5~10的环烷基取代的硅烷基。
另外,通式(3)所表示的蒽系化合物的化学结构中的氢也可由所述式(A)所表示的基取代。在由式(A)所表示的基取代的情况下,式(A)所表示的基在所述*处与式(3)所表示的化合物中的至少一个氢进行取代。
所述式(A)中,Y为-O-、-S-或>N-R29,R21~R28分别独立地为氢、可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基、可被取代的烷氧基、可被取代的芳氧基、可被取代的芳硫基、三烷基硅烷基、三环烷基硅烷基、可被取代的氨基、卤素、羟基或氰基,R21~R28中的邻接的基可彼此键结并形成烃环、芳基环或杂芳基环,R29为氢或可被取代的芳基。
R21~R28中的邻接的基可彼此键结并形成烃环、芳基环或杂芳基环。并未形成环的情况为下述式(A-1)所表示的基,作为形成环的情况,例如可列举下述式(A-2)~式(A-14)所表示的基。再者,式(A-1)~式(A-14)的任一者所表示的基中的至少一个氢可由烷基、环烷基、芳基、杂芳基、烷氧基、芳氧基、芳硫基、三烷基硅烷基、三环烷基硅烷基、二芳基取代氨基、二杂芳基取代氨基、芳基杂芳基取代氨基、卤素、羟基或氰基取代。
[化77]
另外,通式(3)所表示的蒽系化合物的化学结构中的氢的全部或一部分可为重氢。
<芴系化合物>
通式(4)所表示的化合物基本上是作为主体发挥功能。
[化78]
所述式(4)中,
R1至R10分别独立地为氢、芳基、杂芳基(所述杂芳基可经由连结基而与所述式(4)中的芴骨架键结)、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烯基、烷氧基或芳氧基,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,
另外,R1与R2、R2与R3、R3与R4、R5与R6、R6与R7、R7与R8或R9与R10可分别独立地键结并形成缩合环或螺环,所形成的环中的至少一个氢可由芳基、杂芳基(所述杂芳基可经由连结基而与所述所形成的环键结)、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烯基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,而且
式(4)所表示的化合物中的至少一个氢可由卤素、氰基或重氢取代。
所述式(4)的定义中的各基的详细情况可引用所述式(1)的多环芳香族化合物中的说明。
作为R1至R10中的烯基,例如可列举碳数2~30的烯基,优选为碳数2~20的烯基,更优选为碳数2~10的烯基,进而更优选为碳数2~6的烯基,特别优选为碳数2~4的烯基。优选的烯基为乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、或5-己烯基。
再者,作为杂芳基的具体例,也可列举具有下述式(4-Ar1)、式(4-Ar2)、式(4-Ar3)、式(4-Ar4)或式(4-Ar5)的结构的一价的基。
[化79]
式(4-Ar1)至式(4-Ar5)中,Y1分别独立地为O、S或N-R,R为苯基、联苯基、萘基、蒽基或氢,
所述式(4-Ar1)至式(4-Ar5)的结构中的至少一个氢可由苯基、联苯基、萘基、蒽基、菲基、甲基、乙基、丙基、或丁基取代。
这些杂芳基可经由连结基而与所述式(4)中的芴骨架键结。即,式(4)中的芴骨架与所述杂芳基不仅可直接键结,而且这些之间也可经由连结基键结。作为所述连结基,可列举亚苯基、亚联苯基、亚萘基、亚蒽基、亚甲基、亚乙基、-OCH2CH2-、-CH2CH2O-、或-OCH2CH2O-等。
另外,式(4)中的R1与R2、R2与R3、R3与R4、R5与R6、R6与R7或R7与R8可分别独立地键结并形成缩合环,R9与R10可键结并形成螺环。由R1至R8形成的缩合环为在式(4)中的苯环上进行缩合的环,为脂肪族环或芳香族环。优选为芳香族环,作为包含式(4)中的苯环的结构,可列举萘环或菲环等。由R9与R10形成的螺环为在式(4)中的5元环上进行螺环键结的环,为脂肪族环或芳香族环。优选为芳香族环,可列举芴环等。
通式(4)所表示的化合物优选为下述式(4-1)、式(4-2)或式(4-3)所表示的化合物,分别为通式(4)中R1与R2键结而形成的苯环进行缩合而成的化合物、通式(4)中R3与R4键结而形成的苯环进行缩合而成的化合物、通式(4)中R1至R8的任一者均未进行键结的化合物。
[化80]
式(4-1)、式(4-2)及式(4-3)中的R1至R10的定义与式(4)中对应的R1至R10相同,式(4-1)及式(4-2)中的R11至R14的定义也与式(4)中的R1至R10相同。
通式(4)所表示的化合物进而更优选为下述式(4-1A)、式(4-2A)或式(4-3A)所表示的化合物,分别为式(4-1)、式(4-2)或式(4-3)中R9与R10键结而形成螺-芴环的化合物。
[化81]
式(4-1A)、式(4-2A)及式(4-3A)中的R2至R7的定义与式(4-1)、式(4-2)及式(4-3)中对应的R2至R7相同,式(4-1A)及式(4-2A)中的R11至R14的定义也与式(4-1)及式(4-2)中的R11至R14相同。
另外,式(4)所表示的化合物中的氢的全部或一部分可由卤素、氰基或重氢取代。
<二苯并系化合物>
作为主体的二苯并系化合物例如为下述通式(5)所表示的化合物。
[化82]
所述式(5)中,
R1至R16分别独立地为氢、芳基、杂芳基(所述杂芳基可经由连结基而与所述式(5)中的二苯并骨架键结)、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烯基、烷氧基或芳氧基,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,
另外,R1至R16中邻接的基彼此可键结并形成缩合环,所形成的环中的至少一个氢可由芳基、杂芳基(所述杂芳基可经由连结基而与所述所形成的环键结)、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烯基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,而且
式(5)所表示的化合物中的至少一个氢可由卤素、氰基或重氢取代。
所述式(5)的定义中的各基的详细情况可引用所述式(1)的多环芳香族化合物中的说明。
作为所述式(5)的定义中的烯基,例如可列举碳数2~30的烯基,优选为碳数2~20的烯基,更优选为碳数2~10的烯基,进而更优选为碳数2~6的烯基,特别优选为碳数2~4的烯基。优选的烯基为乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、或5-己烯基。
再者,作为杂芳基的具体例,也可列举具有下述式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)或式(5-Ar5)的结构的一价的基。
[化83]
式(5-Ar1)至式(5-Ar5)中,Y1分别独立地为O、S或N-R,R为苯基、联苯基、萘基、蒽基或氢,
所述式(5-Ar1)至式(5-Ar5)的结构中的至少一个氢可由苯基、联苯基、萘基、蒽基、菲基、甲基、乙基、丙基、或丁基取代。
这些杂芳基可经由连结基而与所述式(5)中的二苯并骨架键结。即,式(5)中的二苯并骨架与所述杂芳基不仅可直接键结,而且这些之间也可经由连结基键结。作为所述连结基,可列举亚苯基、亚联苯基、亚萘基、亚蒽基、亚甲基、亚乙基、-OCH2CH2-、-CH2CH2O-、或-OCH2CH2O-等。
通式(5)所表示的化合物优选为R1、R4、R5、R8、R9、R12、R13及R16为氢。所述情况下,式(5)中的R2、R3、R6、R7、R10、R11、R14及R15优选为分别独立地为氢、苯基、联苯基、萘基、蒽基、菲基、具有所述式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)或式(5-Ar5)的结构的一价的基(具有所述结构的一价的基可经由亚苯基、亚联苯基、亚萘基、亚蒽基、亚甲基、亚乙基、-OCH2CH2-、-CH2CH2O-、或-OCH2CH2O-而与所述式(5)中的二苯并骨架键结)、甲基、乙基、丙基、或丁基。
通式(5)所表示的化合物更优选为R1、R2、R4、R5、R7、R8、R9、R10、R12、R13、R15及R16为氢。所述情况下,式(5)中的R3、R6、R11及R14的至少一个(优选为一个或两个,更优选为一个)为单键、经由亚苯基、亚联苯基、亚萘基、亚蒽基、亚甲基、亚乙基、-OCH2CH2-、-CH2CH2O-、或-OCH2CH2O-的具有所述式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)或式(5-Ar5)的结构的一价的基,
所述至少一个以外(即,具有所述结构的一价的基所取代的位置以外)为氢、苯基、联苯基、萘基、蒽基、甲基、乙基、丙基、或丁基,这些中的至少一个氢可由苯基、联苯基、萘基、蒽基、甲基、乙基、丙基、或丁基取代。
另外,作为式(5)中的R2、R3、R6、R7、R10、R11、R14及R15,在选择具有所述式(5-Ar1)至式(5-Ar5)所表示的结构的一价的基的情况下,所述结构中的至少一个氢可与式(5)中的R1至R16的任一者键结并形成单键。
<有机电场发光元件中的电子注入层、电子传输层>
电子注入层107发挥将自阴极108迁移而来的电子高效地注入至发光层105内或电子传输层106内的作用。电子传输层106发挥将自阴极108所注入的电子、或自阴极108经由电子注入层107所注入的电子高效地传输至发光层105的作用。电子传输层106及电子注入层107分别将电子传输·注入材料的一种或两种以上加以层叠、混合而形成,或者由电子传输·注入材料与高分子粘结剂的混合物形成。
所谓电子注入·传输层,是指掌管自阴极注入电子,进而传输电子的层,理想的是电子注入效率高、且高效地传输所注入的电子。因此,优选为电子亲和力大、且电子迁移率大、进而稳定性优异,制造时及使用时不易产生成为陷阱的杂质的物质。但是,在考虑了空穴与电子的传输平衡的情况下,当主要发挥可高效地阻止来自阳极的空穴未再结合而流向阴极侧的作用时,即便电子传输能力并不那么高,也与电子传输能力高的材料同等地具有提升发光效率的效果。因此,本实施方式中的电子注入·传输层也可包含可高效地阻止空穴的迁移的层的功能。
作为形成电子传输层106或电子注入层107的材料(电子传输材料),可自以往以来在光导电材料中作为电子传递化合物所惯用的化合物、用于有机EL元件的电子注入层及电子传输层的公知的化合物中任意地选择来使用。
作为用于电子传输层或电子注入层的材料,优选为含有选自如下化合物中的至少一种:含有包含选自碳、氢、氧、硫、硅及磷中的一种以上的原子的芳香族环或杂芳香族环的化合物,吡咯衍生物及其缩合环衍生物,以及具有电子接受性氮的金属络合物。具体而言,可列举:萘、蒽等缩合环系芳香族环衍生物,以4,4'-双(二苯基乙烯基)联苯为代表的苯乙烯基系芳香族环衍生物,紫环酮衍生物,香豆素衍生物,萘二甲酰亚胺衍生物,蒽醌或联苯醌等醌衍生物,氧化磷衍生物,咔唑衍生物及吲哚衍生物等。作为具有电子接受性氮的金属络合物,例如可列举:羟基苯基噁唑络合物等羟基唑络合物、甲亚胺络合物、环庚三烯酚酮金属络合物、黄酮醇金属络合物及苯并喹啉金属络合物等。这些材料可单独使用,也可与不同的材料混合使用。
另外,作为其他电子传递化合物的具体例,可列举:吡啶衍生物、萘衍生物、蒽衍生物、菲咯啉衍生物、紫环酮衍生物、香豆素衍生物、萘二甲酰亚胺衍生物、蒽醌衍生物、联苯醌衍生物、二苯基醌衍生物、苝衍生物、噁二唑衍生物(1,3-双[(4-叔丁基苯基)1,3,4-噁二唑基]亚苯基等)、噻吩衍生物、三唑衍生物(N-萘基-2,5-二苯基-1,3,4-三唑等)、噻二唑衍生物、8-羟基喹啉衍生物的金属络合物、羟基喹啉系金属络合物、喹喔啉衍生物、喹喔啉衍生物的聚合物、苯并唑类化合物、镓络合物、吡唑衍生物、全氟化亚苯基衍生物、三嗪衍生物、吡嗪衍生物、苯并喹啉衍生物(2,2'-双(苯并[h]喹啉-2-基)-9,9'-螺二芴等)、咪唑并吡啶衍生物、硼烷衍生物、苯并咪唑衍生物(三(N-苯基苯并咪唑-2-基)苯等)、苯并噁唑衍生物、苯并噻唑衍生物、喹啉衍生物、三联吡啶等寡聚吡啶衍生物、联吡啶衍生物、三联吡啶衍生物(1,3-双(4'-(2,2':6'2”-三联吡啶基))苯等)、萘啶衍生物(双(1-萘基)-4-(1,8-萘啶-2-基)苯基氧化膦等)、醛连氮衍生物、咔唑衍生物、吲哚衍生物、氧化磷衍生物、双苯乙烯基衍生物等。
另外,也可使用具有电子接受性氮的金属络合物,例如可列举:羟基喹啉系金属络合物或羟基苯基噁唑络合物等羟基唑络合物、甲亚胺络合物、环庚三烯酚酮金属络合物、黄酮醇金属络合物及苯并喹啉金属络合物等。
所述材料可单独使用,也可与不同的材料混合使用。
所述材料中,优选为硼烷衍生物、吡啶衍生物、荧蒽衍生物、BO系衍生物、蒽衍生物、苯并芴衍生物、氧化膦衍生物、嘧啶衍生物、咔唑衍生物、三嗪衍生物、苯并咪唑衍生物、菲咯啉衍生物、及羟基喹啉系金属络合物。
<硼烷衍生物>
硼烷衍生物例如是下述通式(ETM-1)所表示的化合物,详细情况在日本专利特开2007-27587号公报中有揭示。
[化84]
所述式(ETM-1)中,R11及R12分别独立地为氢、烷基、环烷基、可被取代的芳基、经取代的硅烷基、可被取代的含有氮的杂环、或氰基的至少一者,R13~R16分别独立地为可被取代的烷基、可被取代的环烷基或可被取代的芳基,X为可被取代的亚芳基,Y为可被取代的碳数16以下的芳基、经取代的硼基、或可被取代的咔唑基,且n分别独立地为0~3的整数。另外,作为“可被取代”或“经取代”时的取代基,可列举:芳基、杂芳基、烷基或环烷基等。
所述通式(ETM-1)所表示的化合物之中,优选为下述通式(ETM-1-1)所表示的化合物或下述通式(ETM-1-2)所表示的化合物。
[化85]
式(ETM-1-1)中,R11及R12分别独立地为氢、烷基、环烷基、可被取代的芳基、经取代的硅烷基、可被取代的含有氮的杂环、或氰基的至少一者,R13~R16分别独立地为可被取代的烷基、可被取代的环烷基或可被取代的芳基,R21及R22分别独立地为氢、烷基、环烷基、可被取代的芳基、经取代的硅烷基、可被取代的含有氮的杂环、或氰基的至少一者,X1为可被取代的碳数20以下的亚芳基,n分别独立地为0~3的整数,且m分别独立地为0~4的整数。另外,作为“可被取代”或“经取代”时的取代基,可列举:芳基、杂芳基、烷基或环烷基等。
[化86]
式(ETM-1-2)中,R11及R12分别独立地为氢、烷基、环烷基、可被取代的芳基、经取代的硅烷基、可被取代的含有氮的杂环、或氰基的至少一者,R13~R16分别独立地为可被取代的烷基、可被取代的环烷基或可被取代的芳基,X1为可被取代的碳数20以下的亚芳基,且n分别独立地为0~3的整数。另外,作为“可被取代”或“经取代”时的取代基,可列举:芳基、杂芳基、烷基或环烷基等。
作为X1的具体例,可列举下述式(X-1)~式(X-9)所表示的二价基。
[化87]
(各式中,Ra分别独立地为烷基、环烷基或可被取代的苯基)
作为所述硼烷衍生物的具体例,例如可列举以下化合物。
[化88]
所述硼烷衍生物可使用公知的原料与公知的合成方法来制造。
<吡啶衍生物>
吡啶衍生物例如是下述式(ETM-2)所表示的化合物,优选为式(ETM-2-1)或式(ETM-2-2)所表示的化合物。
[化89]
φ为n价的芳基环(优选为n价的苯环、萘环、蒽环、芴环、苯并芴环、非那烯环、菲环或三亚苯环),n为1~4的整数。
所述式(ETM-2-1)中,R11~R18分别独立地为氢、烷基(优选为碳数1~24的烷基)、环烷基(优选为碳数3~12的环烷基)或芳基(优选为碳数6~30的芳基)。
所述式(ETM-2-2)中,R11及R12分别独立地为氢、烷基(优选为碳数1~24的烷基)、环烷基(优选为碳数3~12的环烷基)或芳基(优选为碳数6~30的芳基),R11及R12也可键结而形成环。
各式中,“吡啶系取代基”为下述式(Py-1)~式(Py-15)的任一者,吡啶系取代基可分别独立地由碳数1~4的烷基或碳数5~10的环烷基取代。另外,吡啶系取代基可经由亚苯基或亚萘基而与各式中的φ、蒽环或芴环键结。
[化90]
吡啶系取代基为所述式(Py-1)~式(Py-15)的任一者,这些中,优选为下述式(Py-21)~式(Py-44)的任一者。
[化91]
各吡啶衍生物中的至少一个氢可由重氢取代,另外,所述式(ETM-2-1)及式(ETM-2-2)中的两个“吡啶系取代基”中的一个可由芳基取代。
作为R11~R18中的“烷基”,可为直链及支链的任一种,例如可列举碳数1~24的直链烷基或碳数3~24的支链烷基。优选的“烷基”为碳数1~18的烷基(碳数3~18的支链烷基)。更优选的“烷基”为碳数1~12的烷基(碳数3~12的支链烷基)。进而更优选的“烷基”为碳数1~6的烷基(碳数3~6的支链烷基)。特别优选的“烷基”为碳数1~4的烷基(碳数3~4的支链烷基)。
作为具体的“烷基”,可列举:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、正己基、1-甲基戊基、4-甲基-2-戊基、3,3-二甲基丁基、2-乙基丁基、正庚基、1-甲基己基、正辛基、叔辛基、1-甲基庚基、2-乙基己基、2-丙基戊基、正壬基、2,2-二甲基庚基、2,6-二甲基-4-庚基、3,5,5-三甲基己基、正癸基、正十一基、1-甲基癸基、正十二基、正十三基、1-己基庚基、正十四基、正十五基、正十六基、正十七基、正十八基、正二十基等。
取代于吡啶系取代基上的碳数1~4的烷基可引用所述烷基的说明。
作为R11~R18中的“环烷基”,例如可列举碳数3~12的环烷基。优选的“环烷基”为碳数3~10的环烷基。更优选的“环烷基”为碳数3~8的环烷基。进而更优选的“环烷基”为碳数3~6的环烷基。
作为具体的“环烷基”,可列举:环丙基、环丁基、环戊基、环己基、甲基环戊基、环庚基、甲基环己基、环辛基或二甲基环己基等。
取代于吡啶系取代基上的碳数5~10的环烷基可引用所述环烷基的说明。
作为R11~R18中的“芳基”,优选的芳基为碳数6~30的芳基,更优选的芳基为碳数6~18的芳基,进而更优选为碳数6~14的芳基,特别优选为碳数6~12的芳基。
作为具体的“碳数6~30的芳基”,可列举:作为单环系芳基的苯基,作为缩合二环系芳基的(1-、2-)萘基,作为缩合三环系芳基的苊-(1-、3-、4-、5-)基、芴-(1-、2-、3-、4-、9-)基、非那烯-(1-、2-)基、(1-、2-、3-、4-、9-)菲基,作为缩合四环系芳基的三亚苯-(1-、2-)基、芘-(1-、2-、4-)基、并四苯-(1-、2-、5-)基(naphthacen-(1-、2-、5-)yl),作为缩合五环系芳基的苝-(1-、2-、3-)基、并五苯-(1-、2-、5-、6-)基等。
优选的“碳数6~30的芳基”可列举苯基、萘基、菲基、基或三亚苯基等,进而更优选为可列举苯基、1-萘基、2-萘基或菲基,特别优选为可列举苯基、1-萘基或2-萘基。
所述式(ETM-2-2)中的R11及R12也可键结而形成环,其结果,也可在芴骨架的5元环上螺环键结环丁烷、环戊烷、环戊烯、环戊二烯、环己烷、芴或茚等。
作为所述吡啶衍生物的具体例,例如可列举以下化合物。
[化92]
所述吡啶衍生物可使用公知的原料与公知的合成方法来制造。
<荧蒽衍生物>
荧蒽衍生物例如是下述通式(ETM-3)所表示的化合物,详细情况在国际公开第2010/134352号公报中有揭示。
[化93]
所述式(ETM-3)中,X12~X21表示:氢,卤素,直链、分支或环状的烷基,直链、分支或环状的烷氧基,经取代或未经取代的芳基,或者经取代或未经取代的杂芳基。此处,作为经取代时的取代基,可列举:芳基、杂芳基、烷基或环烷基等。
作为所述荧蒽衍生物的具体例,例如可列举以下化合物。
[化94]
<BO系衍生物>
BO系衍生物例如是下述式(ETM-4)所表示的多环芳香族化合物、或具有多个下述式(ETM-4)所表示的结构的多环芳香族化合物的多聚体。
[化95]
R1~R11分别独立地为氢、芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代。
另外,R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成芳基环或杂芳基环,所形成的环中的至少一个氢可由芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代。
另外,式(ETM-4)所表示的化合物或结构中的至少一个氢也可由卤素或重氢取代。
关于式(ETM-4)中的取代基或环形成的形态的说明,可引用所述通式(1)所表示的多环芳香族化合物的说明。
作为所述BO系衍生物的具体例,例如可列举以下化合物。
[化96]
所述BO系衍生物可使用公知的原料与公知的合成方法来制造。
<蒽衍生物>
蒽衍生物之一例如是下述式(ETM-5-1)所表示的化合物。
[化97]
Ar分别独立地为二价的苯或萘,R1~R4分别独立地为氢、碳数1~6的烷基、碳数3~6的环烷基或碳数6~20的芳基。
Ar可分别独立地自二价的苯或萘中适宜选择,两个Ar可不同也可相同,就蒽衍生物的合成的容易性的观点而言,优选为相同。Ar与吡啶键结而形成“包含Ar及吡啶的部位”,所述部位例如作为下述式(Py-1)~式(Py-12)的任一者所表示的基而与蒽键结。
[化98]
这些基中,优选为所述式(Py-1)~式(Py-9)的任一者所表示的基,更优选为所述式(Py-1)~式(Py-6)的任一者所表示的基。与蒽键结的两个“包含Ar及吡啶的部位”的结构可相同也可不同,就蒽衍生物的合成的容易性的观点而言,优选为相同的结构。其中,就元件特性的观点而言,无论两个“包含Ar及吡啶的部位”的结构相同还是不同均优选。
关于R1~R4中的碳数1~6的烷基,可为直链及支链的任一种。即,为碳数1~6的直链烷基或碳数3~6的支链烷基。更优选为碳数1~4的烷基(碳数3~4的支链烷基)。作为具体例,可列举:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、正己基、1-甲基戊基、4-甲基-2-戊基、3,3-二甲基丁基、或2-乙基丁基等,优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、或叔丁基,更优选为甲基、乙基、或叔丁基。
作为R1~R4中的碳数3~6的环烷基的具体例,可列举:环丙基、环丁基、环戊基、环己基、甲基环戊基、环庚基、甲基环己基、环辛基或二甲基环己基等。
关于R1~R4中的碳数6~20的芳基,优选为碳数6~16的芳基,更优选为碳数6~12的芳基,特别优选为碳数6~10的芳基。
作为“碳数6~20的芳基”的具体例,可列举:作为单环系芳基的苯基、(邻、间、对)甲苯基、(2,3-、2,4-、2,5-、2,6-、3,4-、3,5-)二甲苯基、均三甲苯基(2,4,6-三甲基苯基)、(邻、间、对)枯烯基,作为二环系芳基的(2-、3-、4-)联苯基,作为缩合二环系芳基的(1-、2-)萘基,作为三环系芳基的三联苯基(间三联苯-2'-基、间三联苯-4'-基、间三联苯-5'-基、邻三联苯-3'-基、邻三联苯-4'-基、对三联苯-2'-基、间三联苯-2-基、间三联苯-3-基、间三联苯-4-基、邻三联苯-2-基、邻三联苯-3-基、邻三联苯-4-基、对三联苯-2-基、对三联苯-3-基、对三联苯-4-基),作为缩合三环系芳基的蒽-(1-、2-、9-)基、苊-(1-、3-、4-、5-)基、芴-(1-、2-、3-、4-、9-)基、非那烯-(1-、2-)基、(1-、2-、3-、4-、9-)菲基,作为缩合四环系芳基的三亚苯-(1-、2-)基、芘-(1-、2-、4-)基、并四苯-(1-、2-、5-)基(tetracen-(1-、2-、5-)yl),作为缩合五环系芳基的苝-(1-、2-、3-)基等。
优选的“碳数6~20的芳基”为苯基、联苯基、三联苯基或萘基,更优选为苯基、联苯基、1-萘基、2-萘基或间三联苯-5'-基,进而更优选为苯基、联苯基、1-萘基或2-萘基,最优选为苯基。
蒽衍生物之一例如是下述式(ETM-5-2)所表示的化合物。
[化99]
Ar1分别独立地为单键、二价的苯、萘、蒽、芴、或非那烯。
Ar2分别独立地为碳数6~20的芳基,可引用与所述式(ETM-5-1)中的“碳数6~20的芳基”相同的说明。优选为碳数6~16的芳基,更优选为碳数6~12的芳基,特别优选为碳数6~10的芳基。作为具体例,可列举:苯基、联苯基、萘基、三联苯基、蒽基、苊基、芴基、非那烯基、菲基、三亚苯基、芘基、并四苯基(tetracenyl)、苝基等。
R1~R4分别独立地为氢、碳数1~6的烷基、碳数3至6的环烷基或碳数6~20的芳基,可引用所述式(ETM-5-1)中的说明。
作为这些蒽衍生物的具体例,例如可列举以下化合物。
[化100]
这些蒽衍生物可使用公知的原料与公知的合成方法来制造。
<苯并芴衍生物>
苯并芴衍生物例如是下述式(ETM-6)所表示的化合物。
[化101]
Ar1分别独立地为碳数6~20的芳基,可引用与所述式(ETM-5-1)中的“碳数6~20的芳基”相同的说明。优选为碳数6~16的芳基,更优选为碳数6~12的芳基,特别优选为碳数6~10的芳基。作为具体例,可列举:苯基、联苯基、萘基、三联苯基、蒽基、苊基、芴基、非那烯基、菲基、三亚苯基、芘基、并四苯基、苝基等。
Ar2分别独立地为氢、烷基(优选为碳数1~24的烷基)、环烷基(优选为碳数3~12的环烷基)或芳基(优选为碳数6~30的芳基),两个Ar2也可键结而形成环。
作为Ar2中的“烷基”,可为直链及支链的任一种,例如可列举碳数1~24的直链烷基或碳数3~24的支链烷基。优选的“烷基”为碳数1~18的烷基(碳数3~18的支链烷基)。更优选的“烷基”为碳数1~12的烷基(碳数3~12的支链烷基)。进而更优选的“烷基”为碳数1~6的烷基(碳数3~6的支链烷基)。特别优选的“烷基”为碳数1~4的烷基(碳数3~4的支链烷基)。作为具体的“烷基”,可列举:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、正己基、1-甲基戊基、4-甲基-2-戊基、3,3-二甲基丁基、2-乙基丁基、正庚基、1-甲基己基等。
作为Ar2中的“环烷基”,例如可列举碳数3~12的环烷基。优选的“环烷基”为碳数3~10的环烷基。更优选的“环烷基”为碳数3~8的环烷基。进而更优选的“环烷基”为碳数3~6的环烷基。作为具体的“环烷基”,可列举:环丙基、环丁基、环戊基、环己基、甲基环戊基、环庚基、甲基环己基、环辛基或二甲基环己基等。
作为Ar2中的“芳基”,优选的芳基为碳数6~30的芳基,更优选的芳基为碳数6~18的芳基,进而更优选为碳数6~14的芳基,特别优选为碳数6~12的芳基。
作为具体的“碳数6~30的芳基”,可列举:苯基、萘基、苊基、芴基、非那烯基、菲基、三亚苯基、芘基、并四苯基、苝基、并五苯基等。
两个Ar2也可键结而形成环,其结果,也可在芴骨架的5元环上螺环键结环丁烷、环戊烷、环戊烯、环戊二烯、环己烷、芴或茚等。
作为所述苯并芴衍生物的具体例,例如可列举以下化合物。
[化102]
所述苯并芴衍生物可使用公知的原料与公知的合成方法来制造。
<氧化膦衍生物>
氧化膦衍生物例如是下述式(ETM-7-1)所表示的化合物。详细情况还在国际公开第2013/079217号公报中有记载。
[化103]
R5为经取代或未经取代的、碳数1~20的烷基、碳数3~20的环烷基、碳数6~20的芳基或碳数5~20的杂芳基,
R6为CN、经取代或未经取代的、碳数1~20的烷基、碳数3~20的环烷基、碳数1~20的杂烷基、碳数6~20的芳基、碳数5~20的杂芳基、碳数1~20的烷氧基或碳数6~20的芳氧基,
R7及R8分别独立地为经取代或未经取代的、碳数6~20的芳基或碳数5~20的杂芳基,
R9为氧或硫,
j为0或1,k为0或1,r为0~4的整数,q为1~3的整数。
此处,作为经取代时的取代基,可列举:芳基、杂芳基、烷基或环烷基等。
氧化膦衍生物例如也可是下述式(ETM-7-2)所表示的化合物。
[化104]
R1~R3可相同也可不同,是选自氢、烷基、环烷基、芳烷基、烯基、环烯基、炔基、烷氧基、烷硫基、环烷硫基、芳基醚基、芳基硫醚基、芳基、杂环基、卤素、氰基、醛基、羰基、羧基、氨基、硝基、硅烷基、及与邻接取代基之间所形成的缩合环中。
Ar1可相同也可不同,为亚芳基或亚杂芳基。Ar2可相同也可不同,为芳基或杂芳基。其中,Ar1及Ar2中的至少一者具有取代基,或与邻接取代基之间形成缩合环。n为0~3的整数,当n为0时,不饱和结构部分不存在,当n为3时,R1不存在。
这些取代基中,所谓烷基,例如表示甲基、乙基、丙基、丁基等饱和脂肪族烃基,其可未经取代也可经取代。经取代时的取代基并无特别限制,例如可列举烷基、芳基、杂环基等,所述方面在以下的记载中也共通。另外,烷基的碳数并无特别限定,就获取的容易性或成本的方面而言,通常为1~20的范围。
另外,所谓环烷基,例如表示环丙基、环己基、降冰片基、金刚烷基等饱和脂环式烃基,其可未经取代也可经取代。烷基部分的碳数并无特别限定,通常为3~20的范围。
另外,所谓芳烷基,例如表示苄基、苯基乙基等经由脂肪族烃的芳香族烃基,脂肪族烃及芳香族烃均可未经取代也可经取代。脂肪族部分的碳数并无特别限定,通常为1~20的范围。
另外,所谓烯基,例如表示乙烯基、烯丙基、丁二烯基等包含双键的不饱和脂肪族烃基,其可未经取代也可经取代。烯基的碳数并无特别限定,通常为2~20的范围。
另外,所谓环烯基,例如表示环戊烯基、环戊二烯基、环己烯基等包含双键的不饱和脂环式烃基,其可未经取代也可经取代。
另外,所谓炔基,例如表示乙炔基等包含三键的不饱和脂肪族烃基,其可未经取代也可经取代。炔基的碳数并无特别限定,通常为2~20的范围。
另外,所谓烷氧基,例如表示甲氧基等经由醚键的脂肪族烃基,脂肪族烃基可未经取代也可经取代。烷氧基的碳数并无特别限定,通常为1~20的范围。
另外,所谓烷硫基,是将烷氧基的醚键的氧原子取代成硫原子而成的基。
另外,所谓环烷硫基,是将环烷氧基的醚键的氧原子取代成硫原子而成的基。
另外,所谓芳基醚基,例如表示苯氧基等经由醚键的芳香族烃基,芳香族烃基可未经取代也可经取代。芳基醚基的碳数并无特别限定,通常为6~40的范围。
另外,所谓芳基硫醚基,是将芳基醚基的醚键的氧原子取代成硫原子而成的基。
另外,所谓芳基,例如表示苯基、萘基、联苯基、菲基、三联苯基、芘基等芳香族烃基。芳基可未经取代也可经取代。芳基的碳数并无特别限定,通常为6~40的范围。
另外,所谓杂环基,例如表示呋喃基、噻吩基、噁唑基、吡啶基、喹啉基、咔唑基等具有除碳以外的原子的环状结构基,其可未经取代也可经取代。杂环基的碳数并无特别限定,通常为2~30的范围。
所谓卤素,表示氟、氯、溴、碘。
醛基、羰基、氨基中,也可包括由脂肪族烃、脂环式烃、芳香族烃、杂环等取代而成的基。
另外,脂肪族烃、脂环式烃、芳香族烃、杂环可未经取代也可经取代。
所谓硅烷基,例如表示三甲基硅烷基等硅化合物基,其可未经取代也可经取代。硅烷基的碳数并无特别限定,通常为3~20的范围。另外,硅数通常为1~6。
所谓与邻接取代基之间形成的缩合环,例如是Ar1与R2、Ar1与R3、Ar2与R2、Ar2与R3、R2与R3、Ar1与Ar2等之间所形成的共轭或非共轭的缩合环。此处,当n为1时,两个R1彼此也可形成共轭或非共轭的缩合环。这些缩合环也可在环内结构中包含氮原子、氧原子、硫原子,进而也可与其他环进行缩合。
作为所述氧化膦衍生物的具体例,例如可列举以下化合物。
[化105]
所述氧化膦衍生物可使用公知的原料与公知的合成方法来制造。
<嘧啶衍生物>
嘧啶衍生物例如是下述式(ETM-8)所表示的化合物,优选为下述式(ETM-8-1)所表示的化合物。详细情况还在国际公开第2011/021689号公报中有记载。
[化106]
Ar分别独立地为可被取代的芳基、或可被取代的杂芳基。n为1~4的整数,优选为1~3的整数,更优选为2或3。
作为“可被取代的芳基”的“芳基”,例如可列举碳数6~30的芳基,优选为碳数6~24的芳基,更优选为碳数6~20的芳基,进而更优选为碳数6~12的芳基。
作为具体的“芳基”,可列举:作为单环系芳基的苯基,作为二环系芳基的(2-、3-、4-)联苯基,作为缩合二环系芳基的(1-、2-)萘基,作为三环系芳基的三联苯基(间三联苯-2'-基、间三联苯-4'-基、间三联苯-5'-基、邻三联苯-3'-基、邻三联苯-4'-基、对三联苯-2'-基、间三联苯-2-基、间三联苯-3-基、间三联苯-4-基、邻三联苯-2-基、邻三联苯-3-基、邻三联苯-4-基、对三联苯-2-基、对三联苯-3-基、对三联苯-4-基),作为缩合三环系芳基的苊-(1-、3-、4-、5-)基、芴-(1-、2-、3-、4-、9-)基、非那烯-(1-、2-)基、(1-、2-、3-、4-、9-)菲基,作为四环系芳基的四联苯基(5'-苯基-间三联苯-2-基、5'-苯基-间三联苯-3-基、5'-苯基-间三联苯-4-基、间四联苯基),作为缩合四环系芳基的三亚苯-(1-、2-)基、芘-(1-、2-、4-)基、并四苯-(1-、2-、5-)基,作为缩合五环系芳基的苝-(1-、2-、3-)基、并五苯-(1-、2-、5-、6-)基等。
作为“可被取代的杂芳基”的“杂芳基”,例如可列举碳数2~30的杂芳基,优选为碳数2~25的杂芳基,更优选为碳数2~20的杂芳基,进而更优选为碳数2~15的杂芳基,特别优选为碳数2~10的杂芳基。另外,作为杂芳基,例如可列举除碳以外含有1个~5个选自氧、硫及氮中的杂原子作为环构成原子的杂环等。
作为具体的杂芳基,例如可列举:呋喃基、噻吩基、吡咯基、噁唑基、异噁唑基、噻唑基、异噻唑基、咪唑基、吡唑基、噁二唑基、呋咱基、噻二唑基、三唑基、四唑基、吡啶基、嘧啶基、哒嗪基、吡嗪基、三嗪基、苯并呋喃基、异苯并呋喃基、苯并[b]噻吩基、吲哚基、异吲哚基、1H-吲唑基、苯并咪唑基、苯并噁唑基、苯并噻唑基、1H-苯并三唑基、喹啉基、异喹啉基、噌啉基、喹唑啉基、喹喔啉基、酞嗪基、萘啶基、嘌呤基、蝶啶基、咔唑基、吖啶基、吩噁嗪基、吩噻嗪基、吩嗪基、吩噁噻基、噻蒽基、吲嗪基等。
另外,所述芳基及杂芳基可被取代,例如分别可由所述芳基或杂芳基取代。
作为所述嘧啶衍生物的具体例,例如可列举以下化合物。
[化107]
所述嘧啶衍生物可使用公知的原料与公知的合成方法来制造。
<咔唑衍生物>
咔唑衍生物例如是下述式(ETM-9)所表示的化合物、或通过单键等将其键结多个而成的多聚体。详细情况在美国公开公报2014/0197386号公报中有记载。
[化108]
Ar分别独立地为可被取代的芳基、或可被取代的杂芳基。n为0~4的整数,优选为0~3的整数,更优选为0或1。
作为“可被取代的芳基”的“芳基”,例如可列举碳数6~30的芳基,优选为碳数6~24的芳基,更优选为碳数6~20的芳基,进而更优选为碳数6~12的芳基。
作为具体的“芳基”,可列举:作为单环系芳基的苯基,作为二环系芳基的(2-、3-、4-)联苯基,作为缩合二环系芳基的(1-、2-)萘基,作为三环系芳基的三联苯基(间三联苯-2'-基、间三联苯-4'-基、间三联苯-5'-基、邻三联苯-3'-基、邻三联苯-4'-基、对三联苯-2'-基、间三联苯-2-基、间三联苯-3-基、间三联苯-4-基、邻三联苯-2-基、邻三联苯-3-基、邻三联苯-4-基、对三联苯-2-基、对三联苯-3-基、对三联苯-4-基),作为缩合三环系芳基的苊-(1-、3-、4-、5-)基、芴-(1-、2-、3-、4-、9-)基、非那烯-(1-、2-)基、(1-、2-、3-、4-、9-)菲基,作为四环系芳基的四联苯基(5'-苯基-间三联苯-2-基、5'-苯基-间三联苯-3-基、5'-苯基-间三联苯-4-基、间四联苯基),作为缩合四环系芳基的三亚苯-(1-、2-)基、芘-(1-、2-、4-)基、并四苯-(1-、2-、5-)基,作为缩合五环系芳基的苝-(1-、2-、3-)基、并五苯-(1-、2-、5-、6-)基等。
作为“可被取代的杂芳基”的“杂芳基”,例如可列举碳数2~30的杂芳基,优选为碳数2~25的杂芳基,更优选为碳数2~20的杂芳基,进而更优选为碳数2~15的杂芳基,特别优选为碳数2~10的杂芳基。另外,作为杂芳基,例如可列举除碳以外含有1个~5个选自氧、硫及氮中的杂原子作为环构成原子的杂环等。
作为具体的杂芳基,例如可列举:呋喃基、噻吩基、吡咯基、噁唑基、异噁唑基、噻唑基、异噻唑基、咪唑基、吡唑基、噁二唑基、呋咱基、噻二唑基、三唑基、四唑基、吡啶基、嘧啶基、哒嗪基、吡嗪基、三嗪基、苯并呋喃基、异苯并呋喃基、苯并[b]噻吩基、吲哚基、异吲哚基、1H-吲唑基、苯并咪唑基、苯并噁唑基、苯并噻唑基、1H-苯并三唑基、喹啉基、异喹啉基、噌啉基、喹唑啉基、喹喔啉基、酞嗪基、萘啶基、嘌呤基、蝶啶基、咔唑基、吖啶基、吩噁嗪基、吩噻嗪基、吩嗪基、吩噁噻基、噻蒽基、吲嗪基等。
另外,所述芳基及杂芳基可被取代,例如分别可由所述芳基或杂芳基取代。
咔唑衍生物也可为通过单键等将所述式(ETM-9)所表示的化合物键结多个而成的多聚体。在此情况下,除单键以外,也可通过芳基环(优选为多价的苯环、萘环、蒽环、芴环、苯并芴环、非那烯环、菲环或三亚苯环)进行键结。
作为所述咔唑衍生物的具体例,例如可列举以下化合物。
[化109]
所述咔唑衍生物可使用公知的原料与公知的合成方法来制造。
<三嗪衍生物>
三嗪衍生物例如是下述式(ETM-10)所表示的化合物,优选为下述式(ETM-10-1)所表示的化合物。详细情况在美国公开公报2011/0156013号公报中有记载。
[化110]
Ar分别独立地为可被取代的芳基、或可被取代的杂芳基。n为1~3的整数,优选为2或3。
作为“可被取代的芳基”的“芳基”,例如可列举碳数6~30的芳基,优选为碳数6~24的芳基,更优选为碳数6~20的芳基,进而更优选为碳数6~12的芳基。
作为具体的“芳基”,可列举:作为单环系芳基的苯基,作为二环系芳基的(2-、3-、4-)联苯基,作为缩合二环系芳基的(1-、2-)萘基,作为三环系芳基的三联苯基(间三联苯-2'-基、间三联苯-4'-基、间三联苯-5'-基、邻三联苯-3'-基、邻三联苯-4'-基、对三联苯-2'-基、间三联苯-2-基、间三联苯-3-基、间三联苯-4-基、邻三联苯-2-基、邻三联苯-3-基、邻三联苯-4-基、对三联苯-2-基、对三联苯-3-基、对三联苯-4-基),作为缩合三环系芳基的苊-(1-、3-、4-、5-)基、芴-(1-、2-、3-、4-、9-)基、非那烯-(1-、2-)基、(1-、2-、3-、4-、9-)菲基,作为四环系芳基的四联苯基(5'-苯基-间三联苯-2-基、5'-苯基-间三联苯-3-基、5'-苯基-间三联苯-4-基、间四联苯基),作为缩合四环系芳基的三亚苯-(1-、2-)基、芘-(1-、2-、4-)基、并四苯-(1-、2-、5-)基,作为缩合五环系芳基的苝-(1-、2-、3-)基、并五苯-(1-、2-、5-、6-)基等。
作为“可被取代的杂芳基”的“杂芳基”,例如可列举碳数2~30的杂芳基,优选为碳数2~25的杂芳基,更优选为碳数2~20的杂芳基,进而更优选为碳数2~15的杂芳基,特别优选为碳数2~10的杂芳基。另外,作为杂芳基,例如可列举除碳以外含有1个~5个选自氧、硫及氮中的杂原子作为环构成原子的杂环等。
作为具体的杂芳基,例如可列举:呋喃基、噻吩基、吡咯基、噁唑基、异噁唑基、噻唑基、异噻唑基、咪唑基、吡唑基、噁二唑基、呋咱基、噻二唑基、三唑基、四唑基、吡啶基、嘧啶基、哒嗪基、吡嗪基、三嗪基、苯并呋喃基、异苯并呋喃基、苯并[b]噻吩基、吲哚基、异吲哚基、1H-吲唑基、苯并咪唑基、苯并噁唑基、苯并噻唑基、1H-苯并三唑基、喹啉基、异喹啉基、噌啉基、喹唑啉基、喹喔啉基、酞嗪基、萘啶基、嘌呤基、蝶啶基、咔唑基、吖啶基、吩噁嗪基、吩噻嗪基、吩嗪基、吩噁噻基、噻蒽基、吲嗪基等。
另外,所述芳基及杂芳基可被取代,例如分别可由所述芳基或杂芳基取代。
作为所述三嗪衍生物的具体例,例如可列举以下化合物。
[化111]
所述三嗪衍生物可使用公知的原料与公知的合成方法来制造。
<苯并咪唑衍生物>
苯并咪唑衍生物例如是下述式(ETM-11)所表示的化合物。
[化112]
φ-(苯并咪唑系取代基)n (ETM-11)
φ为n价的芳基环(优选为n价的苯环、萘环、蒽环、芴环、苯并芴环、非那烯环、菲环或三亚苯环),n为1~4的整数,“苯并咪唑系取代基”为将所述式(ETM-2)、式(ETM-2-1)及式(ETM-2-2)中的“吡啶系取代基”中的吡啶基替换成苯并咪唑基而成的取代基,苯并咪唑衍生物中的至少一个氢可由重氢取代。
[化113]
所述苯并咪唑基中的R11为氢、碳数1~24的烷基、碳数3~12的环烷基或碳数6~30的芳基,可引用所述式(ETM-2-1)及式(ETM-2-2)中的R11的说明。
φ进而更优选为蒽环或芴环,所述情况下的结构可引用所述式(ETM-2-1)或式(ETM-2-2)中的说明,各式中的R11~R18可引用所述式(ETM-2-1)或式(ETM-2-2)中的说明。另外,所述式(ETM-2-1)或式(ETM-2-2)是以键结有两个吡啶系取代基的形态进行说明,当将这些基替换成苯并咪唑系取代基时,可由苯并咪唑系取代基来替换两个吡啶系取代基(即n=2),也可由苯并咪唑系取代基来替换任一个吡啶系取代基且由R11~R18来替换另一个吡啶系取代基(即n=1)。进而,例如也可由苯并咪唑系取代基来替换所述式(ETM-2-1)中的R11~R18的至少一个且由R11~R18来替换“吡啶系取代基”。
作为所述苯并咪唑衍生物的具体例,例如可列举:1-苯基-2-(4-(10-苯基蒽-9-基)苯基)-1H-苯并[d]咪唑、2-(4-(10-(萘-2-基)蒽-9-基)苯基)-1-苯基-1H-苯并[d]咪唑、2-(3-(10-(萘-2-基)蒽-9-基)苯基)-1-苯基-1H-苯并[d]咪唑、5-(10-(萘-2-基)蒽-9-基)-1,2-二苯基-1H-苯并[d]咪唑、1-(4-(10-(萘-2-基)蒽-9-基)苯基)-2-苯基-1H-苯并[d]咪唑、2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑、1-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-2-苯基-1H-苯并[d]咪唑、5-(9,10-二(萘-2-基)蒽-2-基)-1,2-二苯基-1H-苯并[d]咪唑等。
[化114]
所述苯并咪唑衍生物可使用公知的原料与公知的合成方法来制造。
<菲咯啉衍生物>
菲咯啉衍生物例如是下述式(ETM-12)或式(ETM-12-1)所表示的化合物。详细情况在国际公开2006/021982号公报中有记载。
[化115]
φ为n价的芳基环(优选为n价的苯环、萘环、蒽环、芴环、苯并芴环、非那烯环、菲环或三亚苯环),n为1~4的整数。
各式的R11~R18分别独立地为氢、烷基(优选为碳数1~24的烷基)、环烷基(优选为碳数3~12的环烷基)或芳基(优选为碳数6~30的芳基)。另外,所述式(ETM-12-1)中,R11~R18的任一者与作为芳基环的φ键结。
各菲咯啉衍生物中的至少一个氢可由重氢取代。
作为R11~R18中的烷基、环烷基及芳基,可引用所述式(ETM-2)中的R11~R18的说明。另外,φ除了上文所述的例子以外,例如可列举以下的结构式。再者,下述结构式中的R分别独立地为氢、甲基、乙基、异丙基、环己基、苯基、1-萘基、2-萘基、联苯基或三联苯基。
[化116]
作为所述菲咯啉衍生物的具体例,例如可列举:4,7-二苯基-1,10-菲咯啉、2,9-二甲基-4,7-二苯基-1,10-菲咯啉、9,10-二(1,10-菲咯啉-2-基)蒽、2,6-二(1,10-菲咯啉-5-基)吡啶、1,3,5-三(1,10-菲咯啉-5-基)苯、9,9'-二氟-双(1,10-菲咯啉-5-基)、2,9-二甲基-4,7-联苯-1,10-菲咯啉(bathocuproine)、1,3-双(2-苯基-1,10-菲咯啉-9-基)苯或下述结构式所表示的化合物等。
[化117]
所述菲咯啉衍生物可使用公知的原料与公知的合成方法来制造。
<羟基喹啉系金属络合物>
羟基喹啉系金属络合物例如是下述通式(ETM-13)所表示的化合物。
[化118]
式中,R1~R6分别独立地为氢、氟、烷基、环烷基、芳烷基、烯基、氰基、烷氧基或芳基,M为Li、Al、Ga、Be或Zn,n为1~3的整数。
作为羟基喹啉系金属络合物的具体例,可列举:8-羟基喹啉锂、三(8-羟基喹啉)铝、三(4-甲基-8-羟基喹啉)铝、三(5-甲基-8-羟基喹啉)铝、三(3,4-二甲基-8-羟基喹啉)铝、三(4,5-二甲基-8-羟基喹啉)铝、三(4,6-二甲基-8-羟基喹啉)铝、双(2-甲基-8-羟基喹啉)(苯酚)铝、双(2-甲基-8-羟基喹啉)(2-甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(3-甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(4-甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(2-苯基苯酚)铝、双(2-甲基-8-羟基喹啉)(3-苯基苯酚)铝、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,3-二甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,6-二甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(3,4-二甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(3,5-二甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(3,5-二-叔丁基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,6-二苯基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,4,6-三苯基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,4,6-三甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(2,4,5,6-四甲基苯酚)铝、双(2-甲基-8-羟基喹啉)(1-萘酚)铝、双(2-甲基-8-羟基喹啉)(2-萘酚)铝、双(2,4-二甲基-8-羟基喹啉)(2-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(4-苯基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3,5-二甲基苯酚)铝、双(2,4-二甲基-8-羟基喹啉)(3,5-二-叔丁基苯酚)铝、双(2-甲基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-8-羟基喹啉)铝、双(2,4-二甲基-8-羟基喹啉)铝-μ-氧代-双(2,4-二甲基-8-羟基喹啉)铝、双(2-甲基-4-乙基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-4-乙基-8-羟基喹啉)铝、双(2-甲基-4-甲氧基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-4-甲氧基-8-羟基喹啉)铝、双(2-甲基-5-氰基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-5-氰基-8-羟基喹啉)铝、双(2-甲基-5-三氟甲基-8-羟基喹啉)铝-μ-氧代-双(2-甲基-5-三氟甲基-8-羟基喹啉)铝、双(10-羟基苯并[h]喹啉)铍等。
所述羟基喹啉系金属络合物可使用公知的原料与公知的合成方法来制造。
<噻唑衍生物及苯并噻唑衍生物>
噻唑衍生物例如是下述式(ETM-14-1)所表示的化合物。
[化119]
φ-(噻唑系取代基)n (ETM-14-1)
苯并噻唑衍生物例如是下述式(ETM-14-2)所表示的化合物。
[化120]
φ-(苯并噻唑系取代基)n (ETM-14-2)
各式的φ为n价的芳基环(优选为n价的苯环、萘环、蒽环、芴环、苯并芴环、非那烯环、菲环或三亚苯环),n为1~4的整数,“噻唑系取代基”或“苯并噻唑系取代基”为将所述式(ETM-2)、式(ETM-2-1)及式(ETM-2-2)的“吡啶系取代基”中的吡啶基替换成下述噻唑基或苯并噻唑基而成的取代基,噻唑衍生物及苯并噻唑衍生物中的至少一个氢可由重氢取代。
[化121]
φ进而更优选为蒽环或芴环,所述情况下的结构可引用所述式(ETM-2-1)或式(ETM-2-2)中的说明,各式中的R11~R18可引用所述式(ETM-2-1)或式(ETM-2-2)中的说明。另外,所述式(ETM-2-1)或式(ETM-2-2)中以键结有两个吡啶系取代基的形态来进行说明,在将这些基替换成噻唑系取代基(或苯并噻唑系取代基)时,可由噻唑系取代基(或苯并噻唑系取代基)来替换两个吡啶系取代基(即n=2),也可由噻唑系取代基(或苯并噻唑系取代基)替换任一个吡啶系取代基且由R11~R18替换另一吡啶系取代基(即n=1)。进而,例如也可由噻唑系取代基(或苯并噻唑系取代基)替换所述式(ETM-2-1)中的R11~R18的至少一个且由R11~R18替换“吡啶系取代基”。
这些噻唑衍生物或苯并噻唑衍生物可使用公知的原料与公知的合成方法来制造。
在电子传输层或电子注入层中,进而可包含可将形成电子传输层或电子注入层的材料还原的物质。所述还原性物质只要是具有一定的还原性的物质,则可使用各种物质,例如可优选地使用选自由碱金属、碱土金属、稀土金属、碱金属的氧化物、碱金属的卤化物、碱土金属的氧化物、碱土金属的卤化物、稀土金属的氧化物、稀土金属的卤化物、碱金属的有机络合物、碱土金属的有机络合物及稀土金属的有机络合物所组成的群组中的至少一种。
作为优选的还原性物质,可列举Na(功函数为2.36eV)、K(功函数为2.28eV)、Rb(功函数为2.16eV)或Cs(功函数为1.95eV)等碱金属,或者Ca(功函数为2.9eV)、Sr(功函数为2.0eV~2.5eV)或Ba(功函数为2.52eV)等碱土金属,特别优选为功函数为2.9eV以下的物质。这些物质之中,更优选的还原性物质是K、Rb或Cs的碱金属,进而更优选为Rb或Cs,最优选为Cs。这些碱金属的还原能力特别高,通过向形成电子传输层或电子注入层的材料中添加比较少量的这些碱金属,可谋求有机EL元件中的发光亮度的提升或长寿命化。另外,作为功函数为2.9eV以下的还原性物质,两种以上的所述碱金属的组合也优选,特别优选为包含Cs的组合,例如Cs与Na、Cs与K、Cs与Rb、或Cs与Na及K的组合。通过包含Cs,可有效率地发挥还原能力,通过添加至形成电子传输层或电子注入层的材料中,可谋求有机EL元件中的发光亮度的提升或长寿命化。
<有机电场发光元件中的阴极>
阴极108发挥经由电子注入层107及电子传输层106而将电子注入至发光层105的作用。
作为形成阴极108的材料,若为可将电子高效地注入至有机层的物质,则并无特别限定,可使用与形成阳极102的材料相同的材料。其中,优选为锡、铟、钙、铝、银、铜、镍、铬、金、铂、铁、锌、锂、钠、钾、铯及镁等金属或这些的合金(镁-银合金、镁-铟合金、氟化锂/铝等的铝-锂合金等)等。为了提高电子注入效率来提升元件特性,有效的是锂、钠、钾、铯、钙、镁或包含这些低功函数金属的合金。但是,这些低功函数金属通常在大气中不稳定的情况多。为了改善所述方面,已知有例如向有机层中掺杂微量的锂、铯或镁,并使用稳定性高的电极的方法。作为其他掺杂剂,还可使用如氟化锂、氟化铯、氧化锂及氧化铯那样的无机盐。其中,并不限定于这些。
进而,可列举如下作为优选例:为了保护电极而将铂、金、银、铜、铁、锡、铝及铟等金属,或使用这些金属的合金,及二氧化硅、二氧化钛及氮化硅等无机物,聚乙烯醇,氯乙烯,烃系高分子化合物等进行层叠。这些电极的制作方法只要为电阻加热、电子束蒸镀、溅镀、离子镀及涂布等可取得导通的方法,则也无特别限制。
<可用于各层的粘结剂>
用于以上的空穴注入层、空穴传输层、发光层、电子传输层及电子注入层的材料可单独地形成各层,还可分散于作为高分子粘结剂的聚氯乙烯、聚碳酸酯、聚苯乙烯、聚(N-乙烯咔唑)、聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯、聚酯、聚砜、聚苯醚、聚丁二烯、烃树脂、酮树脂、苯氧基树脂、聚酰胺、乙基纤维素、乙酸乙烯酯树脂、丙烯腈-丁二烯-苯乙烯(Acrylonitrile Butadiene Styrene,ABS)树脂、聚氨基甲酸酯树脂等溶剂可溶性树脂,或者酚树脂、二甲苯树脂、石油树脂、脲树脂、三聚氰胺树脂、不饱和聚酯树脂、醇酸树脂、环氧树脂、硅酮树脂等硬化性树脂等中来使用。
<有机电场发光元件的制作方法>
构成有机EL元件的各层可通过利用蒸镀法、电阻加热蒸镀、电子束蒸镀、溅镀、分子层叠法、印刷法、旋涂法或浇铸法、涂布法等方法将应构成各层的材料制成薄膜来形成。以所述方式形成的各层的膜厚并无特别限定,可对应于材料的性质而适宜设定,但通常为2nm~5000nm的范围。膜厚通常可利用石英振荡式膜厚测定装置等来测定。当利用蒸镀法进行薄膜化时,其蒸镀条件根据材料的种类、作为膜的目标的结晶结构及缔合结构等而不同。蒸镀条件通常优选为在舟皿加热温度+50℃~+400℃、真空度10-6Pa~10-3Pa、蒸镀速度0.01nm/sec~50nm/sec、基板温度-150℃~+300℃、膜厚2nm~5μm的范围内适宜设定。
其次,作为制作有机EL元件的方法的一例,对包括阳极/空穴注入层/空穴传输层/包含主体材料与掺杂剂材料的发光层/电子传输层/电子注入层/阴极的有机EL元件的制作方法进行说明。在适当的基板上,利用蒸镀法等形成阳极材料的薄膜来制作阳极后,在所述阳极上形成空穴注入层及空穴传输层的薄膜。在其上对主体材料与掺杂剂材料进行共蒸镀而形成薄膜来作为发光层,在所述发光层上形成电子传输层、电子注入层,进而利用蒸镀法等形成包含阴极用物质的薄膜来作为阴极,由此获得作为目标的有机EL元件。再者,在所述有机EL元件的制作中,还可使制作顺序相反,而以阴极、电子注入层、电子传输层、发光层、空穴传输层、空穴注入层、阳极的顺序制作。
当对以所述方式获得的有机EL元件施加直流电压时,只要将阳极作为+的极性来施加,将阴极作为-的极性来施加即可,若施加2V~40V左右的电压,则可自透明或半透明的电极侧(阳极或阴极、及双方)观测发光。另外,所述有机EL元件在施加有脉冲电流或交流电流的情况下也发光。再者,施加的交流的波形可任意。
<有机电场发光元件的应用例>
另外,本发明还可应用于包括有机EL元件的显示装置或包括有机EL元件的照明装置等。
包括有机EL元件的显示装置或照明装置可通过将本实施方式的有机EL元件与公知的驱动装置连接等公知的方法来制造,且可适宜使用直流驱动、脉冲驱动、交流驱动等公知的驱动方法来进行驱动。
作为显示装置,例如可列举:彩色平板显示器等面板显示器、挠性彩色有机电场发光(EL)显示器等挠性显示器等(例如,参照日本专利特开平10-335066号公报、日本专利特开2003-321546号公报、日本专利特开2004-281086号公报等)。另外,作为显示器的显示方式,例如可列举矩阵和/或分段方式等。再者,矩阵显示与分段显示可在相同的面板中共存。
矩阵是将用于显示的像素二维地配置成格子状或马赛克状等,且通过像素的集合来显示文字或图像。像素的形状或尺寸是根据用途来决定。例如在个人计算机、监视器、电视机的图像及文字显示中,通常使用一边为300μm以下的四边形的像素,另外,在如显示屏那样的大型显示器的情况下,使用一边为mm级的像素。在单色显示的情况下,只要排列相同颜色的像素即可,在彩色显示的情况下,使红、绿、蓝的像素并列来进行显示。在此情况下,典型的有三角型与条纹型。而且,作为所述矩阵的驱动方法,可为线序(line-sequential)驱动方法或有源矩阵的任一者。线序驱动有结构简单这一优点,但在考虑了动作特性的情况下,有时有源矩阵更优异,因此驱动方法也必须根据用途而区分使用。
在分段方式(类型)中,以显示事先所决定的信息的方式形成图案,并使所决定的区域发光。例如可列举:数字时钟或温度计中的时刻或温度显示、声频机器或电磁炉等的动作状态显示及汽车的面板显示等。
作为照明装置,例如可列举:室内照明等的照明装置、液晶显示装置的背光源等(例如,参照日本专利特开2003-257621号公报、日本专利特开2003-277741号公报、日本专利特开2004-119211号公报等)。背光源主要为了提升不进行自发光的显示装置的视认性而使用,其用于液晶显示装置、时钟、声频装置、汽车面板、显示板及标识等。尤其,作为液晶显示装置之中,薄型化正成为课题的个人计算机用途的背光源,若考虑到以往方式因包含荧光灯或导光板而难以薄型化,则使用了本实施方式的发光元件的背光源具有薄型、轻量的特征。
3-2.其他有机元件
除所述有机电场发光元件以外,本发明的多环芳香族化合物可用于有机场效晶体管或有机薄膜太阳电池等的制作。
有机场效晶体管是利用通过电压输入所产生的电场来控制电流的晶体管,且为如下晶体管:除源电极与漏电极以外,设置有栅电极。若对栅电极施加电压,则产生电场,可任意地阻断在源电极与漏电极间流动的电子(或空穴(hole))的流动来控制电流。与单一晶体管(双极晶体管)相比,场效晶体管容易小型化,而常用作构成集成电路等的元件。
有机场效晶体管的结构通常只要使源电极及漏电极与使用本发明的多环芳香族化合物所形成的有机半导体活性层接触来设置,进而隔着与有机半导体活性层接触的绝缘层(介电体层)来设置栅电极即可。作为其元件结构,例如可列举以下的结构。
(1)基板/栅电极/绝缘体层/源电极·漏电极/有机半导体活性层
(2)基板/栅电极/绝缘体层/有机半导体活性层/源电极·漏电极
(3)基板/有机半导体活性层/源电极·漏电极/绝缘体层/栅电极
(4)基板/源电极·漏电极/有机半导体活性层/绝缘体层/栅电极
如此构成的有机场效晶体管可用作有源矩阵驱动方式的液晶显示器或有机电致发光显示器的像素驱动切换元件等。
有机薄膜太阳电池具有在玻璃等透明基板上层叠有ITO等的阳极、空穴传输层、光电转换层、电子传输层、阴极的结构。光电转换层在阳极侧具有p型半导体层,在阴极侧具有n型半导体层。本发明的多环芳香族化合物对应于其物性,可用作空穴传输层、p型半导体层、n型半导体层、电子传输层的材料。在有机薄膜太阳电池中,本发明的多环芳香族化合物可作为空穴传输材料或电子传输材料而发挥功能。有机薄膜太阳电池除所述以外,也可适宜具备空穴阻挡层、电子阻挡层、电子注入层、空穴注入层、平滑化层等。在有机薄膜太阳电池中,可适宜选择用于有机薄膜太阳电池的已知的材料来组合使用。
实施例
以下,通过实施例来更具体地说明本发明,但本发明并不限定于这些。首先,以下对多环芳香族化合物的合成例进行说明。
合成例(1):化合物(1-22)的合成
[化122]
在氮气环境下,将3,4,5-三氯苯胺(12.0g)、d5-溴代苯(30.0g)、作为钯催化剂的二氯双[(二-叔丁基(4-二甲基氨基苯基)膦基)]钯(Pd-132,0.43g)、叔丁醇钠(NaOtBu,14.7g)及二甲苯(200ml)放入烧瓶内,在120℃下加热3小时。反应后,对反应液添加水与乙酸乙酯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯/庚烷=1/1(容积比))对粗产物进行精制,由此获得中间物(I-A)(15.0g)。
[化123]
在氮气环境下,将中间物(I-A)(15.0g)、双(4-叔丁基苯基)胺(25.9g)、双(二苯亚甲基丙酮)钯(0.48g)、2-二环己基膦基-2',6'-二甲氧基联苯(SPhos,0.86g)、叔丁醇钠(10.0g)及二甲苯(130ml)放入烧瓶内,在100℃下加热1小时。反应后,对反应液添加水与甲苯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯)对粗产物进行精制,由此获得中间物(I-B)(23.0g)。
[化124]
在氮气环境下,且在0℃下向放入有中间物(I-B)(23.0g)及叔丁基苯(250ml)的烧瓶中添加1.62M的叔丁基锂戊烷溶液(33.5ml)。滴加结束后,升温至60℃为止并搅拌1小时后,将沸点低于叔丁基苯的成分减压馏去。冷却至-50℃为止并添加三溴化硼(13.6g),升温至室温为止后搅拌0.5小时。其后,再次冷却至0℃为止并添加N,N-二异丙基乙胺(7.0g),在室温下搅拌至发热结束后,升温至100℃为止并加热搅拌1小时。将反应液冷却至室温为止,依次添加利用冰浴进行了冷却的乙酸钠水溶液、乙酸乙酯来进行分液。将有机层浓缩后,利用硅胶短程管柱(洗脱液:经加热的氯苯)来进行精制。对所获得的粗产物利用经回流的庚烷及经回流的乙酸乙酯进行清洗后,进而自氯苯进行再沉淀,由此获得化合物(1-22)(12.9g)。
[化125]
利用核磁共振(Nuclear Magnetic Resonance,NMR)测定对所获得的化合物的结构进行确认。
1H-NMR(CDCl3):δ=1.3(s,18H),1.5(s,18H),5.6(s,2H),6.8(d,2H),7.1(m,4H),7.4~7.5(m,6H),9.0(d,2H).
合成例(2):化合物(1-102)的合成
[化126]
在氮气环境下,将d5-苯胺(5.0g)、d5-溴代苯(8.25g)、作为钯催化剂的Pd-132(0.36g)、NaOtBu(7.1g)及二甲苯(100ml)放入烧瓶内,在120℃下加热1.5小时。反应后,对反应液添加水与乙酸乙酯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯/庚烷=1/1(容积比))对粗产物进行精制,由此获得中间物(I-C)(8.1g)。
[化127]
在氮气环境下,将中间物(I-C)(8.0g)、中间物(I-D)(20.6g)、作为钯催化剂的Pd-132(0.31g)、NaOtBu(6.4g)及二甲苯(100ml)放入烧瓶内,在120℃下加热1小时。反应后,对反应液添加水与乙酸乙酯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯/庚烷=1/1(容积比))对粗产物进行精制,由此获得中间物(I-E)(20.2g)。
[化128]
在氮气环境下,且在0℃下向放入有中间物(I-E)(10.0g)及叔丁基苯(150ml)的烧瓶中添加1.62M的叔丁基锂戊烷溶液(21.2ml)。滴加结束后,升温至60℃为止并搅拌0.5小时后,将沸点低于叔丁基苯的成分减压馏去。冷却至-50℃为止并添加三溴化硼(8.6g),升温至室温为止后搅拌0.5小时。其后,再次冷却至0℃为止并添加N,N-二异丙基乙胺(4.4g),在室温下搅拌至发热结束后,升温至100℃为止并加热搅拌1小时。将反应液冷却至室温为止,依次添加利用冰浴进行了冷却的乙酸钠水溶液、乙酸乙酯来进行分液。将有机层浓缩后,利用硅胶短程管柱(洗脱液:甲苯)来进行精制。使所获得的粗产物溶解于甲苯中后,添加庚烷进行析出,对所析出的结晶进行过滤,并对经过滤分离的结晶利用经冷却的庚烷进行清洗,由此获得化合物(1-102)(3.1g)。
[化129]
利用NMR测定对所获得的化合物的结构进行确认。
1H-NMR(CDCl3):δ=1.46(s,9H),1.47(s,9H),2.16(s,3H),5.92(s,1H),6.00(s,1H),6.69(d,1H),7.25-7.28(m,2H),7.49-7.51(m,1H),7.66-7.69(m,2H),8.92(d,1H).
合成例(3):化合物(1-122)的合成
[化130]
在氮气环境下,将中间物(I-F)(8.4g)、中间物(I-H)(4.6g)、双(二苯亚甲基丙酮)钯(0.23g)、2-二环己基膦基-2',6'-二甲氧基联苯(SPhos,0.32g)、叔丁醇钠(3.2g)及二甲苯(40ml)放入烧瓶内,在100℃下加热1.5小时。反应后,对反应液添加水与甲苯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯)对粗产物进行精制,由此获得中间物(I-J)(8.6g)。
[化131]
在氮气环境下,且在0℃下向放入有中间物(I-J)(8.6g)及叔丁基苯(90ml)的烧瓶中添加1.62M的叔丁基锂戊烷溶液(12.9ml)。滴加结束后,升温至70℃为止并搅拌0.5小时后,将沸点低于叔丁基苯的成分减压馏去。冷却至-50℃为止并添加三溴化硼(5.0g),升温至室温为止后搅拌0.5小时。其后,再次冷却至0℃为止并添加N,N-二异丙基乙胺(2.6g),在室温下搅拌至发热结束后,升温至100℃为止并加热搅拌1小时。将反应液冷却至室温为止,依次添加利用冰浴进行了冷却的乙酸钠水溶液、乙酸乙酯并搅拌1小时。对黄色悬浮液进行过滤,对其沉淀物利用甲醇、纯水清洗两次后,再次利用甲醇进行清洗。使黄色结晶加热溶解于氯苯中,之后利用硅胶短程管柱(洗脱液:经加热的氯苯)来进行精制。对所获得的粗产物添加庚烷并进行过滤后,利用庚烷对结晶进行清洗,由此获得化合物(1-122)(6.5g)。
[化132]
利用NMR测定对所获得的化合物的结构进行确认。
1H-NMR(CDCl3):δ=1.33(s,18H),1.46(s,18H),5.55(s,2H),6.88(t,2H),6.94(d,4H),7.06(dd,4H).
合成例(4):化合物(1-107)的合成
[化133]
在氮气环境下,将中间物(I-F)(10.7g)、中间物(I-A)(6.0g)、双(二苯亚甲基丙酮)钯(0.58g)、2-二环己基膦基-2',6'-二甲氧基联苯(SPhos,0.82g)、叔丁醇钠(4.0g)及二甲苯(60ml)放入烧瓶内,在100℃下加热1.5小时。反应后,对反应液添加水与甲苯并进行搅拌,之后分离有机层,进行水洗。其后,对有机层进行浓缩而获得粗产物。利用硅胶短程管柱(洗脱液:甲苯)对粗产物进行精制,并对所获得的固体利用经冷却的庚烷进行清洗,由此获得中间物(I-K)(9.4g)。
[化134]
在氮气环境下,且在0℃下向放入有中间物(I-K)(8.6g)及叔丁基苯(100ml)的烧瓶中添加1.62M的叔丁基锂戊烷溶液(13.8ml)。滴加结束后,升温至60℃为止并搅拌0.5小时后,将沸点低于叔丁基苯的成分减压馏去。冷却至-50℃为止并添加三溴化硼(5.4g),升温至室温为止后搅拌0.5小时。其后,再次冷却至0℃为止并添加N,N-二异丙基乙胺(2.8g),在室温下搅拌至发热结束后,升温至100℃为止并加热搅拌1小时。将反应液冷却至室温为止,依次添加利用冰浴进行了冷却的乙酸钠水溶液、乙酸乙酯并搅拌1小时。对黄色悬浮液进行过滤,对其沉淀物利用甲醇、纯水清洗两次后,再次利用甲醇进行清洗。使黄色结晶加热溶解于氯苯中,之后利用硅胶短程管柱(洗脱液:经加热的氯苯)来进行精制。对所获得的粗产物添加庚烷并进行过滤后,利用庚烷对结晶进行清洗,由此获得化合物(1-107)(5.9g)。
[化135]
利用NMR测定对所获得的化合物的结构进行确认。
1H-NMR(CDCl3):δ=1.32(s,18H),1.46(s,18H),5.55(s,2H).
通过对原料化合物进行适宜变更并且利用依据所述合成例的方法而可合成本发明的其他多环芳香族化合物。
比较合成例(1)
比较化合物(1):2,12-二-叔丁基-5,9-双(4-(叔丁基)苯基)-N,N-二苯基-5,9-二氢-5,9-二氮杂-13b-硼杂萘并[3,2,1-de]蒽-7-胺的合成
使用与所述合成例(1)相同的方法来合成比较化合物(1)。
[化136]
利用NMR测定对所获得的化合物的结构进行确认。
1H-NMR(CDCl3):δ=1.33(s,18H),1.46(s,18H),5.55(s,2H),6.75(d,2H),6.89(t,2H),6.94(d,4H),7.06(t,4H),7.13(d,4H),7.43~7.46(m,6H),8.95(d,2H).
其次,为了更详细地说明本发明而表示使用本发明的化合物的有机EL元件的实施例,但本发明不限定于这些。
<有机EL元件的评价>
制作实施例1~实施例3及比较例1的有机EL元件,分别测定作为1000cd/m2发光时的特性的电压(V)、发光波长(nm)、外部量子效率(%),其次测定以10mA/cm2的电流密度进行恒定电流驱动时的保持初期亮度的90%以上的亮度的时间。
发光元件的量子效率中有内部量子效率与外部量子效率,内部量子效率表示将以电子(或空穴)的形式注入至发光元件的发光层中的外部能量纯粹地转换成光子的比例。另一方面,外部量子效率是基于将所述光子释放至发光元件的外部的量而算出,发光层中产生的光子的一部分在发光元件的内部持续被吸收或反射,并未释放至发光元件的外部,故外部量子效率低于内部量子效率。
外部量子效率的测定方法如下所述。使用爱德万测试(Advantest)公司制造的电压/电流产生器R6144,施加元件的亮度达到1000cd/m2的电压而使元件发光。使用拓普康(TOPCON)公司制造的分光放射亮度计SR-3AR,对发光面自垂直方向测定可见光区域的分光放射亮度。假定发光面为完全扩散面,所测定的各波长成分的分光放射亮度的值除以波长能量并乘以π所得的数值为各波长下的光子数。继而,在观测的整个波长区域内将光子数累计,作为自元件释放出的总光子数。将施加电流值除以元电荷(elementary charge)所得的数值作为对元件注入的载流子数,自元件释放出的总光子数除以对元件注入的载流子数所得的数值为外部量子效率。
将所制作的实施例1及比较例1的有机EL元件中的各层的材料构成、及EL特性数据示于下述表1中。
[表1]
表1中,“HI”为N4,N4'-二苯基-N4,N4'-双(9-苯基-9H-咔唑-3-基)-[1,1'-联苯基]-4,4'-二胺,“HAT-CN”为1,4,5,8,9,12-六氮杂三亚苯六碳腈,“HT-1”为N-([1,1'-联苯]-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺[1,1'-联苯基]-4-胺,“HT-2”为N,N-双(4-(二苯并[b,d]呋喃-4-基)苯基)-[1,1':4',1”-三联苯基]-4-胺,“BH-1”为2-(10-苯基蒽-9-基)萘并[2,3-b]苯并呋喃,“ET-1”为4,6,8,10-四苯基[1,4]苯并氧杂硼杂环己烯并[2,3,4-k1]苯氧硼杂环己烯,“ET-2”为3,3'-((2-苯基蒽-9,10-二基)双(4,1-亚苯基))双(4-甲基吡啶)。以下与“Liq”一起表示化学结构。
[化137]
<实施例1>
<主体为BH-1、掺杂剂为化合物(1-22)的元件>
以将利用溅镀来制膜成180nm的厚度的ITO研磨至150nm为止而成的26mm×28mm×0.7mm的玻璃基板(光科学(Opto Science)(股份)制造)作为透明支撑基板。将所述透明支撑基板固定于市售的蒸镀装置(昭和真空(股份)制造)的基板固定器上,然后安装分别放入有HI、HAT-CN、HT-1、HT-2、BH-1、化合物(1-22)、ET-1及ET-2的钼制蒸镀用舟皿、分别放入有Liq、LiF及铝的氮化铝制蒸镀用舟皿。
在透明支撑基板的ITO膜上依次形成下述各层。将真空槽减压至5×10-4Pa为止,首先,对HI进行加热、且以使膜厚成为40nm的方式进行蒸镀,其次,对HAT-CN进行加热、且以使膜厚成为5nm的方式进行蒸镀,其次,对HT-1进行加热、且以使膜厚成为15nm的方式进行蒸镀,其次,对HT-2进行加热、且以使膜厚成为10nm的方式进行蒸镀,来形成包含四层的空穴层。其次,对BH-1与化合物(1-22)同时进行加热、且以使膜厚成为25nm的方式进行蒸镀来形成发光层。以使BH-1与化合物(1-22)的重量比大致成为98对2的方式调节蒸镀速度。进而,对ET-1进行加热、且以使膜厚成为5nm的方式进行蒸镀,其次,对ET-2与Liq同时进行加热、且以使膜厚成为25nm的方式进行蒸镀,形成包含两层的电子层。以使ET-2与Liq的重量比大致成为50对50的方式调节蒸镀速度。各层的蒸镀速度为0.01nm/sec~1nm/sec。其后,对LiF进行加热、且以使膜厚成为1nm的方式以0.01nm/sec~0.1nm/sec的蒸镀速度进行蒸镀,继而,对铝进行加热、且以使膜厚成为100nm的方式进行蒸镀来形成阴极,从而获得有机EL元件。
将ITO电极作为阳极、LiF/铝电极作为阴极来施加直流电压,测定1000cd/m2发光时的特性,结果可获得波长456nm的蓝色发光,驱动电压为3.64V,外部量子效率为8.01%。另外,保持初期亮度的90%以上的亮度的时间为405小时。
<比较例1>
<主体为BH-1、掺杂剂为比较化合物(1)的元件>
将掺杂剂材料自化合物(1-22)替换为比较化合物(1),除此以外,以依据实施例1的方法获得有机EL元件。测定1000cd/m2发光时的特性,结果可获得波长455nm的蓝色发光,驱动电压为3.69V,外部量子效率为7.45%。另外,保持初期亮度的90%以上的亮度的时间为334小时。
进而,将所制作的实施例2及实施例3的有机EL元件中的各层的材料构成、及EL特性数据示于下述表2中。
[表2]
<实施例2>
<主体为BH-1、掺杂剂为化合物(1-122)的元件>
以将利用溅镀来制膜成180nm的厚度的ITO研磨至150nm为止而成的26mm×28mm×0.7mm的玻璃基板(光科学(Opto Science)(股份)制造)作为透明支撑基板。将所述透明支撑基板固定于市售的蒸镀装置(昭和真空(股份)制造)的基板固定器上,然后安装分别放入有HI、HAT-CN、HT-1、HT-2、BH-1、化合物(1-122)、ET-1及ET-2的钽制蒸镀用舟皿、分别放入有Liq、LiF及铝的氮化铝制蒸镀用舟皿。
在透明支撑基板的ITO膜上依次形成下述各层。将真空槽减压至5×10-4Pa为止,首先,对HI进行加热、且以使膜厚成为40nm的方式进行蒸镀,其次,对HAT-CN进行加热、且以使膜厚成为5nm的方式进行蒸镀,其次,对HT-1进行加热、且以使膜厚成为45nm的方式进行蒸镀,其次,对HT-2进行加热、且以使膜厚成为10nm的方式进行蒸镀,来形成包含四层的空穴层。其次,对BH-1与化合物(1-122)同时进行加热、且以使膜厚成为25nm的方式进行蒸镀来形成发光层。以使BH-1与化合物(1-122)的重量比大致成为98对2的方式调节蒸镀速度。进而,对ET-1进行加热、且以使膜厚成为5nm的方式进行蒸镀,其次,对ET-2与Liq同时进行加热、且以使膜厚成为25nm的方式进行蒸镀,形成包含两层的电子层。以使ET-2与Liq的重量比大致成为50对50的方式调节蒸镀速度。各层的蒸镀速度为0.01nm/sec~1nm/sec。其后,对LiF进行加热、且以使膜厚成为1nm的方式以0.01nm/sec~0.1nm/sec的蒸镀速度进行蒸镀,继而,对铝进行加热、且以使膜厚成为100nm的方式进行蒸镀来形成阴极,从而获得有机EL元件。
将ITO电极作为阳极、LiF/铝电极作为阴极来施加直流电压,测定1000cd/m2发光时的特性,结果可获得波长456nm的蓝色发光,驱动电压为3.75V,外部量子效率为7.91%。另外,保持初期亮度的90%以上的亮度的时间为348小时。
<主体为BH-1、掺杂剂为化合物(1-107)的元件>
将掺杂剂材料自化合物(1-122)替换为化合物(1-107),除此以外,以依据实施例2的方法获得有机EL元件。测定1000cd/m2发光时的特性,结果可获得波长456nm的蓝色发光,驱动电压为3.67V,外部量子效率为7.95%。另外,保持初期亮度的90%以上的亮度的时间为375小时。
产业上的可利用性
本发明中,提供一种新颖的重氢取代多环芳香族化合物,由此例如可增加有机EL元件用材料等有机元件用材料的选择项。另外,通过将新颖的重氢取代多环芳香族化合物用作有机EL元件用材料,例如可提供发光效率或元件寿命优异的有机EL元件、具备其的显示装置及具备其的照明装置等。

Claims (19)

1.一种多环芳香族化合物或多环芳香族化合物的多聚体,其中所述多环芳香族化合物由下述通式(1)表示,所述多环芳香族化合物的多聚体具有多个下述通式(1)所表示的结构,
所述式(1)中,
A环、B环及C环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可被取代,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为芳基、烷基或环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为可被取代的芳基、可被取代的杂芳基、可被取代的烷基或可被取代的环烷基,另外,所述N-R的R可通过连结基或单键而与所述A环、B环和/或C环键结,
式(1)所表示的化合物或结构中的至少一个氢可由氰基或卤素取代,而且
式(1)所表示的化合物或结构中的至少一个氢可由重氢取代。
2.根据权利要求1所述的多环芳香族化合物或其多聚体,其中A环、B环及C环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可由经取代或未经取代的芳基、经取代或未经取代的杂芳基、经取代或未经取代的二芳基氨基、经取代或未经取代的二杂芳基氨基、经取代或未经取代的芳基杂芳基氨基、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的烷氧基或者经取代或未经取代的芳氧基取代,另外,这些环具有与包含Y1、X1及X2的所述式(1)中央的缩合二环结构共有键结的5元环或6元环,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为芳基、烷基或环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为可由烷基或环烷基取代的芳基、可由烷基或环烷基取代的杂芳基、烷基或环烷基,另外,所述N-R的R可通过-O-、-S-、-C(-R)2-或单键而与所述A环、B环和/或C环键结,所述-C(-R)2-的R为氢、烷基或环烷基,
式(1)所表示的化合物或结构中的至少一个氢可由氰基或卤素取代,
在多聚体的情况下为具有2个或3个通式(1)所表示的结构的二聚体或三聚体,而且
式(1)所表示的化合物或结构中的至少一个氢可由重氢取代。
3.根据权利要求1所述的多环芳香族化合物,其由下述通式(2)表示,
所述式(2)中,
R1~R11分别独立地为氢、芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,另外,R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成芳基环或杂芳基环,所形成的环中的至少一个氢可由芳基、杂芳基、二芳基氨基、二杂芳基氨基、芳基杂芳基氨基、烷基、环烷基、烷氧基或芳氧基取代,这些中的至少一个氢可由芳基、杂芳基、烷基或环烷基取代,
Y1为B、P、P=O、P=S、Al、Ga、As、Si-R或Ge-R,所述Si-R及Ge-R的R为碳数6~12的芳基、碳数1~6的烷基或碳数3~14的环烷基,
X1及X2分别独立地为O、N-R、S或Se,所述N-R的R为碳数6~12的芳基、碳数2~15的杂芳基、碳数1~6的烷基或碳数3~14的环烷基,另外,所述N-R的R可通过-O-、-S-、-C(-R)2-或单键而与所述a环、b环和/或c环键结,所述-C(-R)2-的R为碳数1~6的烷基或碳数3~14的环烷基,
式(2)所表示的化合物中的至少一个氢可由氰基或卤素取代,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
4.根据权利要求3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~30的芳基、碳数2~30的杂芳基、二芳基氨基、碳数1~24的烷基或碳数3~24的环烷基,所述二芳基氨基的芳基为碳数6~12的芳基,另外,R1~R11中的邻接的基彼此可键结并与a环、b环或c环一同形成碳数9~16的芳基环或碳数6~15的杂芳基环,所形成的环中的至少一个氢可由碳数6~10的芳基、碳数1~12的烷基或碳数3~16的环烷基取代,
Y1为B、P、P=O、P=S或Si-R,所述Si-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,
X1及X2分别独立地为O、N-R或S,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,
式(2)所表示的化合物中的至少一个氢可由氰基或卤素取代,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
5.根据权利要求3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~16的芳基、碳数2~20的杂芳基、二芳基氨基、碳数1~12的烷基或碳数3~16的环烷基,所述二芳基氨基的芳基为碳数6~10的芳基,
Y1为B、P、P=O或P=S,
X1及X2分别独立地为O或N-R,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
6.根据权利要求3所述的多环芳香族化合物,其中R1~R11分别独立地为氢、碳数6~16的芳基、二芳基氨基、碳数1~12的烷基或碳数3~16的环烷基,所述二芳基氨基的芳基为碳数6~10的芳基,
Y1为B,
X1及X2均为N-R,或者X1为N-R,X2为O,所述N-R的R为碳数6~10的芳基、碳数1~4的烷基或碳数5~10的环烷基,而且
式(2)所表示的化合物中的至少一个氢可由重氢取代。
7.根据权利要求1至6中任一项所述的多环芳香族化合物或其多聚体,其中由经重氢取代的二芳基氨基、经重氢取代的咔唑基或经重氢取代的苯并咔唑基取代。
8.根据权利要求3至6中任一项所述的多环芳香族化合物,其中R2为经重氢取代的二芳基氨基或经重氢取代的咔唑基。
9.根据权利要求1至8中任一项所述的多环芳香族化合物或其多聚体,其中所述卤素为氟。
10.一种多环芳香族化合物,其由下述任一结构式表示,
11.一种有机元件用材料,含有:根据权利要求1至10中任一项所述的多环芳香族化合物或其多聚体。
12.根据权利要求11所述的有机元件用材料,其中所述有机元件用材料为有机电场发光元件用材料、有机场效晶体管用材料或有机薄膜太阳电池用材料。
13.根据权利要求12所述的有机电场发光元件用材料,其为发光层用材料。
14.一种有机电场发光元件,包括:一对电极,包含阳极及阴极;以及发光层,配置于所述一对电极间、且含有根据权利要求13所述的发光层用材料。
15.根据权利要求14所述的有机电场发光元件,其中所述发光层包含主体、及作为掺杂剂的所述发光层用材料。
16.根据权利要求15所述的有机电场发光元件,其中所述主体为蒽系化合物、芴系化合物或二苯并系化合物。
17.根据权利要求14至16中任一项所述的有机电场发光元件,具有:配置于所述阴极与所述发光层之间的电子传输层和/或电子注入层,所述电子传输层及电子注入层的至少一层含有选自由硼烷衍生物、吡啶衍生物、荧蒽衍生物、BO系衍生物、蒽衍生物、苯并芴衍生物、氧化膦衍生物、嘧啶衍生物、咔唑衍生物、三嗪衍生物、苯并咪唑衍生物、菲咯啉衍生物及羟基喹啉系金属络合物所组成的群组中的至少一种。
18.根据权利要求17所述的有机电场发光元件,其中所述电子传输层和/或电子注入层进而含有选自由碱金属、碱土金属、稀土金属、碱金属的氧化物、碱金属的卤化物、碱土金属的氧化物、碱土金属的卤化物、稀土金属的氧化物、稀土金属的卤化物、碱金属的有机络合物、碱土金属的有机络合物及稀土金属的有机络合物所组成的群组中的至少一种。
19.一种显示装置或照明装置,包括:根据权利要求14至18中任一项所述的有机电场发光元件。
CN201811513324.XA 2017-12-11 2018-12-07 多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置 Pending CN110028523A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-236889 2017-12-11
JP2017236889 2017-12-11
JP2018042879 2018-03-09
JP2018-042879 2018-03-09
JP2018193398A JP7264392B2 (ja) 2017-12-11 2018-10-12 重水素置換多環芳香族化合物
JP2018-193398 2018-10-12

Publications (1)

Publication Number Publication Date
CN110028523A true CN110028523A (zh) 2019-07-19

Family

ID=66697304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811513324.XA Pending CN110028523A (zh) 2017-12-11 2018-12-07 多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置

Country Status (3)

Country Link
US (1) US20190181350A1 (zh)
KR (1) KR102618236B1 (zh)
CN (1) CN110028523A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272445A (zh) * 2019-07-02 2019-09-24 武汉华星光电半导体显示技术有限公司 有机传输材料及其制备方法、电致发光器件
CN112940026A (zh) * 2021-02-02 2021-06-11 吉林奥来德光电材料股份有限公司 一种多环类化合物及其制备方法和应用
CN113072925A (zh) * 2020-01-03 2021-07-06 罗门哈斯电子材料韩国有限公司 多种有机电致发光材料和包含其的有机电致发光装置
CN113227105A (zh) * 2018-11-29 2021-08-06 默克专利有限公司 电子器件
CN113493475A (zh) * 2020-04-07 2021-10-12 材料科学有限公司 有机化合物和包含该有机化合物的有机电致发光元件
CN113527342A (zh) * 2020-04-14 2021-10-22 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN113666952A (zh) * 2020-05-15 2021-11-19 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN114075228A (zh) * 2020-08-20 2022-02-22 江苏三月科技股份有限公司 一种含硼有机化合物及其应用
WO2022042479A1 (zh) * 2020-08-25 2022-03-03 北京鼎材科技有限公司 一种化合物及其应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164331A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102091507B1 (ko) * 2018-07-24 2020-03-20 머티어리얼사이언스 주식회사 유기 전계 발광 소자
US10777752B2 (en) 2018-10-09 2020-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
WO2020217229A1 (en) * 2019-04-26 2020-10-29 Idemitsu Kosan Co., Ltd. Polycyclic compound and an organic electroluminescence device comprising the polycyclic compound or the composition
KR102489046B1 (ko) * 2019-07-18 2023-01-16 주식회사 엘지화학 유기 발광 소자
KR102422413B1 (ko) * 2019-11-29 2022-07-19 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102436754B1 (ko) * 2019-11-29 2022-08-26 주식회사 엘지화학 유기 발광 소자
KR20210070453A (ko) 2019-12-04 2021-06-15 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합다환 화합물
KR20210078637A (ko) 2019-12-18 2021-06-29 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
WO2021145711A1 (ko) * 2020-01-16 2021-07-22 주식회사 엘지화학 유기 발광 소자
KR20210103633A (ko) 2020-02-13 2021-08-24 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 함질소 화합물
KR20210118293A (ko) 2020-03-19 2021-09-30 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합환 화합물
KR20230051852A (ko) * 2021-10-12 2023-04-19 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
EP4379018A1 (en) 2022-12-02 2024-06-05 Idemitsu Kosan Co., Ltd Compound and an organic electroluminescence device comprising the compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013413A1 (en) * 2008-12-22 2016-01-14 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
CN105431439A (zh) * 2014-02-18 2016-03-23 学校法人关西学院 多环芳香族化合物
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017126443A1 (ja) * 2016-01-21 2017-07-27 学校法人関西学院 多環芳香族化合物
WO2017138526A1 (ja) * 2016-02-10 2017-08-17 学校法人関西学院 遅延蛍光有機電界発光素子
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
CN110662750A (zh) * 2017-05-22 2020-01-07 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735703B2 (ja) 1999-12-21 2006-01-18 大阪大学長 エレクトロルミネッセンス素子
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
DE102010009903A1 (de) 2010-03-02 2011-09-08 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2012118164A1 (ja) 2011-03-03 2012-09-07 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013413A1 (en) * 2008-12-22 2016-01-14 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
CN105431439A (zh) * 2014-02-18 2016-03-23 学校法人关西学院 多环芳香族化合物
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017126443A1 (ja) * 2016-01-21 2017-07-27 学校法人関西学院 多環芳香族化合物
WO2017138526A1 (ja) * 2016-02-10 2017-08-17 学校法人関西学院 遅延蛍光有機電界発光素子
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
CN110662750A (zh) * 2017-05-22 2020-01-07 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227105A (zh) * 2018-11-29 2021-08-06 默克专利有限公司 电子器件
CN110272445A (zh) * 2019-07-02 2019-09-24 武汉华星光电半导体显示技术有限公司 有机传输材料及其制备方法、电致发光器件
CN110272445B (zh) * 2019-07-02 2022-01-04 武汉华星光电半导体显示技术有限公司 有机传输材料及其制备方法、电致发光器件
CN113072925A (zh) * 2020-01-03 2021-07-06 罗门哈斯电子材料韩国有限公司 多种有机电致发光材料和包含其的有机电致发光装置
CN113493475A (zh) * 2020-04-07 2021-10-12 材料科学有限公司 有机化合物和包含该有机化合物的有机电致发光元件
CN113527342A (zh) * 2020-04-14 2021-10-22 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN113666952A (zh) * 2020-05-15 2021-11-19 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN114075228A (zh) * 2020-08-20 2022-02-22 江苏三月科技股份有限公司 一种含硼有机化合物及其应用
WO2022042479A1 (zh) * 2020-08-25 2022-03-03 北京鼎材科技有限公司 一种化合物及其应用
CN112940026A (zh) * 2021-02-02 2021-06-11 吉林奥来德光电材料股份有限公司 一种多环类化合物及其制备方法和应用

Also Published As

Publication number Publication date
KR20190069295A (ko) 2019-06-19
US20190181350A1 (en) 2019-06-13
KR102618236B1 (ko) 2023-12-26

Similar Documents

Publication Publication Date Title
CN110028523A (zh) 多环芳香族化合物及其多聚体、有机元件用材料、有机电场发光元件、显示装置或照明装置
TWI730046B (zh) 延遲螢光有機電場發光元件、顯示裝置及照明裝置
JP7242283B2 (ja) 有機電界発光素子
TWI688137B (zh) 有機電場發光元件、顯示裝置以及照明裝置
CN109155368B (zh) 有机电场发光元件、显示装置及照明装置
KR102657736B1 (ko) 유기 전계 발광 소자
CN110383521A (zh) 有机电场发光元件
US20190280209A1 (en) Organic electroluminescent element
WO2020054676A1 (ja) 有機電界発光素子
CN110291652B (zh) 有机电场发光元件、显示装置、照明装置及化合物
CN109863155A (zh) 多环芳香族化合物
CN107793441A (zh) 多环芳香族化合物
CN110692146A (zh) 有机电场发光元件
US11711970B2 (en) Organic electroluminescent device
JP7264392B2 (ja) 重水素置換多環芳香族化合物
US11342506B2 (en) Organic electroluminescent element
CN110049990A (zh) 多环芳香族氨基化合物
JP2020200254A (ja) 多環芳香族化合物
JP2020004947A (ja) 有機電界発光素子
CN110249442B (zh) 化合物
JP7417221B2 (ja) 多環芳香族化合物
TWI808195B (zh) 含有烷基取代多環芳香族化合物的電子材料、有機電致發光元件、顯示裝置及照明裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210918

Address after: No. 155, ichikamachi, shanghara, nishiko, Hyogo, Japan

Applicant after: Kansai College

Applicant after: Aisikai new material Jayne wisdom Co.,Ltd.

Address before: No. 155, Uehara Ichibancho, Nishinomiya City, Hyogo Prefecture, Japan (Zip Code: 662-8501)

Applicant before: Kansai College

Applicant before: JNC Corp.