CN110026230A - 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用 - Google Patents

一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用 Download PDF

Info

Publication number
CN110026230A
CN110026230A CN201910260429.7A CN201910260429A CN110026230A CN 110026230 A CN110026230 A CN 110026230A CN 201910260429 A CN201910260429 A CN 201910260429A CN 110026230 A CN110026230 A CN 110026230A
Authority
CN
China
Prior art keywords
catalyst
reaction
low
carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910260429.7A
Other languages
English (en)
Other versions
CN110026230B (zh
Inventor
康金灿
曾雷
周伟
张庆红
王野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910260429.7A priority Critical patent/CN110026230B/zh
Publication of CN110026230A publication Critical patent/CN110026230A/zh
Application granted granted Critical
Publication of CN110026230B publication Critical patent/CN110026230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7476MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/12Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • C07C2529/24Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用,涉及低碳烷烃。催化剂的化学组成为贵金属元素、修饰元素和载体;贵金属的质量百分含量为0.3%~20%,修饰元素的质量百分含量为0.1%~50%,余量为载体。低碳烷烃脱氢制备对应烯烃的催化剂在直接产生烯烃中应用,具体步骤:将催化剂在惰性气体吹扫下从室温以不高于20℃min‑1的升温速率升至反应温度450~800℃加热处理,加热处理的时间为10~120min;催化剂经预处理后通入低碳烷烃气或惰性气体稀释的低碳烷烃混合气,反应气体组成为低碳烷烃体积百分含量为20%~70%,余量为惰性气体,反应气体进入反应器流经固体催化剂床层发生脱氢反应生成对应烯烃产物。

Description

一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用
技术领域
本发明涉及低碳烷烃(C2-C4),尤其是涉及以低碳烷烃(C2-C4)为原料,在低碳烷烃或惰性气体稀释的低碳烷烃气氛下的一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用。
背景技术
低碳烯烃是极其重要的化工基础原料。乙烯作为工业三烯之首,被广泛用于生产聚乙烯、聚氯乙烯、乙醛、乙醇及其酯类、乙二酸及其相关聚合物等化工产品。丙烯主要用于生产聚丙烯、丙烯酸及其酯类、丙烯腈、环氧丙烷、环氧氯丙烷、异丙醇、苯酚、丙酮等重要化工产品。碳四烯烃,尤其是丁二烯,广泛用于生产合成橡胶、合成塑料等具有重大战略意义的化工产品。这些低碳烯烃的下游产品广泛应用于纺织行业、医药行业、能源行业、电子行业等国家支柱行业。传统的乙烯、丙烯等低碳烯烃生产主要来自于石油烃的蒸气裂解和石脑油流化床催化裂化(FCC)过程。近年来,甲醇制烯烃(乙烯、丙烯)和丙烷直接脱氢过程也实现了产业化,一定程度上提高了低碳烯烃的供给。然而受烯烃下游产品需求的拉动,各种低碳烯烃需求量也持续上升,我国的低碳烯烃(C2-C4)供需矛盾仍较为突出。
近年来,一些生产低碳烯烃的新技术得到了越来越多的应用,如上述提及的低碳烷烃(C2-C4)直接脱氢(ADH)、甲醇制乙烯(MTE)以及甲醇制丙烯(MTP),已成为增产低碳烯烃的重要途径。低碳烷烃(C2-C4)直接脱氢过程无需加入氧化剂,烯烃选择性高,且能同时生产高纯氢气,具有原子经济性高的特点,但该反应受到热力学平衡的限制。以丙烷为例,在550~600℃温度区间内,根据热力学计算,丙烯理论单程收率不超过60%。该催化过程更大的问题是催化剂的稳定性较差。近年来,有关低碳烷烃(C2-C4)无氧脱氢的研究已较为深入,已报道的高性能催化剂包括钒基、铬基和铂基催化剂等。如Pt-Sn/Al2O3-sheet催化剂在590℃时能实现49%的丙烷转化率,丙烯选择性高于90%,收率接近48%(Angew.Chem.Int.Ed.2015,54,13994-13998)。V/Al2O3催化剂经氢气预处理后,在600℃能实现20%的丙烷转化率,丙烯选择性为80%(Angew.Chem.Int.Ed.2018,57,6791-6795)。Ni修饰的Cr/Al2O3催化剂催化丙烷脱氢反应,在600℃能实现43%的丙烷转化率与90%丙烯选择性(AppliedCatalysis A:General 2016,522,172-179)。在PtSn/Mg(Al)O催化剂上催化乙烷无氧脱氢反应,600℃时转化率为10%,选择性高于95%(Journal of Catalysis,2010,271,209-219)。Cr2O3/SiO2催化剂催化乙烷直接脱氢反应,650℃时乙烷转化率为65%,乙烯选择性92%(Applied Catalysis A:General,2000,196,1-8)。PtSn双金属负载于尖晶石结构载体上催化丁烷脱氢反应,530℃时乙烷转化率为29%,乙烯选择性高于95%(Applied Catalysis A:General,2004,277,11-22)。
然而,由于低碳烷烃(C2-C4)在高温无氧条件下易于在催化剂表面发生连续脱氢反应造成积碳,导致催化活性下降。因此低碳烷烃脱氢催化剂稳定性普遍较差,600℃下寿命不超过50h。为提高无氧脱氢催化剂寿命,往往需对失活催化剂频繁烧碳再生。再生过程的高温常造成金属的烧结与流失,最终导致催化剂不可逆失活。研究者发现在反应气氛中引入氢气,可以一定程度上抑制反应过程的积碳行为,然而氢气的引入不仅大幅降低单程转化率,也增加了单耗,导致成本增加。如何在高温下维持较高的烷烃转化率和催化剂稳定性仍极具挑战性。发展低碳烷烃(C2-C4)直接脱氢的新型催化剂,提高低碳烷烃转化率和烯烃选择性,将使该过程更具经济性和竞争力。
发明内容
本发明的目的在于提供高稳定性、高选择性和高收率的一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用。
所述低碳烷烃脱氢制备对应烯烃的催化剂的化学组成为贵金属元素、修饰元素和载体;所述贵金属的质量百分含量为0.3%~20%,修饰元素的质量百分含量为0.1%~50%,余量为载体。
所述贵金属可选自Pt、Rh、Pd、Ru、Ir、Os等中的至少一种,所述修饰元素可选自Zn、Cu、Sn、Ga、Sb、In、Bi、Pb、Se、Te等中的至少一种,所述载体为沸石分子筛。所述沸石分子筛可选自全硅分子筛、硅铝分子筛等中的至少一种,所述沸石分子筛可选自ZSM-5、MOR、Silicate-1、Y、SAPO-34、TS-1等中的至少一种,所述硅铝分子筛包括金属离子交换的硅铝分子筛。
所述贵金属元素以单原子或小尺寸团簇形态被限域在沸石分子筛中。
所述修饰元素与贵金属组分相互作用,如形成合金、金属间化合物或其他作用形式。
所述贵金属和修饰元素至少有一种组分在分子筛合成时以合适的前驱体形式加入分子筛合成母液中,所述合适的前驱体形式可选自无机盐、氧化物、氢氧化物、配合物等中的至少一种。
所述低碳烷烃脱氢制备对应烯烃的催化剂在直接产生烯烃中应用,所述应用的具体步骤如下:
1)催化剂预处理:将催化剂在惰性气体吹扫下从室温以不高于20℃min-1的升温速率升至反应温度450~800℃加热处理,加热处理的时间为10~120min;
2)催化反应:催化剂经预处理后,通入低碳烷烃气(C2-C4)或惰性气体稀释的低碳烷烃(C2-C4)混合气,反应气体组成为低碳烷烃(C2-C4)体积百分含量为20%~70%,余量为惰性气体,所述反应气体进入反应器流经固体催化剂床层发生脱氢反应生成对应烯烃产物。
在步骤1)中,所述惰性气体可选自氦气、氮气、氩气等中的至少一种。
在步骤2)中,所述反应气体可选自低碳烷烃(C2-C4)或惰性气体稀释的低碳烷烃(C2-C4),反应气体以2500~100000ml·gcat -1·h-1的空速经过催化剂床层反应,反应温度为450~800℃;所述反应器可选自固定床、固定流化床、循环流化床或移动床等。
与现有低碳烷烃(C2-C4)脱氢制烯烃的技术相比,本发明所提供的催化剂所产生的有益效果体现在以下方面:
(1)使用分子筛限域双金属组分或多金属组分,可有效抑制活性金属的烧结问题,催化剂稳定性得到大幅提高,经200h测试性能无显著变化。
(2)使用双金属催化剂,在较高的低碳烷烃(C2-C4)转化率下,低碳烷烃的C-C键断裂副反应受到极大抑制,深度脱氢反应得到有效抑制,目标烯烃选择性大幅提高。
(3)反应过程无需加入氢气,从而可获得更高的低碳烷烃(C2-C4)单程转化率,也可进一步降低成本。
(4)在最优反应条件下,乙烷选择性高于92%,乙烯单程收率可达35%;丙烯选择性高于95%,丙烯单程收率可达64%;丁烯选择性高于95%,丁烯单程收率达到65%以上;远高于现有工业所用催化剂的性能以及文献报道的低碳烷烃无氧催化脱氢性能。
(5)催化剂活性高,且在反应过程无组分流失,纳米粒子尺寸几乎不变,从而能长时间保持催化剂活性,寿命长。
综上,使用本发明所提供的低碳烷烃(C2-C4)无氧脱氢制烯烃的催化剂,烯烃选择性和收率远高于现有技术,且稳定性良好,具有良好的工业应用前景。
附图说明
图1为本发明所述低碳烷烃脱氢制备对应烯烃的催化剂的催化性能。在图1中,曲线a为丙烯选择性,曲线b为丙烷转化率。
具体实施方式
以下实施例将对本发明作进一步的说明。
实施例1
取0.22g 30~60目的0.4%Pt-2%Cu@MOR(SAR=20)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至550℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为丁烷和氮气,流速分别为30ml min-1、80ml min-1,反应温度为550℃,反应压力为常压。反应产物采用气相色谱仪进行在线分析。0.4%Pt-2%Cu@MOR催化剂的催化性能(T=550℃)如表1所示。
表1
丁烷转化率(%) 64
丁烯选择性(%) 99.1
甲烷选择性(%) 0.3
乙烷选择性(%) 0.6
乙烯选择性(%) 0
实施例2
取0.22g 30~60目的0.8%Pd-1.6%Ga@MCM-22(SAR=30)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为乙烷和氩气,流速分别为5ml min-1、15ml min-1,反应温度为750℃,常压。反应产物采用气相色谱仪进行在线分析。0.8%Pd-1.6%Ga@MCM-22催化剂的催化性能(T=750℃)如表2所示。
表2
乙烷转化率(%) 30
乙烯选择性(%) 85.4
甲烷选择性(%) 14.5
实施例3
取0.22g 30~60目的0.5%Rh-2%Zn@S-1催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为丙烷和氦气,流速分别为20ml min-1、60ml min-1,反应温度为600℃,常压反应器。反应产物采用气相色谱仪进行在线分析。0.5%Rh-2%Zn@S-1催化剂的催化性能(T=600℃)如表3所示。
表3
丙烷转化率(%) 65
丙烯选择性(%) 98.4
甲烷选择性(%) 0.5
乙烷选择性(%) 1.0
乙烯选择性(%) 0.1
实施例4
取0.22g 30~60目的0.9%Ru-1.2%Ga@SAPO-34(SAR=20)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为乙烷和氮气,流速分别为10ml min-1、30ml min-1,反应温度为650℃,常压。反应产物采用气相色谱仪进行在线分析。0.9%Ru-1.2%Ga@SAPO-34催化剂的催化性能(T=650℃)如表4所示。
表4
乙烷转化率(%) 15
乙烯选择性(%) 88
甲烷选择性(%) 12
实施例5
取0.22g 30~60目的0.8%Ru-1.2%Sn@K-Y(SAR=2.5)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至700℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为乙烷和氮气,流速分别为5ml min-1、15ml min-1,反应温度为700℃,常压。反应产物采用气相色谱仪进行在线分析。0.8%Ru-1.2%Sn@K-Y催化剂的催化性能(T=700℃)如表5所示。
表5
乙烷转化率(%) 42
乙烯选择性(%) 92
甲烷选择性(%) 10
实施例6
取0.22g 30~60目的0.6%Ir-0.8%In@K-ZSM-5(SAR=25)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为丙烷和氮气,流速分别为15ml min-1、60ml min-1,反应温度为600℃,常压。反应产物采用气相色谱仪进行在线分析。0.6%Ir-0.8%In@K-ZSM-5催化剂的催化性能(T=600℃)如表6所示。
表6
丙烷转化率(%) 45
丙烯选择性(%) 92.1
甲烷选择性(%) 2.7
乙烷选择性(%) 5.1
乙烯选择性(%) 0.1
实施例7
取0.22g 30~60目的0.8%Pt-1.2%Sn@Na-ZSM-5(SAR=15)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至580℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为丁烷和氮气,流速分别为20ml min-1、60ml min-1,反应温度为580℃,常压。反应产物采用气相色谱仪进行在线分析。0.8%Pt-1.2%Sn@Na-ZSM-5催化剂的催化性能(T=580℃)如表7所示。
表7
丁烷转化率(%) 70
丁烯选择性(%) 96
甲烷选择性(%) 1.0
乙烷选择性(%) 2.9
乙烯选择性(%) 0.1
实施例8
取0.22g 30~60目的0.8%Pt-1.0%Bi@Na-beta(SAR=60)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体组成为乙烷和氩气,流速分别为12ml min-1、36ml min-1,反应温度为700℃,常压。反应产物采用气相色谱仪进行在线分析。0.8%Pt-1.0%Bi@Na-beta催化剂的催化性能(T=700℃)如表8所示。
表8
乙烷转化率(%) 35
乙烯选择性(%) 89
甲烷选择性(%) 11
实施例9
取0.22g 30~60目的1.2%Ir-0.8%Sn@MOR(SAR=20)催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体组成为乙烷和氮气,流速分别为15ml min-1、60ml min-1,反应温度为600℃,常压。反应产物采用气相色谱仪进行在线分析。1.2%Ir-0.8%Sn@MOR催化剂的催化性能(T=600℃)如表9所示。
表9
乙烷转化率(%) 26
乙烯选择性(%) 88
甲烷选择性(%) 12
实施例10
取0.22g 30~60目的0.5%Ru-0.6%Sn@S-1催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至680℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体组成为丙烷和氦气,流速分别为15ml min-1、45ml min-1,反应温度为680℃,常压。反应产物采用气相色谱仪进行在线分析。0.5%Ru-0.6%Sn@S-1催化剂的催化性能(T=680℃)如表10所示。
表10
丙烷转化率(%) 12
丙烯选择性(%) 89
甲烷选择性(%) 5.5
乙烷选择性(%) 5.3
乙烯选择性(%) 0.2
对比例1
取0.22g 30~60目的商品1.0%Pt-1.2%Sn/γ-Al2O3催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体丙烷和氮气,流速分别为20ml min-1、60ml min-1,反应温度为580℃,常压。反应产物采用气相色谱仪进行在线分析。1.0%Pt-1.2%Sn/γ-Al2O3催化剂的催化性能(T=600℃)如表11所示。
表11
丙烷转化率(%) 36
丙烯选择性(%) 90
甲烷选择性(%) 3.5
乙烷选择性(%) 6.4
乙烯选择性(%) 0.1
对比例2
取0.22g 30~60目的12%Cr/γ-Al2O3催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至600℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体丙烷和氮气,流速分别为10mlmin-1、30ml min-1,反应温度为600℃,常压。反应产物采用气相色谱仪进行在线分析。12%Cr/γ-Al2O3催化剂的催化性能(T=600℃)如表12所示。
表12
丙烷转化率(%) 12
丙烯选择性(%) 84.1
甲烷选择性(%) 5.5
乙烷选择性(%) 1.3
乙烯选择性(%) 9.1
对比例3
取0.22g 30~60目的商品1.0%Pt-1.2%Sn/γ-Al2O3催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至550℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为丁烷和氮气,流速分别为20ml min-1、60ml min-1,反应温度为550℃,常压。反应产物采用气相色谱仪进行在线分析。1.0%Pt-1.2%Sn/γ-Al2O3催化剂的催化性能(T=550℃)如表13所示。
表13
丁烷转化率(%) 46
丁烯选择性(%) 90
甲烷选择性(%) 3.5
乙烷选择性(%) 6.4
乙烯选择性(%) 0.1
对比例4
取0.22g 30~60目的商品1.2%Pt-1.5%Sn/γ-Al2O3催化剂,装入石英反应管中(内径10mm),在流速为15ml min-1的氮气气氛下,以10℃min-1的升温速率从室温开始加热至650℃并保持30min。催化反应在常压固定床反应器中进行,反应条件为:反应气体为乙烷和氮气,流速分别为20ml min-1、60ml min-1,反应温度为650℃,常压。反应产物采用气相色谱仪进行在线分析。1.2%Pt-1.5%Sn/γ-Al2O3催化剂的催化性能(T=650℃)如表14所示。
表14
丁烷转化率(%) 41
乙烯选择性(%) 95
甲烷选择性(%) 5.0
本发明所述低碳烷烃脱氢制备对应烯烃的催化剂的催化性能参见图1。

Claims (10)

1.一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于其化学组成为贵金属元素、修饰元素和载体;所述贵金属的质量百分含量为0.3%~20%,修饰元素的质量百分含量为0.1%~50%,余量为载体。
2.如权利要求1所述一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于所述贵金属选自Pt、Rh、Pd、Ru、Ir、Os中的至少一种。
3.如权利要求1所述一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于所述修饰元素选自Zn、Cu、Sn、Ga、Sb、In、Bi、Pb、Se、Te中的至少一种。
4.如权利要求1所述一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于所述载体为沸石分子筛,所述沸石分子筛可选自全硅分子筛、硅铝分子筛中的至少一种,所述沸石分子筛可选自ZSM-5、MOR、Silicate-1、Y、SAPO-34、TS-1中的至少一种,所述硅铝分子筛包括金属离子交换的硅铝分子筛。
5.如权利要求1所述一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于所述贵金属元素以单原子或小尺寸团簇形态被限域在沸石分子筛中;所述修饰元素与贵金属组分相互作用形成合金、金属间化合物或其他作用形式。
6.如权利要求1所述一种低碳烷烃脱氢制备对应烯烃的催化剂,其特征在于所述贵金属和修饰元素至少有一种组分在分子筛合成时以合适的前驱体形式加入分子筛合成母液中,所述合适的前驱体形式选自无机盐、氧化物、氢氧化物、配合物中的至少一种。
7.低碳烷烃脱氢制备对应烯烃的催化剂在直接产生烯烃中应用。
8.如权利要求7所述应用,其特征在于具体步骤如下:
1)催化剂预处理:将催化剂在惰性气体吹扫下从室温以不高于20℃min-1的升温速率升至反应温度450~800℃加热处理,加热处理的时间为10~120min;
2)催化反应:催化剂经预处理后,通入低碳烷烃气(C2-C4)或惰性气体稀释的低碳烷烃(C2-C4)混合气,反应气体组成为低碳烷烃(C2-C4)体积百分含量为20%~70%,余量为惰性气体,所述反应气体进入反应器流经固体催化剂床层发生脱氢反应生成对应烯烃产物。
9.如权利要求8所述应用,其特征在于在步骤1)中,所述惰性气体选自氦气、氮气、氩气中的至少一种。
10.如权利要求8所述应用,其特征在于在步骤2)中,所述反应气体选自低碳烷烃(C2-C4)或惰性气体稀释的低碳烷烃(C2-C4),反应气体以2500~100000ml·gcat -1·h-1的空速经过催化剂床层反应,反应温度为450~800℃;所述反应器选自固定床、固定流化床、循环流化床或移动床。
CN201910260429.7A 2019-04-02 2019-04-02 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用 Active CN110026230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910260429.7A CN110026230B (zh) 2019-04-02 2019-04-02 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910260429.7A CN110026230B (zh) 2019-04-02 2019-04-02 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用

Publications (2)

Publication Number Publication Date
CN110026230A true CN110026230A (zh) 2019-07-19
CN110026230B CN110026230B (zh) 2020-11-10

Family

ID=67237189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910260429.7A Active CN110026230B (zh) 2019-04-02 2019-04-02 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用

Country Status (1)

Country Link
CN (1) CN110026230B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813369A (zh) * 2019-11-02 2020-02-21 华东师范大学 一种富含单核锡氧四面体硅锡分子筛负载金属催化剂及其制备方法和应用
CN112058305A (zh) * 2020-08-31 2020-12-11 大连理工大学 一种用于丙烷脱氢制备丙烯的Pt-Zn/TS-1或Pt-Zn@TS-1催化剂及其制备方法
CN113070093A (zh) * 2021-03-31 2021-07-06 陕西科技大学 一种GaN负载Ga改性-Silicalite-1-1催化剂及其应用
CN113751052A (zh) * 2021-08-31 2021-12-07 厦门大学 一种丙烷脱氢制备丙烯的催化剂及其制备方法和应用
CN114588930A (zh) * 2022-03-09 2022-06-07 华南理工大学 一种全硅ZSM-5分子筛负载Pd及其制备方法和应用
WO2023173928A1 (zh) * 2022-03-14 2023-09-21 厦门中科易工化学科技有限公司 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623633A (zh) * 2009-08-17 2010-01-13 清华大学 用于低碳烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN101773850A (zh) * 2010-01-28 2010-07-14 清华大学 一种低碳烷烃脱氢制烯烃催化剂及其应用
CN107983401A (zh) * 2017-11-23 2018-05-04 太原理工大学 一种ZSM-5封装的单原子层Pd催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623633A (zh) * 2009-08-17 2010-01-13 清华大学 用于低碳烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN101773850A (zh) * 2010-01-28 2010-07-14 清华大学 一种低碳烷烃脱氢制烯烃催化剂及其应用
CN107983401A (zh) * 2017-11-23 2018-05-04 太原理工大学 一种ZSM-5封装的单原子层Pd催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘满丽: "改性ZSM-5催化丙烷脱氢反应性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
韩伟等: "多级孔ZSM-5分子筛的制备及其丙烷脱氢制丙烯的催化性能", 《工业催化》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813369A (zh) * 2019-11-02 2020-02-21 华东师范大学 一种富含单核锡氧四面体硅锡分子筛负载金属催化剂及其制备方法和应用
CN112058305A (zh) * 2020-08-31 2020-12-11 大连理工大学 一种用于丙烷脱氢制备丙烯的Pt-Zn/TS-1或Pt-Zn@TS-1催化剂及其制备方法
CN113070093A (zh) * 2021-03-31 2021-07-06 陕西科技大学 一种GaN负载Ga改性-Silicalite-1-1催化剂及其应用
CN113751052A (zh) * 2021-08-31 2021-12-07 厦门大学 一种丙烷脱氢制备丙烯的催化剂及其制备方法和应用
CN114588930A (zh) * 2022-03-09 2022-06-07 华南理工大学 一种全硅ZSM-5分子筛负载Pd及其制备方法和应用
WO2023173928A1 (zh) * 2022-03-14 2023-09-21 厦门中科易工化学科技有限公司 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Also Published As

Publication number Publication date
CN110026230B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN110026230A (zh) 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用
CN108620092B (zh) 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用
Li et al. Oxidative dehydrogenation of light alkanes with carbon dioxide
CN101890351B (zh) 蛋壳型镍基催化剂
US11498058B2 (en) Supported PtZn intermetallic alloy catalyst, method for preparing the same and application thereof
CN111054333B (zh) 用于苯乙炔选择加氢制苯乙烯的水滑石负载钯催化剂及其制备方法和应用
Feng et al. A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction
CN104096573B (zh) 一种高抗结焦选择加氢催化剂制备方法
CN104971717B (zh) Pt修饰的ZnO/Al2O3催化剂及其制备方法和应用
CN104098426A (zh) 碳二馏分选择加氢的方法
CN104107712B (zh) 混合c3/c4烷烃脱氢催化剂及其制备方法
CN110237849A (zh) 一种用于丙烷脱氢制丙烯的铂基催化剂及其制备方法
CN113617296B (zh) 一种二氧化碳催化加氢系统及方法
Pan et al. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction
CN113694921A (zh) 纳米金刚石/石墨烯复合载体负载原子级分散铱团簇催化剂及其制备方法和应用
CN112221493A (zh) 贵金属修饰的氧化镓催化剂及其制备方法和应用
CN103058808B (zh) 低碳烷烃脱氢制低碳烯烃的方法
CN114797946B (zh) 一种丙烷脱氢制丙烯的负载型Pt基催化剂
CN103130625A (zh) 一种乙醇制乙醛联产乙缩醛的方法
CN102962054A (zh) 一种异丁烷脱氢制异丁烯的Cr2O3催化剂及其制备方法
CN102974348B (zh) 一种氧化物负载纳米金刚石催化剂及其制备方法和应用
RU2523801C1 (ru) Способ получения ароматических углеводородов
CN113856743B (zh) 一种丙烯生产用催化剂及丙烯生产的环保工艺
CN113509957B (zh) 一种用于提高甲醇制烯烃反应催化剂循环稳定性和寿命的方法
CN111054325B (zh) 液相脱氢催化剂的制备及用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant