CN109970443A - 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法 - Google Patents

一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN109970443A
CN109970443A CN201910338399.7A CN201910338399A CN109970443A CN 109970443 A CN109970443 A CN 109970443A CN 201910338399 A CN201910338399 A CN 201910338399A CN 109970443 A CN109970443 A CN 109970443A
Authority
CN
China
Prior art keywords
temperature
piezoelectric ceramics
rubidium
bismuth niobate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910338399.7A
Other languages
English (en)
Other versions
CN109970443B (zh
Inventor
晏海学
章曼
张斗
李振纲
李水林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Light Ding Technology Group Co Ltd
Original Assignee
Guangzhou Light Ding Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Light Ding Technology Group Co Ltd filed Critical Guangzhou Light Ding Technology Group Co Ltd
Priority to CN201910338399.7A priority Critical patent/CN109970443B/zh
Publication of CN109970443A publication Critical patent/CN109970443A/zh
Application granted granted Critical
Publication of CN109970443B publication Critical patent/CN109970443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种铷、铈共掺杂铌酸铋钙(CBNO)基高温压电陶瓷及其制备方法。该压电陶瓷的结构通式为Ca1‑x‑yRbxCeyBi2Nb2O9,0≤x≤0.5,0≤y≤0.5,其中x、y分别表示铷、铈两种元素的摩尔分数。本发明采用固相法制备A位不同含量Rb、Ce离子掺杂的铌酸铋钙陶瓷粉体材料;再经造粒、成形、排胶、烧结的工艺制备得到铷、铈共掺杂CBNO基高温压电陶瓷。该压电陶瓷具有优良的压电活性及较好的高温电阻率。利用这种材料组装成的各种压电传感器,可在高温条件下的测量、探测与自动控制等方面获得广泛应用。

Description

一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
技术领域
本发明涉及电子陶瓷和压电器件领域,具体涉及一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法。
背景技术
近年来,高速发展的航空航天、石油化工、冶金、能源等领域对各类震动传感器、声学换能器等高温环境作业的器件提出了更高的性能要求。目前,研究最为成熟、应用最成功的压电陶瓷为锆钛酸铅(PZT)基压电陶瓷材料,但商用的PZT基压电陶瓷的Tc一般在250-380℃,且由于热激活老化过程,其安全使用温度被限制在居里温度的1/2处,该类陶瓷已不能满足当前高新技术发展的要求。除具有较高的居里温度外,高温压电陶瓷还应具有以下性能:(1)在高温下具有较高的体电阻率;(2)高温下具有相对较高的压电性能(d33≥10pC/N);(3)优良的性能温度稳定性。含铋层状压电陶瓷,因具有居里温度高、低介电常数、低老化率、高电阻等优点,在高温压电领域有广泛的应用前景。
CaBi2Nb2O9(CBNO)是一种典型的含铋层状压电材料,其居里温度约为940℃,但因其自发极化被限制在a-b平面内,且其转向受到二维平面限制,其压电系数仅为3-5pC/N。为了解决这一问题,国内外科研工作者从制备工艺和成分上对CBNO进行了改性研究。制备工艺上,主要是对材料进行织构处理,即通过热锻、SPS烧结等方法使材料内部形成织构组织,提高其压电性能。但这种方法的缺点是,具有较高压电系数的平面,其电导率也显著增加,材料难以极化且漏电流大,给高温下的应用带来困难。化学成分改性是指对CBNO进行元素掺杂,以增加材料的自发极化强度。含铋层状压电材料的自发极化来源于氧八面体的旋转及B位原子沿平衡位置的震动。原子掺杂有望通过增加氧八面体的畸变来提高铋层状压电材料的铁电及压电性能。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法,该材料解决了现有CBNO材料居里温度高但压电性能低的问题,其兼具高的居里温度和良好压电性能,在高温电子设备中具有实际的应用价值。
为实现上述目的,本发明采取的技术方案如下:
一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷,其结构通式为Ca1-x-yRbxCeyBi2Nb2O9,0≤x≤0.5,0≤y≤0.5,其中x、y分别表示铷、铈两种元素的摩尔分数。
优选地,所述压电陶瓷的结构通式为Ca1-x-yRbxCeyBi2Nb2O9,0.001≤x≤0.02,0.001≤y≤0.02,其中x、y分别表示铷、铈两种元素的摩尔分数,该压电陶瓷兼具较高的居里温度、压电系数和高温电阻率。
本发明还提供了上述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将CaCO3、Rb2CO3、CeO2、Bi2O3和Nb2O5按照摩尔比称量,采用球磨法混合,得到混合粉末;
(2)将步骤(1)得到的混合粉末烘干、过筛,在800~1000℃进行高温合成;
(3)将步骤(2)合成后的粉末进行二次球磨;
(4)将步骤(3)中二次球磨后的粉末烘干、造粒、陈化、过筛后压制成陶瓷坯体;
(5)将步骤(4)中的陶瓷坯体进行排胶,在1000~1300℃进行高温烧结,制得压电陶瓷材料;
(6)将烧成的压电陶瓷材料进行打磨、抛光、被银电极后,对材料进行极化处理。
经Rb、Ce共掺杂的材料在1150℃左右相对密度可达95%以上,居里温度可达934℃,d33可达12.3pC/N,高温电阻率可达б(500℃)=3.6×106Ω·cm。可见,本发明制备的Rb、Ce共掺杂CBNO基高温压电陶瓷具有较高的压电系数,同时减小了介电损耗,高温电阻率较纯CBNO有较大提升。
作为所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法的优选实施方式,步骤(1)和步骤(3)中,球磨参数为:球磨介质为酒精,转速为100~400rmp,球磨时间为2~24h。
作为所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法的优选实施方式,步骤(2)中,高温合成的温度为800~1000℃,保温时间为2~4h。
作为所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法的优选实施方式,步骤(4)中,造粒时所用粘结剂为浓度为5~10wt%的聚乙烯醇;陈化时间不超过12h;压制成形的压力为100~200MPa。
作为所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法的优选实施方式,步骤(5)中,高温烧结的温度为1000~1300℃,烧结时间为1~5h。
作为所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法的优选实施方式,步骤(6)中,材料的极化处理在硅油浴中进行,极化温度为100~180℃,电场为10~20kV/cm,保压15~45min。
本发明还提供了上述铷、铈共掺杂铌酸铋钙基高温压电陶瓷材料的用途,所述压电陶瓷用于高温压电震动传感器。本发明制备的Rb、Ce共掺杂CBNO基高温压电陶瓷具有较高的压电系数,同时减小了介电损耗,高温电阻率较纯CBNO有较大提升,可应用于高温压电震动传感器。
与现有技术相比,本发明的有益效果为:
(1)本发明提供的CBNO基高温压电陶瓷兼具优良的压电性能及较高的居里温度,典型性能参数为:d33=12.3pC/N,Tc=934℃,б(500℃)=3.6×106Ω·cm;
(2)与纯CBNO压电陶瓷相比,Rb、Ce共掺杂CBNO基压电陶瓷的居里温度略有降低,压电系数提高了两倍以上,高温电阻率明显提高;
(3)本发明制备的高温压电陶瓷材料完全能满足压电陶瓷传感器、换能器、制动器等灵敏元件在高温环境领域应用的要求,在高温电子设备中具有实际应用价值。
附图说明
图1为实施例1的压电陶瓷的介电温谱。
图2为实施例1、2、3的压电陶瓷的退火曲线。
图3为实施例2的压电陶瓷的X射线衍射图谱。
图4为实施例2的压电陶瓷的电阻率随温度的变化曲线。
图5为实施例4的压电陶瓷的扫描电镜图片(SEM)。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。所述原料份数除特殊说明外,均为摩尔分数。
实施例1
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=y=0.005)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至900℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后在100~200MPa的压力下压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1100℃烧结2h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷材料的介电温谱如图1所示。本实施例的压电陶瓷的退火曲线如图2所示。本实施例的压电陶瓷样品测试所得的综合性能为:d33=7.8pC/N,Tc=934℃,б(500℃)=3.09×106Ω·cm。
实施例2
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=y=0.01)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至950℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1150℃烧结2.5h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷的退火曲线如图2所示。采用X射线衍射仪对本实施例的压电陶瓷圆片进行了物相分析,结果图3所示。本实施例的压电陶瓷材料的电阻率随温度的变化曲线如图4所示。本实施例的压电陶瓷样品测试所得的综合性能为:d33=12.3pC/N,Tc=930℃,б(500℃)=3.5×106Ω·cm。
实施例3
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=y=0.02)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至950℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1150℃烧结3h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷的退火曲线如图2所示。本实施例的压电陶瓷样品测试所得的综合性能为:d33=11.4pC/N,Tc=925℃,б(500℃)=1.6×106Ω·cm。
实施例4
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=y=0.075)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至900℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1150℃烧结4h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷样品测试所得的综合性能为:d33=3.1pC/N,Tc=891℃,б(500℃)=7.0×105Ω·cm。采用电子扫描显微镜观察了本实施例的Rb、Ce共掺杂CBNO基压电陶瓷圆片的表面形貌,如图5所示,其晶粒比较均匀,相对密度可达95%以上,表明本发明的陶瓷样品具有优异的烧结性能,能够获得致密的陶瓷样品。
实施例5
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=0,y=0.075)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至900℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1150℃烧结4h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷样品测试所得的综合性能为:d33=13.2pC/N,Tc=895℃,б(500℃)=3.2×105Ω·cm。
实施例6
本实施例的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,包括以下步骤:
(1)将原料按照通式Ca1-x-yRbxCeyBi2Nb2O9,(x=y=0.15)进行称量配料,以无水乙醇为分散介质,放于尼龙球磨罐中,用行星式球磨机以360rmp的转速球磨4h,得到混合粉末;
(2)将混合粉末在热台上烘烤12h,过筛后在箱式炉中连续升温至900℃,保温2h,得到铌酸铋钙基陶瓷粉体;
(3)将合成好的铌酸铋钙基陶瓷粉体在与步骤(1)相同的球磨条件下进行二次球磨;
(4)将二次球磨后的粉体烘干并加入5wt%PVA造粒,陈化5h,过筛后压成直径为13mm,厚度为1.5mm的陶瓷坯体;
(5)将陶瓷坯体置于箱式炉中进行排胶后于1150℃烧结4h,得到压电陶瓷材料;
(6)所得压电陶瓷材料经打磨、抛光、被银电极后,在160℃的硅油中以10kV/mm电场极化30min,得到所述压电陶瓷。
本实施例的压电陶瓷样品测试所得的综合性能为:d33=2pC/N,б(500℃)=2.8×105Ω·cm。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷,其特征在于,其结构通式为Ca1-x- yRbxCeyBi2Nb2O9,0≤x≤0.5,0≤y≤0.5,其中x、y分别表示铷、铈两种元素的摩尔分数。
2.根据权利要求1所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,包括以下步骤:
(1)将CaCO3、Rb2CO3、CeO2、Bi2O3和Nb2O5按照摩尔比称量,采用球磨法混合,得到混合粉末;
(2)将步骤(1)得到的混合粉末烘干、过筛,在800~1000℃进行高温合成;
(3)将步骤(2)合成后的粉末进行二次球磨;
(4)将步骤(3)中二次球磨后的粉末烘干,造粒、陈化、过筛后压制成陶瓷坯体;
(5)将步骤(4)中的陶瓷坯体进行排胶,在1000~1300℃进行高温烧结,制得压电陶瓷材料;
(6)将烧成的压电陶瓷材料进行打磨、抛光、被银电极后,对材料进行极化处理。
3.根据权利要求2所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,步骤(1)和步骤(3)中,球磨参数为:球磨介质为酒精,转速为100~400rmp,球磨时间为2~24h。
4.根据权利要求2所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,步骤(2)中,高温合成的温度为800~1000℃,保温时间为2~4h。
5.根据权利要求2所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,步骤(4)中,造粒时所用粘结剂为浓度为5~10wt%的聚乙烯醇;陈化时间不超过12h;压制成形的压力为100~200MPa。
6.根据权利要求2所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,步骤(5)中,高温烧结的温度为1000~1300℃,烧结时间为1~5h。
7.根据权利要求2所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的制备方法,其特征在于,步骤(6)中,材料的极化处理在硅油浴中进行,极化温度为100~180℃,电场为10~20kV/cm,保压15~45min。
8.如权利要求1所述的铷、铈共掺杂铌酸铋钙基高温压电陶瓷的用途,其特征在于,所述压电陶瓷材料用于高温压电震动传感器。
CN201910338399.7A 2019-04-25 2019-04-25 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法 Active CN109970443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910338399.7A CN109970443B (zh) 2019-04-25 2019-04-25 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910338399.7A CN109970443B (zh) 2019-04-25 2019-04-25 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109970443A true CN109970443A (zh) 2019-07-05
CN109970443B CN109970443B (zh) 2020-05-05

Family

ID=67086352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910338399.7A Active CN109970443B (zh) 2019-04-25 2019-04-25 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109970443B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807838A (zh) * 2020-07-18 2020-10-23 长沙麓桥科技有限公司 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN115433008A (zh) * 2021-06-04 2022-12-06 中国科学院上海硅酸盐研究所 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389894B1 (ko) * 1996-12-31 2004-05-17 삼성전자주식회사 씨.비.엔을 이용한 금속-강유전체-반도체 트랜지스터
CN101941841A (zh) * 2010-09-09 2011-01-12 同济大学 一种掺杂改性的铌酸铋钙陶瓷材料及其制备方法
CN101973764A (zh) * 2010-10-15 2011-02-16 同济大学 一种织构化的铌酸铋钙陶瓷材料及其制备方法
CN102260080A (zh) * 2010-05-31 2011-11-30 中国科学院上海硅酸盐研究所 一种改性CaBi2Nb2O9铋层状结构压电陶瓷材料及其制备方法
CN106518071A (zh) * 2016-09-27 2017-03-22 四川大学 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN107759219A (zh) * 2017-11-14 2018-03-06 广州光鼎科技有限公司 一种高居里温度无铅压电陶瓷及其制备方法
CN109503161A (zh) * 2018-11-30 2019-03-22 赵娟 一种钪钽共掺杂型铌酸铋铷压电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389894B1 (ko) * 1996-12-31 2004-05-17 삼성전자주식회사 씨.비.엔을 이용한 금속-강유전체-반도체 트랜지스터
CN102260080A (zh) * 2010-05-31 2011-11-30 中国科学院上海硅酸盐研究所 一种改性CaBi2Nb2O9铋层状结构压电陶瓷材料及其制备方法
CN101941841A (zh) * 2010-09-09 2011-01-12 同济大学 一种掺杂改性的铌酸铋钙陶瓷材料及其制备方法
CN101973764A (zh) * 2010-10-15 2011-02-16 同济大学 一种织构化的铌酸铋钙陶瓷材料及其制备方法
CN106518071A (zh) * 2016-09-27 2017-03-22 四川大学 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN107759219A (zh) * 2017-11-14 2018-03-06 广州光鼎科技有限公司 一种高居里温度无铅压电陶瓷及其制备方法
CN109503161A (zh) * 2018-11-30 2019-03-22 赵娟 一种钪钽共掺杂型铌酸铋铷压电陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOXIA TIAN ET AL.: "Microstructure,Dielectric,and Piezoelectric Properties of Ce-Modified CaBi2Nb2O9 Ceramics", 《FERROELECTRICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807838A (zh) * 2020-07-18 2020-10-23 长沙麓桥科技有限公司 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN111807838B (zh) * 2020-07-18 2023-05-02 怀仁市鸿达瓷业有限公司 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN115433008A (zh) * 2021-06-04 2022-12-06 中国科学院上海硅酸盐研究所 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN109970443B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN106554202B (zh) 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法
CN103650186B (zh) 压电材料
JP5714819B2 (ja) 圧電磁器組成物及びこれを用いた圧電素子
CN106631007B (zh) 一种高温、高性能、高稳定性的铋层状结构压电陶瓷材料及其应用
CN103636018A (zh) 压电材料
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN104876567A (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN111302797A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
Zhao et al. Ferroelectric, piezoelectric, and dielectric properties of BiScO3-PbTiO3-Pb (Cd1/3Nb2/3) O3 ternary high temperature piezoelectric ceramics
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN111908917A (zh) 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN101870583A (zh) 外加氧化锑的锆钛酸铅压电陶瓷
CN108546125A (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN109970443A (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
CN106518071B (zh) 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN110845230A (zh) 一种三元系铌钪酸铅-铌镁酸铅-钛酸铅陶瓷及其制备方法
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN115894020B (zh) 一种高压电系数的pmnzt基压电陶瓷及其制备方法和应用
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN114560698B (zh) 一种氧化物助烧结剂诱导织构增强铌酸钙铋高温压电陶瓷性能的方法
Alkoy et al. Processing and properties of textured potassium strontium niobate (KSr 2 Nb 5 O 15) ceramic fibers-effect of texture on the electrical properties
CN103708829A (zh) 一种反常压电各向异性无铅压电陶瓷及其织构化制备方法
CN110078508B (zh) 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant