CN108546125A - 一种面向高温环境应用的压电陶瓷材料及其制备方法 - Google Patents

一种面向高温环境应用的压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108546125A
CN108546125A CN201810410944.4A CN201810410944A CN108546125A CN 108546125 A CN108546125 A CN 108546125A CN 201810410944 A CN201810410944 A CN 201810410944A CN 108546125 A CN108546125 A CN 108546125A
Authority
CN
China
Prior art keywords
temperature
ceramic
sintering
ball milling
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810410944.4A
Other languages
English (en)
Other versions
CN108546125B (zh
Inventor
陈强
谢娟
钟建强
吴超
石钰琳
王丹
朱建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810410944.4A priority Critical patent/CN108546125B/zh
Publication of CN108546125A publication Critical patent/CN108546125A/zh
Application granted granted Critical
Publication of CN108546125B publication Critical patent/CN108546125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种面向高温环境应用的压电陶瓷材料及其制备方法,该陶瓷材料的化学配比式为:Ca0.8‑δSrδBi2Nb2‑x‑yTaxWyO9+z wt%Li2CO3+w wt%Bi2O3+q wt%M;其中,M为金属氧化物,式中0≤δ≤0.2,0<x≤1,0<y≤0.5,0<z<2,0<w<10,0<q≤5。本发明压电陶瓷材料兼具居里温度高、高温直流电阻率大、压电活性好、热稳定性好的优点。

Description

一种面向高温环境应用的压电陶瓷材料及其制备方法
技术领域
本发明涉及材料技术领域,尤其涉及一种面向高温环境应用的压电陶瓷材料及其制备方法。
背景技术
压电陶瓷因其具有正、逆压电效应性质,可被制成换能器、感应器、探测器,已经广泛应用于现代工业及国防的各个领域。随着现代科学技术及现代工业的发展,一些领域如冶金、航空航天、石油化工等,要求压电陶瓷能够在高温的恶劣环境中依然能够稳定工作,这就要求压电陶瓷具有高的居里温度、良好的高温电阻率及良好的温度稳定性特点。传统的锆钛酸铅(PZT)压电陶瓷虽然压电性能优良,但是其居里温度通常不超过380℃,因此难以在高温(T>250℃)环境应用。含铋层状结构压电陶瓷因具备高Tc、低介电常数、机电耦合系数各向异性明显、低老化率、高电阻率、温度稳定性良好、生产成本低廉且易于改性优点,在高温压电领域有着广阔的应用前景。
铌酸铋钙CaBi2Nb2O9(CBN)是一种典型的含铋层状结构压电材料,它是由类钙钛矿层(CaNb2O7)2-和(Bi2O2)2+层有规律的交替排列而成,居里温度较高,可达到940℃左右。然而它的压电性能很低,压电常数d33仅为5pC/N,压电常数d33随温度升高衰减明显,且介电损耗随温度上升快速增加,因此,纯CBN陶瓷难以在高温环境应用。为了改善CBN的压电活性,人们采用制备工艺的改进或离子掺杂的方式来改善其压电性能。比如,利用流延成型工艺,采用模板晶粒生长法制备的具有织构结构的CBN陶瓷,压电常数d33可提高(~17.8pC/N)。由于模板晶粒生长法制备的CBN陶瓷晶粒具有明显的取向生长,外加电场沿ab平面极化时可极大地使自发极化转向而获得高压电性。但与此同时,在ab平面内由于自发极化转向而产生的漏电流也较大,高温环境下这种情况更为严重。过大的漏电流会使得传感器得温度响应特性变差,不利于传感器稳定工作。虽然离子掺杂通常也能明显改善CBN陶瓷的压电性能(比如,Na+、Ce3+离子掺杂CBN陶瓷,d33~16pC/N),在一定程度上提高陶瓷的高温电阻率,比如,以K+、La3+离子掺杂CBN陶瓷,在600℃时,直流电阻率ρ~105Ω·cm,但通常其压电性能的温度稳定性较差,且在高温下电阻率随温度变化通常呈现温度每升高50℃,电阻率值降低一个数量级的特征,温度越高,电阻率降低程度越高。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种面向高温环境应用的压电陶瓷材料及其制备方法。
一种面向高温环境应用的压电陶瓷材料,
该陶瓷材料的化学配比式为:Ca0.8-δSrδBi2Nb2-x-yTaxWyO9+z wt%Li2CO3+w wt%Bi2O3+q wt%M;
其中,M为金属氧化物,式中0≤δ≤0.2,0<x≤1,0<y≤0.5,0<z<2,0<w<10,0<q≤5。
进一步地,如上所述的面向高温环境应用的压电陶瓷材料,所述金属氧化物为CeO2、ZnO、Al2O3、La1.2Ce0.8Ti2O7或LiAlSiO4
进一步地,如上所述的面向高温环境应用的压电陶瓷材料,包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算称取各原材料所需质量;
(2)将称量好的原材料进行球磨,球磨8-24h;
(3)将步骤(2)球磨后的浆料烘烤干,压紧后在原料表面扎出少量细孔后置于马弗炉中,以3℃/min升温速率升至850℃并保温4-6h后自然冷却至室温;
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨8-12h,使粉料混合均匀得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为10-12%的聚乙烯醇溶液造粒后压制成圆片,得到陶瓷生坯体;
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1150℃烧结2-6h即可得到所述陶瓷材料;
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆并烤干后,然后再于马弗炉中600℃-800℃烧结10-20min以在陶瓷表面得到导电金属银电极;
(8)将步骤(7)所得陶瓷置于180℃-220℃硅油中预热10min后分两段施加直流电场,第一段场强为5.0-7.0kV/mm并保压10-20min;第二段场强为9.0kV-12.0kV/mm并保压15-45min即可得到充分极化的压电陶瓷。
本发明提供的压电陶瓷材料,由于在Ca0.8-δSrδBi2Nb2-x-yTaxWyO9的基础上,添加了Li2CO3、Bi2O3以及金属氧化物M,从而提高了电学性能。其以金属氧化物M作为烧结助剂,低熔点的Li2CO3、Bi2O3作为液相烧结形成剂,促进陶瓷烧结得到致密的陶瓷体。其次,Li+、Bi3+离子进入晶格,使晶体结构的四方性增强,有利于铁电性能的提升。如图9所示,通过洛伦兹拟合纯CBN和样品1#在32.5°和33°之间的XRD图,清楚地表明本发明提供的经过改性的CBN高温压电陶瓷的晶格对称性偏离了它们的母相CBN。
附图说明
图1为实施例1、2、3中样品的x射线衍射图谱。
图2为实施例2中样品的扫描电镜图(SEM)。
图3为实施例1、2、3、4、5中具有不同组分的CBN基压电陶瓷材料的压电常数d33
图4为实施例1、2、3中样品的介温曲线。
图5为实施例1中样品的高温电阻率。
图6为实施例1、2中样品的退火曲线。
图7为实施例1中样品制成的高温压电振动传感器的灵敏度随温度的变化关系。
图8为实施例1中样品制成的高温压电振动传感器的频率响应特性;
图9为通过洛伦兹拟合纯CBN和样品1#在32.5°和33°之间的XRD图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为实现上述目的,本发明采用的技术方案是:
一种兼具居里温度高、高温直流电阻率大、压电活性好、热稳定性好,面向高温环境应用的CBN基高温压电陶瓷材料及其制备方法,其特征在于:所述陶瓷材料的化学配比式为Ca0.8-δSrδBi2Nb2-x-yTaxWyO9+z wt%Li2CO3+w wt%Bi2O3+q wt%M,其中M为金属氧化物,包括但不限于CeO2,ZnO,Al2O3,La1.2Ce0.8Ti2O7,LiAlSiO4等,0≤δ≤0.2,0<x≤1,0<y≤0.5,0<z<2,0<w<10,0<q≤5;所述陶瓷材料的制备方法是将烧结促进剂Li2CO3、Bi2O3和金属氧化物M添加到陶瓷中,低熔点的Li2CO3、Bi2O3作为液相烧结形成剂,金属氧化物作为烧结助剂,促进陶瓷烧结得到致密的陶瓷体。其具体制备方法包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算各原材料所需质量,以精密电子分析天平称取各原材料,原材料称量误差≤±0.5‰;
(2)将称量好的原材料倒入尼龙罐(不限于尼龙罐,也可是聚氨酯罐、玛瑙罐等),以钇稳定氧化锆球(不限于钇稳定氧化锆球,也可是玛瑙球、硬质合金球等)为球磨介质,无水乙醇为分散剂球磨8-24h;
(3)将步骤(2)球磨后的浆料烘烤干,倒入刚玉坩埚压紧并从上至坩埚底均匀扎出少量细孔,盖上坩埚盖(坩埚盖不能完全盖住坩埚口,需预留细缝)后置于马弗炉中,以3℃/min升温速率升至850℃并保温4-6h后自然冷却至室温;
具体地,预烧温度和保温时间是影响固相反应的主要因素,为了保证最终制备的压电材料的质量,需要使原料紧密接触,原子扩散更容易,能比较充分地反应。
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为10-12%的聚乙烯醇(PVA)溶液造粒后并采用干压成型方式压制成圆片,得到陶瓷生坯体;
具体地,造粒的作用是使黏合剂与粉料混合更加均匀,使样品的密度更加均匀。
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1150℃烧结2-6h即可得到所述陶瓷材料;
具体地,烧结过程的机理是原子的扩散运动,烧结就是将经过预烧成型的坯体加热到较高的温度以后经过一定时间的保温,发生密度提高、体积收缩、强度增加的现象,这个过程中主要发生了粉末颗粒的结合及气孔的连接、收缩和排除,会对陶瓷制品的性能产生影响,尤其是强度、韧性等与微观结构相关的性能。而添加黏合剂是为了增加可塑性,便于成型,但聚乙烯醇(PVA)具有较强的还原性,因此成型后需要将样品中的黏合剂排除掉,以免影响后续烧结材料的质量。
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆并烤干后,再置于马弗炉中在600℃-800℃烧结10-20min以在陶瓷表面得到导电金属银电极;
具体地,本发明采用烧渗银层的工艺,具体而言就是采用丝网印刷的方式将银浆均匀刷涂在陶瓷片上、下两个表面,并烘烤以去除有机溶剂,然后再放到马弗炉中烧银,不同的银浆配方对应不同的烧银温度和保温时间。烧银的作用是使银浆中的氧化银还原成银,并使银在高温时渗入陶瓷片表面以形成紧密结合银层。
(8)将步骤(7)所得陶瓷置于180℃-220℃硅油中预热10min后分两段施加直流电场,第一段场强为5.0-7.0kV/mm并保压10-20min;第二段场强为9.0kV-12.0kV/mm并保压15-45min即可得到充分极化的压电陶瓷;
具体地,因为铋层状结构压电陶瓷普遍极化困难,本发明采用了高温极化,极化温度为180℃-220℃。
(9)步骤(8)所得压电陶瓷静置24h后,以准静态d33测试仪测试其压电常数。
请参阅图1-图8,从图1-图8可以看出,通过本发明方法制备的压电陶瓷材料兼具居里温度高、高温直流电阻率大、压电活性好、热稳定性好的优点。
实施例1:
(1)固相法制备CBN基压电陶瓷粉体
根据Ca0.775Sr0.025Bi2Nb1.94Ta0.04W0.02O9+0.45wt%Li2CO3+1.99wt%Bi2O3+0.63wt%CeO2(M=CeO2,δ=0.025,x=0.04,y=0.02,z=0.45,w=1.99,q=0.63,编号1#),按化学计量比准确称取相应质量的粉末。称取的药品放于尼龙罐中,以无水乙醇为分散介质,用行星球磨机球24h,转速为200rpm,以烘灯或烘箱将浆料烘烤1-4h,再放入程序控温箱式炉中连续升温至850℃,保温4h,得到CBN基压电陶瓷粉体;
(2)二次球磨
将制得的CBN基压电陶瓷粉体放于尼龙罐中,以无水乙醇为分散介质,用行星球磨机球磨12h后,转速为200rpm,在烘灯下烘烤2h;
(3)造粒压片
在上述烘干的粉体中加入质量为12%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为150~200MPa下压制成直径9mm、厚度为1.0mm的CBN基压电陶瓷圆片;
(4)排胶与烧结
将上述圆片在温度850℃排胶,然后在温度1130℃烧结4h制成CBN基压电陶瓷圆片;
(5)被银极化
将上述烧结后获得的陶瓷圆片表面抛光至0.7mm后再刷上银浆,然后在温度650℃烧结15min制成样品。将样品放入180℃的硅油浴中进行极化,极化场强为10kV/mm,保压时间为20min。
实施例2:
(1)固相法制备CBN基压电陶瓷粉体
根据Ca0.79Sr0.01Bi2Nb1.94Ta0.04W0.02O9+0.45wt%Li2CO3+1.99wt%Bi2O3+0.3wt%Al2O3(M=Al2O3,δ=0.01,x=0.04,y=0.02,z=0.45,w=1.99,q=0.3,编号2#),按化学计量比准确称取相应质量的粉末。称取的药品放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球24h,转速为200rpm,以烘灯或烘箱将浆料烘烤1-4h,再放入程序控温箱式炉中连续升温至850℃,保温4h,得到CBN基压电陶瓷粉体;
(2)二次球磨
将制得的CBN基压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨12h后,转速为200rpm,在烘灯下烘烤2h;
(3)造粒压片
在上述烘干的粉体中加入质量为12%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为150~200MPa下压制成直径9mm、厚度为1.0mm的CBN基压电陶瓷圆片;
(4)排胶与烧结
将上述圆片在温度850℃排胶,然后在温度1130℃烧结2h制成CBN基压电陶瓷圆片;
(5)被银极化
将上述烧结后获得的陶瓷圆片表面抛光至0.7mm后再刷上银浆,然后在温度650℃烧结15min制成样品。将样品放入180℃的硅油浴中进行极化,极化场强为11kV/mm,保压时间为20min。
实施例3:
(1)固相法制备CBN基压电陶瓷粉体
根据Ca0.79Sr0.01Bi2Nb1.94Ta0.04W0.02O9+0.45wt%Li2CO3+1.99wt%Bi2O3+0.3wt%ZnO(M=ZnO,δ=0.01,x=0.04,y=0.02,z=0.45,w=1.99,q=0.3,编号3#),按化学计量比准确称取相应质量的粉末。称取的药品放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球24h,转速为200rpm,以烘灯或烘箱将浆料烘烤1-4h,再放入程序控温箱式炉中连续升温至850℃,保温4h,得到CBN基压电陶瓷粉体;
(2)二次球磨
将制得的CBN基压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨12h后,转速为200rpm,在烘灯下烘烤2h;
(3)造粒压片
在上述烘干的粉体中加入质量为12%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为150~200MPa下压制成直径9mm、厚度为1.0mm的CBN基压电陶瓷圆片;
(4)排胶与烧结
将上述圆片在温度850℃排胶,然后在温度1130℃烧结2h制成CBN基压电陶瓷圆片;
(5)被银极化
将上述烧结后获得的陶瓷圆片表面抛光至0.7mm后再刷上银浆,然后在温度650℃烧结15min制成样品。将样品放入180℃的硅油浴中进行极化,极化场强为10kV/mm,保压时间为20min。
实施例4:
(1)固相法制备CBN基压电陶瓷粉体
根据Ca0.79Sr0.01Bi2Nb1.94Ta0.04W0.02O9+0.45wt%Li2CO3+1.99wt%Bi2O3+1wt%La1.2Ce0.8Ti2O7(M=La1.2Ce0.8Ti2O7,δ=0.01,x=0.04,y=0.02,z=0.45,w=1.99,q=1,编号4#),按化学计量比准确称取相应质量的粉末。称取的药品放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球24h,转速为200rpm,以烘灯或烘箱将浆料烘烤1-4h,再放入程序控温箱式炉中连续升温至850℃,保温4h,得到CBN基压电陶瓷粉体;
(2)二次球磨
将制得的CBN基压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨12h后,转速为200rpm,在烘灯下烘烤2h;
(3)造粒压片
在上述烘干的粉体中加入质量为12%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为150~200MPa下压制成直径9mm、厚度为1.0mm的CBN基压电陶瓷圆片;
(4)排胶与烧结
将上述圆片在温度850℃排胶,然后在温度1140℃烧结4h制成CBN基压电陶瓷圆片;
(5)被银极化
将上述烧结后获得的陶瓷圆片表面抛光至0.7mm后再刷上银浆,然后在温度650℃烧结15min制成样品。将样品放入180℃的硅油浴中进行极化,极化场强为10kV/mm,保压时间为20min。
实施例5:
(1)固相法制备CBN基压电陶瓷粉体
根据Ca0.775Sr0.025Bi2Nb1.94Ta0.04W0.02O9+0.45wt%Li2CO3+1.99wt%Bi2O3+3wt%LiAlSiO4(M=LiAlSiO4,δ=0.025,x=0.04,y=0.02,z=0.45,w=1.99,q=3,编号5#),按化学计量比准确称取相应质量的粉末。称取的药品放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球24h,转速为200rpm,以烘灯或烘箱将浆料烘烤1-4h,再放入程序控温箱式炉中连续升温至850℃,保温4h,得到CBN基压电陶瓷粉体;
(2)二次球磨
将制得的CBN基压电陶瓷粉体放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨12h后,转速为200rpm,在烘灯下烘烤2h;
(3)造粒压片
在上述烘干的粉体中加入质量为12%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为150~200MPa下压制成直径9mm、厚度为1.0mm的CBN基压电陶瓷圆片;
(4)排胶与烧结
将上述圆片在温度850℃排胶,然后在温度1130℃烧结4h制成CBN基压电陶瓷圆片;
(5)被银极化
将上述烧结后获得的陶瓷圆片表面抛光至0.7mm后再刷上银浆,然后在温度650℃烧结15min制成样品。将样品放入180℃的硅油浴中进行极化,极化场强为5kV/mm,保压时间为15min。
表1.各实施例所得陶瓷的压电常数d33、650℃时的直流电阻率ρ650℃、居里温度TC和退极化最高温度(急剧降低点)Td
从表1可以看出,样品实施例较纯CBN陶瓷的压电性(d33~6pC/N)有大幅度提高,在650℃时,直流电阻率均大于1.0×105Ω·cm,且均具有高的居里温度(TC>900℃)和退极化温度(Td>870℃)。样品实施例中,实施例1的压电系数最高,d33=17.4pC/N。实施例3的居里温度最高,TC=932℃。热退极化可以确定压电陶瓷应用的上限温度,当退火温度接近875℃时,d33降低的百分比小于10%,表明样品有良好的热稳定性。热稳定性增强主要是由于采用本发明方案可使陶瓷晶格向四方晶格畸变,从而减少陶瓷体内热不稳定的非180°铁电畴,进而增强其热稳定性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (3)

1.一种面向高温环境应用的压电陶瓷材料,其特征在于,
该陶瓷材料的化学配比式为:Ca0.8-δSrδBi2Nb2-x-yTaxWyO9+z wt%Li2CO3+w wt%Bi2O3+qwt%M;
其中,M为金属氧化物,式中0≤δ≤0.2,0<x≤1,0<y≤0.5,0<z<2,0<w<10,0<q≤5。
2.根据权利要求1所述的面向高温环境应用的压电陶瓷材料,其特征在于,所述金属氧化物为CeO2、ZnO、Al2O3、La1.2Ce0.8Ti2O7或LiAlSiO4
3.根据权利要求1所述的面向高温环境应用的压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按照所述陶瓷材料的化学配比式,计算称取各原材料所需质量;
(2)将称量好的原材料进行球磨,球磨8-24h;
(3)将步骤(2)球磨后的浆料烘烤干,压紧后在原料表面扎出少量细孔后置于马弗炉中,以3℃/min升温速率升至850℃并保温4-6h后自然冷却至室温;
(4)将步骤(3)预烧后的产物按照步骤(2)再次球磨8-12h,使粉料混合均匀得到陶瓷前驱粉体;
(5)向步骤(4)所得前驱粉体加入质量为10-12%的聚乙烯醇溶液造粒后压制成圆片,得到陶瓷生坯体;
(6)将步骤(5)所得陶瓷生坯体置于马弗炉排除陶瓷生坯体中的PVA后并在1080℃-1150℃烧结2-6h即可得到所述陶瓷材料;
(7)将步骤(6)得到的陶瓷材料上下表面抛光后涂覆银浆并烤干后,然后再于马弗炉中600℃-800℃烧结10-20min以在陶瓷表面得到导电金属银电极;
(8)将步骤(7)所得陶瓷置于180℃-220℃硅油中预热10min后分两段施加直流电场,第一段场强为5.0-7.0kV/mm并保压10-20min;第二段场强为9.0kV-12.0kV/mm并保压15-45min即可得到充分极化的压电陶瓷。
CN201810410944.4A 2018-05-02 2018-05-02 一种面向高温环境应用的压电陶瓷材料及其制备方法 Active CN108546125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810410944.4A CN108546125B (zh) 2018-05-02 2018-05-02 一种面向高温环境应用的压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810410944.4A CN108546125B (zh) 2018-05-02 2018-05-02 一种面向高温环境应用的压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108546125A true CN108546125A (zh) 2018-09-18
CN108546125B CN108546125B (zh) 2020-05-22

Family

ID=63513272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810410944.4A Active CN108546125B (zh) 2018-05-02 2018-05-02 一种面向高温环境应用的压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108546125B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250440A (zh) * 2020-10-23 2021-01-22 陕西天璇涂层科技有限公司 一种固相法制备低热导高温热障陶瓷CaWTa2O9的方法
CN112939613A (zh) * 2021-04-02 2021-06-11 浙江清华长三角研究院 一种用于482℃高温环境中的多层压电陶瓷的制备方法
CN115056042A (zh) * 2022-05-30 2022-09-16 西北工业大学 一种降低全无机CsPbBr3钙钛矿器件漏电流的表面处理方法
CN116102345A (zh) * 2023-01-04 2023-05-12 湖北大学 铋层状压电陶瓷材料及其制备方法
CN117326868A (zh) * 2023-12-02 2024-01-02 山东利恩斯智能科技有限公司 陶瓷材料及其制备方法和在压电中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335577A (ja) * 2002-05-17 2003-11-25 Tdk Corp 圧電デバイス
CN105541413A (zh) * 2016-02-03 2016-05-04 陕西师范大学 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335577A (ja) * 2002-05-17 2003-11-25 Tdk Corp 圧電デバイス
CN105541413A (zh) * 2016-02-03 2016-05-04 陕西师范大学 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEQIONG XIN等: "Effect of B-site dopants Nb,Ta and W on microstructure and electrical properties of Ca0.85(Li,Ce)0.075Bi4Ti4O15-0.01MnCO3 piezoelectric ceramics", 《J MATER SCI: MATER ELECTRON》 *
YADAN WANG等: "Piezoelectric properties and thermal stability of Ca0.92(Li,Ce)0.04Bi2Nb2-xWxO9 high-temperature ceramics", 《APPL. PHYS. A》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250440A (zh) * 2020-10-23 2021-01-22 陕西天璇涂层科技有限公司 一种固相法制备低热导高温热障陶瓷CaWTa2O9的方法
CN112939613A (zh) * 2021-04-02 2021-06-11 浙江清华长三角研究院 一种用于482℃高温环境中的多层压电陶瓷的制备方法
CN115056042A (zh) * 2022-05-30 2022-09-16 西北工业大学 一种降低全无机CsPbBr3钙钛矿器件漏电流的表面处理方法
CN115056042B (zh) * 2022-05-30 2023-11-14 西北工业大学 一种降低全无机CsPbBr3钙钛矿器件漏电流的表面处理方法
CN116102345A (zh) * 2023-01-04 2023-05-12 湖北大学 铋层状压电陶瓷材料及其制备方法
CN116102345B (zh) * 2023-01-04 2024-03-19 湖北大学 铋层状压电陶瓷材料及其制备方法
CN117326868A (zh) * 2023-12-02 2024-01-02 山东利恩斯智能科技有限公司 陶瓷材料及其制备方法和在压电中的应用
CN117326868B (zh) * 2023-12-02 2024-02-13 山东利恩斯智能科技有限公司 陶瓷材料及其制备方法和在压电中的应用

Also Published As

Publication number Publication date
CN108546125B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN108546125A (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
Yang et al. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 ceramics
Bhattacharya et al. Susceptor-assisted enhanced microwave processing of ceramics-a review
Matsubara et al. Processing and piezoelectric properties of lead‐free (K, Na)(Nb, Ta) O3 ceramics
Zhou et al. Energy storage properties and electrical behavior of lead-free (1− x) Ba 0.04 Bi 0.48 Na 0.48 TiO 3–x SrZrO 3 ceramics
Zhou et al. Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO 3–BaTiO 3 piezoelectric ceramics
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
Cen et al. Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO 3–BaTiO 3 high-temperature ceramics
Yang et al. Dielectric, ferroelectric and piezoelectric properties of Bi0. 5Na0. 5TiO3–(Ba0. 7Ca0. 3) TiO3 ceramics at morphotropic phase boundary composition
CN109553413B (zh) 一种织构化压电陶瓷及其制备方法和用途
Berksoy-Yavuz et al. Electrical properties and impedance spectroscopy of crystallographically textured 0.675 [Pb (Mg 1/3 Nb 2/3) O 3]-0.325 [PbTiO 3] ceramics
Cen et al. Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0. 99Al0. 01O3–BaTi1− xZrxO3 ceramics
Ning et al. High thermally stable BiFeO 3–PbTiO 3–BaTiO 3 ceramics with improved ferroelectric properties
Shiratsuyu et al. Piezoelectric Characterization of Low-Temperature-Fired Pb (Zr, Ti) O3–Pb (Ni, Nb) O3 Ceramics
Diao et al. Effect of samarium substitution on the dielectric and ferroelectric properties of BaBi4− xSmxTi4O15 ceramics
CN106518071B (zh) 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
Lee et al. Dielectric and piezoelectric properties of (1− x)(Bi, Na) TiO3–x (Bi, K) TiO3 lead-free ceramics for piezoelectric energy harvesters
Takeda et al. Fabrication and operation limit of lead-free PTCR ceramics using BaTiO 3–(Bi 1/2 Na 1/2) TiO 3 system
Xu et al. Effect of sintering temperature on the phase structure and electrical properties of Al–N co-doped BaTiO 3 piezoceramics
Mahesh et al. Enhanced piezoelectric properties and tunability of lead-free ceramics prepared by high-energy ball milling
Ding et al. Phase structure and electrical properties of 0.8 Pb (Mg1/3Nb2/3) O3–0.2 PbTiO3 relaxor ferroelectric ceramics prepared by the reaction‐sintering method
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
KR102385814B1 (ko) 우수한 기계적 품질 계수 및 높은 상전이 온도를 가지는 무연 압전 세라믹스 및 그 제조방법
KR102380196B1 (ko) 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant