WO2023173928A1 - 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途 - Google Patents

一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途 Download PDF

Info

Publication number
WO2023173928A1
WO2023173928A1 PCT/CN2023/072518 CN2023072518W WO2023173928A1 WO 2023173928 A1 WO2023173928 A1 WO 2023173928A1 CN 2023072518 W CN2023072518 W CN 2023072518W WO 2023173928 A1 WO2023173928 A1 WO 2023173928A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
dehydrogenation
antimony oxide
melt
reaction
Prior art date
Application number
PCT/CN2023/072518
Other languages
English (en)
French (fr)
Inventor
钟劲光
刘星
Original Assignee
厦门中科易工化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门中科易工化学科技有限公司 filed Critical 厦门中科易工化学科技有限公司
Publication of WO2023173928A1 publication Critical patent/WO2023173928A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only

Definitions

  • the invention relates to the technical field of petrochemical production, and relates to a method for preparing low-carbon olefins through oxidative dehydrogenation and the use of antimony oxide.
  • Low-carbon olefins such as ethylene and propylene are important chemical raw materials and can be used to produce organic compounds such as polyethylene, polypropylene, and acrylonitrile. They are widely used in various important chemical industries such as synthetic resins, plastics, and rubber.
  • low-carbon olefins can be divided into three types according to the raw material route: first, naphtha to olefins, second, coal to olefins, and third, alkanes dehydrogenation to olefins.
  • Naphtha-to-olefins and coal-to-olefins both use mixed olefins as products.
  • the main product of ethane steam thermal cracking and dehydrogenation is ethylene
  • propane catalytic cracking and dehydrogenation is propylene.
  • the thermal cracking and dehydrogenation of ethane steam to produce ethylene requires reaction at a high temperature of about 850°C and then quenching, which requires high energy consumption and the ethylene yield is about 80%.
  • Catalytic cracking of propane and dehydrogenation to produce propylene requires the use of precious metals as catalysts, which is expensive to produce and requires high energy consumption for external heating. At the same time, the catalyst is prone to carbonization and requires frequent regeneration, which is inconvenient to operate.
  • the technology of oxidative dehydrogenation of alkanes to produce olefins has obvious advantages from a thermodynamic analysis: the heat energy generated by oxidation is used for dehydrogenation of alkanes, which can greatly reduce energy consumption.
  • oxygen converts the removed hydrogen into water in a timely manner to promote the chemical balance to generate olefins.
  • the direction of movement increases the conversion rate and selectivity, so theoretical analysis of oxidative dehydrogenation has obvious advantages over other methods mentioned above.
  • low-carbon alkanes are relatively stable and hydrogen has low activity, dehydrogenation needs to be achieved at a higher reaction temperature.
  • oxygen easily reacts with hydrocarbons to produce carbon dioxide. Therefore, since the 1970s, many scientific researchers have been working hard to explore technically and economically feasible oxidative dehydrogenation processes, but there has been no oxidative dehydrogenation technology that can be applied industrially.
  • CN111632586A provides an integral catalyst, which includes a substrate, an intermediate layer and an active component, wherein the substrate is ceramic, the intermediate layer is silicon oxide, and the active component is boron oxide.
  • the catalyst is contacted with a mixed gas containing low-carbon alkanes (ethane, propane or butane), diluent gas (inert gas) and oxidant (oxygen or air) to perform a catalytic dehydrogenation reaction.
  • the reaction temperature is 400 to 600°C.
  • the conversion rate is only 14 to 17%, the CO and CO 2 content is 4 to 8.5%, the carbonization is serious, the catalyst life is short, and direct mixing of oxygen and alkanes can easily produce explosive gases.
  • CN1069907A introduces a method for oxidative dehydrogenation of ethane to produce ethylene.
  • This method requires A large amount of nitrogen is used as diluent gas to increase the amount of product separation.
  • the ethylene selectivity is only 84%, and carbonization is severe.
  • direct contact between ethane and oxygen can easily form explosive mixed gases.
  • the European patent application number EP20030704717 invented a method for catalytic oxidative dehydrogenation of ethane.
  • the patent application uses at least one oxide of Mo, Te, V and Nb with Cu, Ta, Sn, Sb, Bi, etc.
  • a catalyst for the oxidative dehydrogenation of ethane is prepared through a series of processes by combining one of the elements. The catalyst preparation process is complicated, and the single-pass conversion rate of ethane in this method is 40-60%, and the yield of ethylene is only 20-60%.
  • Application No. 201710071080.3 uses metal oxides as oxygen carriers, and the metal oxides are used alone or loaded with carriers such as molecular sieves, zeolites, and aluminum oxide. Among them, metals are required to have multiple valence states, such as metal vanadium, chromium, tungsten, molybdenum and bismuth.
  • Propane is passed through the gas-solid two-phase contact reaction at 600°C. Although the selectivity of propylene is 80%, the by-product obtained is exhaust gas CO 2 .
  • the catalyst needs frequent regeneration due to severe carbon deposition. Although heat can be released during the catalyst regeneration process, the mass and heat transfer effects are not ideal because the catalyst is a solid phase.
  • the present invention provides a method for preparing low-carbon olefins through oxidative dehydrogenation and the use of antimony oxide, which has obvious effects on low-carbon alkanes at higher temperatures.
  • Dehydrogenation can selectively oxidize and dehydrogenate alkanes to produce H 2 O and olefins.
  • the volume content of CO 2 is less than 1%, achieving an ideal technical effect of oxidative dehydrogenation of low-carbon alkanes to produce olefins.
  • the invention provides a method for preparing light olefins through oxidative dehydrogenation, which method includes:
  • the above-mentioned dehydrogenation reaction can be carried out in the dehydrogenation chamber.
  • the lower alkane can be passed into the antimony oxide melt in the dehydrogenation chamber, so that the lower alkane and antimony oxide can undergo a dehydrogenation reaction to obtain water vapor and lower olefins.
  • the gas phase is discharged from the top of the dehydrogenation chamber, and the liquid phase including elemental metal antimony is located at the bottom of the dehydrogenation chamber.
  • the lower alkanes are selected from one or more types of ethane, propane and butane;
  • the low carbon olefin is selected from one or more types of ethylene, propylene and butylene;
  • the temperature of the dehydrogenation reaction is 580 ⁇ 850°C, such as 580 ⁇ 680°C, 680 ⁇ 700°C, 700 ⁇ 760°C, 760 ⁇ 800°C or 800 ⁇ 850°C;
  • step c5) Add metal antimonite in step c).
  • the metal antimonite salt can be an alkali metal antimonite salt;
  • the alkali metal antimonite salt can be selected from the group consisting of lithium antimonite, sodium antimonite, potassium antimonite, and One or more of rubidium antimonate and cesium antimonite;
  • the molar ratio of the metal antimonite to antimony oxide is 1 to 150:100, such as 1 to 50:100, 50 to 80:100 or 80 to 150:100.
  • the method further includes:
  • step d) Separate the gas phase obtained in step c) to obtain low carbon olefins.
  • the method further includes before step c):
  • step b) Pass a gas containing oxygen into the material obtained in step a) to perform an oxidation reaction to obtain an upper layer of antimony oxide melt, and a lower layer of antimony melt and/or antimony alloy melt.
  • the liquid phase including metallic antimony obtained in step c) is refluxed to step b) for oxidation reaction.
  • the above-mentioned melting and oxidation reactions can be carried out in an oxidation chamber.
  • a gas containing oxygen such as oxygen or air, can be introduced into the metal antimony melt or the antimony alloy melt in the oxidation chamber to cause the oxygen to contact the metal antimony to perform an oxidation reaction and release heat. , to obtain an upper layer of antimony oxide melt and a lower layer of antimony melt, or an upper layer of antimony oxide melt and a lower layer of antimony alloy melt.
  • air unreacted nitrogen in the air is discharged from the top of the oxidation chamber.
  • the antimony oxide melt obtained from the oxidation chamber is passed into the dehydrogenation chamber to undergo dehydrogenation reaction with low-carbon alkanes.
  • the antimony oxide is reduced to metallic antimony at the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • step a) the melting point of the antimony alloy is lower than the melting point of metallic antimony;
  • step a) the oxidizing property of the antimony alloy is greater than the oxidizing property of metallic antimony;
  • step b) the gas containing oxygen is selected from one or more types of air and oxygen;
  • step b) the temperature of the oxidation reaction is 600-900°C, such as 600-730°C, 730-750°C, 750-800°C, 800-850°C or 850-900°C;
  • the material obtained in step a) contains an excess of antimony.
  • the antimony alloy is selected from one or more of antimony-bismuth alloy and antimony-lead alloy.
  • a second aspect of the present invention provides the use of antimony oxide as a dehydrogenation oxidant in the dehydrogenation reaction of lower alkanes to obtain lower olefins.
  • the lower alkanes are selected from one or more of ethane, propane and butane;
  • the antimony oxide is in a molten liquid state
  • the temperature of the dehydrogenation reaction is 580-850°C, such as 580-680°C, 680-700°C, 700-760°C, 760-800°C or 800-850°C.
  • reaction equation involved in the present invention is as follows:
  • n 2 or 3 or 4
  • the present invention uses oxygen to regenerate the oxidant, but the oxygen does not contact the alkanes or the produced olefins, preventing the generation of explosive mixed gases and improving the safety of the process.
  • the present invention uses antimony oxide as the dehydrogenation oxidant, which has good selectivity for dehydrogenating alkanes to olefins.
  • Oxygen combines with hydrogen to produce water.
  • the by-product is mainly CH 4 which can be used as fuel, and the volume content of CO 2 is low. less than 1%.
  • the single-pass conversion rate of ethane is 60% and the ethylene selectivity is greater than 90%, which has obvious technical advantages compared with the current steam thermal cracking process; when propane and butane are used as raw materials At this time, either a separate reaction or a mixed injection can be used.
  • the single-pass conversion rate is high, and the conversion can basically be completed at one time without recycling. Compared with the existing process, it saves recycling energy consumption and equipment investment.
  • the present invention realizes mass and heat transfer of the melt through the conversion of metallic antimony and antimony oxide, and completes the oxidative dehydrogenation of low-carbon alkanes to produce olefins.
  • the entire reaction process does not require external heat supply, has low cost and high efficiency.
  • Figure 1 is a schematic diagram of a reactor for preparing light olefins through oxidative dehydrogenation according to the first embodiment of the present invention.
  • Steps a) to c) of the present invention can be carried out in a reactor, such as the schematic diagram shown in Figure 1.
  • the reactor chamber is provided with a partition, one end of the partition is connected to the top of the reactor, and the other end is connected to the reaction chamber.
  • the bottom of the reactor is provided with a distance to form a channel.
  • the partition divides the chamber of the reactor into an oxidation chamber and a dehydrogenation chamber.
  • the bottoms of the oxidation chamber and the dehydrogenation chamber are connected.
  • the liquid phase including metal antimony obtained by the dehydrogenation reaction can be obtained from The channel enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • the partition plate can be further provided with a through hole.
  • the antimony oxide melt obtained by the oxidation reaction can enter the dehydrogenation chamber through the through hole to undergo dehydrogenation reaction with low-carbon alkanes.
  • the partition plate does not need to be provided with a through hole, and the antimony oxide melt obtained by the oxidation reaction can be passed into the dehydrogenation chamber through an external pipeline.
  • Steps a) to c) of the present invention can also be carried out in two reactors, namely an oxidation reactor and a dehydrogenation reactor.
  • the liquid phase including metal antimony obtained by the dehydrogenation reaction can enter the oxidation chamber through an external pipeline.
  • the oxidation reaction with oxygen continues, and the antimony oxide melt obtained by the oxidation reaction can be passed into the dehydrogenation chamber through an external pipeline.
  • a specific embodiment of the present invention is as follows: first, a gas containing oxygen, such as oxygen or air, is introduced into the metal antimony melt and/or the antimony alloy melt in the oxidation chamber, so that the oxygen contacts the metal antimony to perform an oxidation reaction and release heat.
  • the antimony oxide produced by oxidation is melted and suspended above the antimony melt and/or antimony alloy melt.
  • air is introduced, unreacted nitrogen in the air is discharged from the top of the oxidation chamber.
  • the antimony oxide melt obtained from the oxidation chamber is passed into the dehydrogenation chamber, and at the same time, the low-carbon alkane is passed into the antimony oxide melt, and the two undergo a dehydrogenation reaction.
  • the alkane is dehydrogenated to obtain a gas phase including water vapor and low-carbon olefins. It is discharged from the top of the dehydrogenation chamber, and the antimony oxide is reduced to metallic antimony and returns to the molten metal layer at the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • the antimony oxide melt transfers the heat generated by the oxidation reaction to the alkane to complete the dehydrogenation endothermic reaction, so that the entire reaction process does not require external heat to form a spontaneous redox reaction. That is, through the conversion of metallic antimony and antimony oxide, on the one hand, the reaction of oxidative dehydrogenation of low-carbon alkanes to olefins is completed, and on the other hand, the mass transfer and heat transfer of the melt are completed.
  • Metal antimony is melted in an oxidation chamber to obtain a metal antimony melt.
  • step 2 (2) Pour air into the metal antimony melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 800°C. Control the excess of metal antimony to obtain an upper layer of antimony oxide melt and a lower layer of antimony melt.
  • the reacted nitrogen is discharged from the top of the oxidation chamber.
  • step 2 (2) Pour oxygen into the antimony-bismuth alloy melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 900°C. Control the excess of metal antimony in the alloy to obtain an upper layer of antimony oxide melt and a lower layer of antimony-bismuth alloy melt. liquid.
  • the methane volume content in the gas phase is 4.92%
  • the volume CO2 content is 0.58%
  • the single-pass conversion rate of ethane is 61.5%
  • the ethylene selectivity is 90.2%.
  • the obtained liquid phase antimony element flows to the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • step 2 (2) Pour oxygen into the antimony-lead alloy melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 730°C. Control the excess of metal antimony in the alloy to obtain an upper layer of antimony oxide melt and a lower layer of antimony-lead alloy melt. liquid.
  • the volume content of methane in the gas phase is 25.12%, the volume content of CO2 is 0.20%, the single-pass conversion rate of propane is 98.0%, and the total yield of ethylene and propylene is 71.3%.
  • the obtained liquid phase antimony element flows to the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • step 2 (2) Pour air into the antimony-bismuth alloy melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 600°C. Control the excess of metal antimony in the alloy to obtain an upper layer of antimony oxide melt and a lower layer of antimony-bismuth alloy melt. liquid. Unreacted nitrogen in the air is discharged from the top of the oxidation chamber.
  • step 2 (2) Pour air into the metal antimony melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 750°C. Control the excess of metal antimony to obtain an upper layer of antimony oxide melt and a lower layer of antimony melt. Unreacted nitrogen in the air is discharged from the top of the oxidation chamber.
  • the volume content of methane in the gas phase is 24.0%, the volume content of CO2 is 0.15%, the single-pass conversion rate of alkanes is 97.8%, and the total yield of ethylene and propylene is 70.5%.
  • the obtained liquid phase antimony element flows to the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.
  • step 2 (2) Pour air into the antimony-bismuth alloy melt obtained in step 1) to perform an oxidation reaction.
  • the temperature of the oxidation reaction is 850°C. Control the excess of metal antimony in the alloy to obtain an upper layer of antimony oxide melt and a lower layer of antimony-bismuth alloy melt. liquid. Unreacted nitrogen in the air is discharged from the top of the oxidation chamber.
  • the volume content of methane in the gas phase is 5.05%, the volume content of CO2 is 0.42%, the single-pass conversion rate of ethane is 61.0%, and the ethylene The selectivity is 90.5%.
  • the obtained liquid phase antimony element flows to the bottom of the dehydrogenation chamber, and then enters the oxidation chamber to continue the oxidation reaction with oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及石油化工生产技术领域,涉及一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途。该方法包括:c)将低碳烷烃与氧化锑熔液进行脱氢反应,得到包括水蒸气和低碳烯烃的气相和包括金属锑单质的液相。氧化锑在低碳烷烃进行脱氢反应获得低碳烯烃中作为氧化剂的用途。本发明采用氧化锑作为脱氢氧化剂,在较高的温度下对低碳烷烃有明显的脱氢作用,其对烷烃脱氢制烯烃有很好的选择性,氧与氢结合产生水,副产物主要是CH4可当燃料使用,CO2体积含量低于1%,如当以乙烷作为原料生产乙烯时,乙烷单程转化率为60%,乙烯选择性大于90%,比现有水蒸气热裂解工艺有明显优势。

Description

一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途 技术领域
本发明涉及石油化工生产技术领域,涉及一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途。
背景技术
低碳烯烃如乙烯、丙烯等是重要的化工原料,可以用于生产聚乙烯、聚丙烯、丙烯腈等有机化合物,在合成树脂,塑料,橡胶等多种重要化工行业中应用广泛。
低碳烯烃的制取按原料路线可以分为3种:一是石脑油制烯烃,二是煤制烯烃,三是烷烃脱氢制烯烃。石脑油制烯烃和煤制烯烃都是以混合烯烃为产物。烷烃脱氢制烯烃中乙烷水蒸气热裂解脱氢的产物主要是乙烯,丙烷催化裂解脱氢的主要产物是丙烯。近年来直接利用烷烃(乙烷,丙烷等)通过脱氢反应得到相应低碳烯烃已经得到大幅的发展,成为获取低碳烯烃的主要发展方向。
乙烷水蒸气热裂解脱氢制乙烯需要在850℃左右的高温下反应,然后激冷,能耗高,乙烯收率在80%左右。丙烷催化裂解脱氢制丙烯需采用贵金属作为催化剂生产成本高,而且需外部供热能耗高,同时催化剂易碳化需经常再生,操作不便。
烷烃氧化脱氢制烯烃技术从热力学上分析有明显优势:将氧化产生的热能用于烷烃脱氢,可大幅度降低能耗,同时氧将脱下来的氢及时转化成水促进化学平衡向烯烃生成的方向移动,提高转化率与选择性,所以理论上分析氧化脱氢比上述其他方法有明显的优势。但由于低碳烷烃相对稳定,氢的活性较低,需要在较高的反应温度下才能实现脱氢,可是在高温时,氧容易与烃发生燃烧反应,产生二氧化碳。所以从上世纪70年代开始众多科研工作者努力探寻技术经济可行的氧化脱氢工艺,但一直没有可实现工业化应用的氧化脱氢技术。
CN111632586A提供了一种整体式催化剂,所述催化剂包括基底,中间层和活性组分,其中基底为陶瓷,中间层为氧化硅,活性成分为硼氧化物。将该催化剂和含有低碳烷烃(乙烷、丙烷或丁烷)、稀释气(惰气)和氧化剂(氧气或空气)的混合气体接触进行催化脱氢反应,反应温度为400~600℃,烷烃转化率仅为14~17%,CO和CO2含量为4~8.5%,碳化较严重,催化剂寿命短,而且将氧气和烷烃直接混合容易产生爆炸性气体。
CN1069907A介绍了一种乙烷氧化脱氢制乙烯的方法,该技术以碱金属或稀土金属氟化物为催化剂,原料气是N2∶C2H6∶O2=85∶1∶5,在470~600℃之间进行反应。该方法需要 用大量的氮气作为稀释气增加产物的分离量,500℃时乙烯选择性只有84%,碳化严重,再者乙烷与氧气直接接触易形成爆炸性混合气体。
如申请号为EP20030704717的欧洲专利,发明了一种乙烷催化氧化脱氢的方法,该申请专利用Mo,Te,V和Nb中至少一种氧化物与Cu,Ta,Sn,Sb,Bi等中的一种元素结合,通过一系列工序制备乙烷氧化脱氢的催化剂。催化剂制备过程复杂,且该方法乙烷的单程转化率为40~60%,乙烯的收率仅为20~60%。
申请号201710071080.3以金属氧化物为氧载体,将金属氧化物单独使用或与分子筛、沸石、三氧化二铝等载体进行负载后用。其中要求金属具有多种化合价态,如金属钒、铬、钨、钼和铋。在600℃通丙烷,经气固两相接触反应,丙烯的选择性虽然有80%,但是得到的副产物为废气CO2,同时因为催化剂积碳严重,需频繁再生。催化剂再生过程中虽能放出热量,但因催化剂为固相,传质传热效果并不理想。
综上所述,虽然现有低碳烷烃脱氢制备低碳烯烃的技术取得了较大的进展,但这些技术仍然暴露出多种问题和不足,诸如催化剂碳化严重运行周期短需频繁再生、烷烃转化率和烯烃选择性不理想、能耗高、工艺不安全等。因此,开发一种高效、节能、低成本的低碳烷烃氧化脱氢制备低碳烯烃的工艺具有重要的意义。
发明内容
本发明针对现有低碳烷烃氧化脱氢制备低碳烯烃技术的不足,提供一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途,在较高的温度下对低碳烷烃有明显的脱氢作用,能选择性氧化烷烃脱氢产生H2O和烯烃,CO2体积含量低于1%,达到了较理想的低碳烷烃氧化脱氢制烯烃的技术效果。
本发明是通过以下技术方案实现的:
本发明提供一种氧化脱氢制备低碳烯烃的方法,所述方法包括:
c)将低碳烷烃与氧化锑熔液进行脱氢反应,得到包括水蒸气和低碳烯烃的气相和包括金属锑单质的液相。
上述脱氢反应可在脱氢室中进行,可以将低碳烷烃通入脱氢室的氧化锑熔液中,使低碳烷烃与氧化锑进行脱氢反应,得到包括水蒸气和低碳烯烃的气相从脱氢室顶部排出,包括金属锑单质的液相位于脱氢室底部。
优选地,还包括如下技术特征中的至少一项:
c1)所述低碳烷烃选自乙烷、丙烷和丁烷中的一种或多种;
c2)所述低碳烯烃选自乙烯、丙烯和丁烯中的一种或多种;
c3)脱氢反应的温度为580~850℃,如580~680℃、680~700℃、700~760℃、760~800℃或800~850℃;
c4)所述脱氢反应中,所述氧化锑熔液过量;
c5)步骤c)中加入金属亚锑酸盐。
更优选地,还包括如下技术特征中的至少一项:
c51)特征c5)中,所述金属亚锑酸盐可为碱金属亚锑酸盐;所述碱金属亚锑酸盐可选自亚锑酸锂、亚锑酸钠、亚锑酸钾、亚锑酸铷和亚锑酸铯中的一种或多种;
c52)特征c5)中,所述金属亚锑酸盐与氧化锑的摩尔比为1~150:100,如1~50:100、50~80:100或80~150:100。
优选地,所述方法还包括:
d)将步骤c)得到的气相进行分离,得到低碳烯烃。
优选地,所述方法在步骤c)之前还包括:
a)将金属锑和/或锑合金进行熔解,得到金属锑熔解液和/或锑合金熔解液;
b)向步骤a)得到的物料中通入包含氧气的气体,进行氧化反应,得到上层氧化锑熔液,和,下层锑熔液和/或锑合金熔液。
更优选地,步骤c)得到的包括金属锑单质的液相回流至步骤b)进行氧化反应。
上述熔解和氧化反应可在氧化室中进行,可以在氧化室的金属锑熔解液,或者锑合金熔解液中通入包含氧气的气体如氧气或空气使氧气与金属锑接触进行氧化反应并放热,得到上层氧化锑熔液和下层锑熔液,或者,上层氧化锑熔液和下层锑合金熔液,当通入空气时,空气中未反应的氮气从氧化室顶部排出。
然后将氧化室得到的氧化锑熔液通入脱氢室中与低碳烷烃进行脱氢反应,氧化锑被还原为金属锑位于脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
更优选地,还包括如下技术特征中的至少一项:
a1)步骤a)中,所述锑合金的熔点低于金属锑的熔点;
a2)步骤a)中,所述锑合金的氧化性大于金属锑的氧化性;
b1)步骤b)中,所述包含氧气的气体选自空气和氧气中的一种或多种;
b2)步骤b)中,氧化反应的温度为600~900℃,如600~730℃、730~750℃、750~800℃、800~850℃或850~900℃;
b3)所述氧化反应中,步骤a)得到的物料中锑过量。
进一步更优选地,特征a1)中,所述锑合金选自锑铋合金和锑铅合金中的一种或多种。
本发明第二方面提供一种氧化锑在低碳烷烃进行脱氢反应获得低碳烯烃中作为脱氢氧化剂的用途。
优选地,还包括如下技术特征中的至少一项:
1)所述低碳烷烃选自乙烷、丙烷和丁烷中的一种或多种;
2)所述氧化锑的形态为熔液态;
3)脱氢反应的温度为580~850℃,如580~680℃、680~700℃、700~760℃、760~800℃或800~850℃。
本发明涉及的反应方程式如下:
O2+Sb→Sb2O3
Sb2O3+CnH2n+2→CnH2n+H2O+Sb
式中n=2或3或4
本发明具有如下有益效果中的至少一项:
(1)选用空气作为氧源时,未反应的氮气不会与脱氢产物混合,有利于低碳烯烃的分离提纯。
(2)本发明采用氧气进行氧化剂的再生,但氧气不与烷烃或产生的烯烃接触,防止爆炸性混合气体产生,提高工艺的安全性。
(3)本发明采用氧化锑作为脱氢氧化剂,其对烷烃脱氢制烯烃有很好的选择性,氧与氢结合产生水,副产物主要是CH4可当燃料使用,CO2体积含量低于1%。如当以乙烷作为原料生产乙烯时,乙烷单程转化率为60%,乙烯选择性大于90%,与现行水蒸气热裂解工艺相比有明显的技术优势;当以丙烷、丁烷为原料时,可采用单独反应也可采用混合进样,单程转化率高,基本可一次转化完全,无需循环,与现有工艺相比省去了循环能耗和设备投资。
(4)本发明通过金属锑和氧化锑的转换,实现了熔液的传质传热,完成低碳烷烃氧化脱氢制烯烃,整个反应过程无需外界供热,成本低,效率高。
附图说明
图1为本发明第一实施例的氧化脱氢制备低碳烯烃的反应器示意图。
具体实施方式
以下通过特定的具体实例说明本发明的技术方案。应理解,本发明提到的一个或多个方法步骤并不排斥在所述组合步骤前后还存在其他方法步骤或在这些明确提到的步骤之间还可 以插入其他方法步骤;还应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
本发明的步骤a)至步骤c)可以在一个反应器中进行,比如图1所示的示意图,反应器腔室内设有隔板,隔板的一端与反应器的顶部连接,另一端与反应器的底部设有距离形成通道,隔板将反应器的腔室分割为氧化室和脱氢室,氧化室和脱氢室的底部相通,脱氢反应得到的包括金属锑单质的液相可从通道进入氧化室继续与氧气发生氧化反应,隔板上进一步可设有通孔,氧化反应得到的氧化锑熔液可经通孔进入脱氢室与低碳烷烃进行脱氢反应。隔板上也可以不设通孔,氧化反应得到的氧化锑熔液可经外设的管道通入脱氢室。
本发明的步骤a)至步骤c)也可以在两个反应器即氧化反应器和脱氢反应器中进行,脱氢反应得到的包括金属锑单质的液相可经外设的管道进入氧化室继续与氧气发生氧化反应,氧化反应得到的氧化锑熔液可经外设的管道通入脱氢室。
本发明一个具体的实施方式如下:首先在氧化室的金属锑熔解液和/或锑合金熔解液中通入包含氧气的气体如氧气或空气,使氧气与金属锑接触进行氧化反应并放热,氧化产生的氧化锑熔解并悬浮在锑熔液和/或锑合金熔液上方,当通入空气时,空气中未反应的氮气从氧化室顶部排出。
然后将氧化室得到的氧化锑熔液通入脱氢室中,同时将低碳烷烃通入氧化锑熔液中二者发生脱氢反应,烷烃脱氢得到包括水蒸气和低碳烯烃的气相从脱氢室顶部排出,氧化锑被还原为金属锑回到脱氢室底部金属熔液层中,而后进入氧化室继续与氧气发生氧化反应。
上述氧化脱氢过程中氧化锑熔液将氧化反应产生的热量传递给烷烃完成脱氢吸热反应,使整个反应过程无需外界供热形成自发进行的氧化还原反应。即通过金属锑和氧化锑的转换,一方面完成了低碳烷烃氧化脱氢制烯烃的反应,另一方面完成熔液的传质传热。
实施例1
(1)将金属锑在氧化室中进行熔解,得到金属锑熔解液。
(2)向步骤1)得到的金属锑熔液中通入空气,进行氧化反应,氧化反应的温度为800℃,控制金属锑过量,得到上层氧化锑熔液和下层锑熔液,空气中未反应的氮气从氧化室顶部排出。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时将乙烷通入脱氢室的氧化锑熔液中, 二者进行脱氢反应,脱氢反应的温度为760℃,控制氧化锑过量,得到包括水蒸气和乙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为5.88%,CO2体积含量为0.25%,乙烷单程转化率为60.2%,乙烯选择性为91.3%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯产品。
实施例2
(1)将锑铋合金在氧化室中进行熔解,得到锑铋合金熔解液。
(2)向步骤1)得到的锑铋合金熔液中通入氧气,进行氧化反应,氧化反应的温度为900℃,控制合金中金属锑过量,得到上层氧化锑熔液和下层锑铋合金熔液。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时在脱氢室的氧化锑熔液中加入亚锑酸钾,控制亚锑酸钾与氧化锑的摩尔比为1:100,然后将乙烷通入脱氢室的氧化锑熔液中,氧化锑和乙烷发生脱氢反应脱氢反应的温度为850℃,控制氧化锑过量,得到包括水蒸气和乙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为4.92%,体积CO2含量为0.58%,乙烷单程转化率为61.5%,乙烯选择性为90.2%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯产品。
实施例3
(1)将锑铅合金在氧化室中进行熔解,得到锑铅合金熔解液。
(2)向步骤1)得到的锑铅合金熔液中通入氧气,进行氧化反应,氧化反应的温度为730℃,控制合金中金属锑过量,得到上层氧化锑熔液和下层锑铅合金熔液。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时在脱氢室的氧化锑熔液中加入亚锑酸锂,控制亚锑酸锂与氧化锑的摩尔比为80:100,然后将丙烷通入脱氢室的氧化锑熔液中,使丙烷和氧化锑发生脱氢反应,脱氢反应的温度为700℃,控制氧化锑过量,得到包括水蒸气、乙烯和丙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为25.12%,CO2体积含量为0.20%,丙烷单程转化率为98.0%,乙烯和丙烯总收率为71.3%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯、丙烯产品。
实施例4
(1)将锑铋合金在氧化室中进行熔解,得到锑铋合金熔解液。
(2)向步骤1)得到的锑铋合金熔液中通入空气,进行氧化反应,氧化反应的温度为600℃,控制合金中金属锑过量,得到上层氧化锑熔液和下层锑铋合金熔液。空气中未反应的氮气从氧化室顶部排出。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时将丁烷通入脱氢室的氧化锑熔液中,丁烷和氧化锑发生脱氢反应,脱氢反应的温度为580℃,控制氧化锑过量,得到包括水蒸气、乙烯和丙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为20.53%,CO2体积含量为0.10%,丁烷单程转化率为92.5%,乙烯和丙烯总收率为72.4%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯、丙烯产品。
实施例5
(1)将金属锑在氧化室中进行熔解,得到金属锑熔解液;
(2)向步骤1)得到的金属锑熔液中通入空气,进行氧化反应,氧化反应的温度为750℃,控制金属锑过量,得到上层氧化锑熔液和下层锑熔液。空气中未反应的氮气从氧化室顶部排出。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时在脱氢室的氧化锑熔液中加入亚锑酸钠,控制亚锑酸钠与氧化锑的摩尔比为150:100,然后将丙烷和丁烷的混合气通入脱氢室的氧化锑熔液中,烷烃与氧化锑进行脱氢反应,脱氢反应的温度为680℃,控制氧化锑过量,得到包括水蒸气、乙烯和丙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为24.0%,CO2体积含量为0.15%,烷烃单程转化率为97.8%,乙烯和丙烯总收率为70.5%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯、丙烯产品。
实施例6
(1)将锑铋合金在氧化室中进行熔解,得到锑铋合金熔解液。
(2)向步骤1)得到的锑铋合金熔液中通入空气,进行氧化反应,氧化反应的温度为850℃,控制合金中金属锑过量,得到上层氧化锑熔液和下层锑铋合金熔液。空气中未反应的氮气从氧化室顶部排出。
(3)将氧化室得到的氧化锑熔液通入脱氢室中,同时在脱氢室的氧化锑熔液中加入亚锑 酸铯,控制亚锑酸铯与氧化锑的摩尔比为50:100,然后将乙烷通入脱氢室的氧化锑熔液中,氧化锑和乙烷发生脱氢反应脱氢反应的温度为800℃,控制氧化锑过量,得到包括水蒸气和乙烯的气相从脱氢室顶部排出,气相中甲烷体积含量为5.05%,CO2体积含量为0.42%,乙烷单程转化率为61.0%,乙烯选择性为90.5%。得到的液相锑单质流到脱氢室底部,而后进入氧化室继续与氧气发生氧化反应。
(4)将步骤3)得到的气相进行分离,得到乙烯产品。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (10)

  1. 一种氧化脱氢制备低碳烯烃的方法,其特征在于,所述方法包括:
    c)将低碳烷烃与氧化锑熔液进行脱氢反应,得到包括水蒸气和低碳烯烃的气相和包括金属锑单质的液相。
  2. 如权利要求1所述的氧化脱氢制备低碳烯烃的方法,其特征在于,还包括如下技术特征中的至少一项:
    c1)所述低碳烷烃选自乙烷、丙烷和丁烷中的一种或多种;
    c2)所述低碳烯烃选自乙烯、丙烯和丁烯中的一种或多种;
    c3)脱氢反应的温度为580~850℃;
    c4)所述脱氢反应中,所述氧化锑熔液过量;
    c5)步骤c)中加入金属亚锑酸盐。
  3. 如权利要求2所述的氧化脱氢制备低碳烯烃的方法,其特征在于,还包括如下技术特征中的至少一项:
    c51)特征c5)中,所述金属亚锑酸盐为碱金属亚锑酸盐;
    c52)特征c5)中,所述金属亚锑酸盐与氧化锑的摩尔比为1~150:100。
  4. 如权利要求1所述的氧化脱氢制备低碳烯烃的方法,其特征在于,所述方法还包括:
    d)将步骤c)得到的气相进行分离,得到低碳烯烃。
  5. 如权利要求1所述的氧化脱氢制备低碳烯烃的方法,其特征在于,所述方法在步骤c)之前还包括:
    a)将金属锑和/或锑合金进行熔解,得到金属锑熔解液和/或锑合金熔解液;
    b)向步骤a)得到的物料中通入包含氧气的气体,进行氧化反应,得到上层氧化锑熔液,和,下层锑熔液和/或锑合金熔液。
  6. 如权利要求5所述的氧化脱氢制备低碳烯烃的方法,其特征在于,步骤c)得到的包括金属锑单质的液相回流至步骤b)进行氧化反应。
  7. 如权利要求5所述的氧化脱氢制备低碳烯烃的方法,其特征在于,还包括如下技术特征中的至少一项:
    a1)步骤a)中,所述锑合金的熔点低于金属锑的熔点;
    a2)步骤a)中,所述锑合金的氧化性大于金属锑的氧化性;
    b1)步骤b)中,所述包含氧气的气体选自空气和氧气中的一种或多种;
    b2)步骤b)中,氧化反应的温度为600~900℃;
    b3)所述氧化反应中,步骤a)得到的物料中锑过量。
  8. 如权利要求7所述的氧化脱氢制备低碳烯烃的方法,其特征在于,特征a1)中,所述锑合金选自锑铋合金和锑铅合金中的一种或多种。
  9. 一种氧化锑在低碳烷烃进行脱氢反应获得低碳烯烃中作为脱氢氧化剂的用途。
  10. 如权利要求9所述的用途,其特征在于,还包括如下技术特征中的至少一项:
    1)所述低碳烷烃选自乙烷、丙烷和丁烷中的一种或多种;
    2)所述氧化锑的形态为熔液态;
    3)脱氢反应的温度为580~850℃。
PCT/CN2023/072518 2022-03-14 2023-01-17 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途 WO2023173928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210245453.5A CN114656320B (zh) 2022-03-14 2022-03-14 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途
CN202210245453.5 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023173928A1 true WO2023173928A1 (zh) 2023-09-21

Family

ID=82028978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072518 WO2023173928A1 (zh) 2022-03-14 2023-01-17 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Country Status (2)

Country Link
CN (1) CN114656320B (zh)
WO (1) WO2023173928A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656320B (zh) * 2022-03-14 2024-06-18 厦门中科易工化学科技有限公司 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240156A (zh) * 1998-05-18 2000-01-05 株式会社日本触媒 低级烷烃氧化脱氢催化剂和制备烯烃的方法
CN101165031A (zh) * 2006-10-16 2008-04-23 罗门哈斯公司 将烷烃转化为烯烃的联合催化法以及用于该方法的催化剂
CN108046973A (zh) * 2018-01-03 2018-05-18 中国石油大学(华东) 一种低碳烷烃化学链氧化脱氢制烯烃工艺
CN110026230A (zh) * 2019-04-02 2019-07-19 厦门大学 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用
CN110511109A (zh) * 2018-05-22 2019-11-29 中国科学院大连化学物理研究所 一种乙烷连续生产乙烯的方法和装置
CN114656320A (zh) * 2022-03-14 2022-06-24 厦门中科易工化学科技有限公司 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363472B (zh) * 2014-08-27 2018-04-06 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其使用方法
CN105363473B (zh) * 2014-08-27 2018-10-23 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃铂催化剂
CN108435221B (zh) * 2017-02-16 2020-12-18 润和催化材料(浙江)有限公司 一种低碳烷烃脱氢催化剂及其制备方法和应用
CN111215045B (zh) * 2018-11-26 2023-05-09 天津大学 一种铈基双金属氧化物催化剂及其制备方法和在低碳烷烃脱氢中的应用
CN110256186A (zh) * 2019-06-19 2019-09-20 惠生工程(中国)有限公司 一种低碳烷烃氧化脱氢制烯烃的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240156A (zh) * 1998-05-18 2000-01-05 株式会社日本触媒 低级烷烃氧化脱氢催化剂和制备烯烃的方法
CN101165031A (zh) * 2006-10-16 2008-04-23 罗门哈斯公司 将烷烃转化为烯烃的联合催化法以及用于该方法的催化剂
CN108046973A (zh) * 2018-01-03 2018-05-18 中国石油大学(华东) 一种低碳烷烃化学链氧化脱氢制烯烃工艺
CN110511109A (zh) * 2018-05-22 2019-11-29 中国科学院大连化学物理研究所 一种乙烷连续生产乙烯的方法和装置
CN110026230A (zh) * 2019-04-02 2019-07-19 厦门大学 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用
CN114656320A (zh) * 2022-03-14 2022-06-24 厦门中科易工化学科技有限公司 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU XUEBIN, ZHU HAIOU, GE QINGJIE, LI WENZHAO, HENGYONG XU: "Advances in Light Alkenes Production by Hydrocarbon Selective Oxidation", PROGRESS IN CHEMISTRY, vol. 16, no. 6, 24 November 2004 (2004-11-24), pages 900 - 910, XP093090207 *
SILVANA A. D'IPPOLITO ; MIGUEL A. BANARES ; JOSE L. GARCIA FIERRO ; CARLOS L. PIECK: "Propane Oxidative Dehydrogenation on V-Sb/ZrO2 Catalysts", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 122, no. 3-4, 26 February 2008 (2008-02-26), Ne , pages 252 - 258, XP019601330, ISSN: 1572-879X *

Also Published As

Publication number Publication date
CN114656320B (zh) 2024-06-18
CN114656320A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
JP4001234B2 (ja) 二酸化炭素酸化剤を用いたアルキル芳香族炭化水素の触媒脱水素化方法
US11110423B2 (en) Heat dissipating diluent in fixed bed reactors
KR100977358B1 (ko) 프로필렌의 하나 이상의 부분 산화 및(또는) 암모산화 생성물의 제조
US20080177117A1 (en) Integrated catalytic process for converting alkanes to alkenes and catalysts useful for same
JP5350897B2 (ja) アルカンをアルケンに変換するためのハイブリッド自己熱触媒方法およびそれに有用な触媒
WO2023173928A1 (zh) 一种氧化脱氢制备低碳烯烃的方法及氧化锑的用途
US20160122264A1 (en) Method for the oxidative dehydration of n-butenes into 1,3-butadien
KR20200036028A (ko) 올레핀 생성 방법
Dudek et al. Selective hydrogen combustion as an effective approach for intensified chemical production via the chemical looping strategy
TWI495626B (zh) Preparation of conjugated diolefins
US8546634B2 (en) Method for production of conjugated diolefin
CN111527060B (zh) 控制来自odh方法的二氧化碳输出
US20090036721A1 (en) Dehydrogenation of ethylbenzene and ethane using mixed metal oxide or sulfated zirconia catalysts to produce styrene
US10987655B2 (en) Molybdenum-vanadium bimetallic oxide catalyst and its application in chemical looping oxidative dehydrogenation of alkane
CN114787110A (zh) 从氧化脱氢过程中去除一氧化碳、氧气和乙炔
CN113710634A (zh) 通过催化部分氧化和裂化生产合成气和烯烃的集成间接热传递方法
US4292455A (en) Multi-stage dehydrogenation process for preparing indene
US20100029975A1 (en) Integrated process for preparing a carboxylic acid from an alkane
US3387054A (en) Conversion of c4, c5 hydrocarbons with elemental sulfur and metal sulfide catalyst
JPH10511367A (ja) 接触的酸化によりオレフィン性不飽和化合物殊にスチレンを製造する方法
TW202313530A (zh) 烷烴和烷基芳族烴之脫氫方法
CA3036625A1 (en) Thermal decomposition in chemical looping combustion
JPH04279538A (ja) フェノールの製造方法およびフェノールの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769439

Country of ref document: EP

Kind code of ref document: A1