CN115385675B - 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法 - Google Patents

一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115385675B
CN115385675B CN202210965118.2A CN202210965118A CN115385675B CN 115385675 B CN115385675 B CN 115385675B CN 202210965118 A CN202210965118 A CN 202210965118A CN 115385675 B CN115385675 B CN 115385675B
Authority
CN
China
Prior art keywords
energy storage
ceramic material
temperature
curie temperature
bismuth ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210965118.2A
Other languages
English (en)
Other versions
CN115385675A (zh
Inventor
杨祖培
何妍
彭战辉
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202210965118.2A priority Critical patent/CN115385675B/zh
Publication of CN115385675A publication Critical patent/CN115385675A/zh
Application granted granted Critical
Publication of CN115385675B publication Critical patent/CN115385675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法,该陶瓷材料的通式为(0.67‑x)BiFeO3‑0.33BaTiO3‑xSr(Ga0.5Ta0.5)O3,其中x的取值为0.06~0.12,其通过高温传统固相法制备,制备方法简单、成本低廉、重复性好、成品率高。本发明陶瓷介电常数大、居里温度高,介电常数2195~10194、居里温度395~424℃,在250~450℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有良好的铁电储能特性,最大极化强度可达23.3~33.7μC/cm2。在x=0.1时,有效储能密度可达1.603J/cm3,储能效率为81%,兼具良好的储能特性。

Description

一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料 及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法。
背景技术
随着现代科学技术的迅猛发展,电子功能陶瓷的研究越来越深入,应用也越来越广泛。高温压铁电材料被广泛应用于航空航天、地质勘探、石油化工、汽车发动机等许多要求工作于特殊环境下的高新技术领域,如微位移驱动器、汽车电喷、振动传感器、加速度传感器等。由于其应用领域工作环境的复杂化,随着航空航天、地质勘探等工业的飞速发展,需要的电子器件甚至要求工作在400℃以上,因此有必要寻求一种居里温度高,并且性能优异的功能材料。
目前,对无铅压铁电陶瓷的研究主要集中在四类体系:钛酸钡基(BaTiO3)、铌酸钾钠基((K1-xNax)NbO3)、钛酸铋钠基((Bi1-xNax)TiO3)和铁酸铋基(BiFeO3)陶瓷。通过改善制备工艺、多体系复合等手段,部分体系的电学性能已获得了很大程度的提升,甚至已经超越了传统铅基陶瓷。但是,受居里温度和退极化温度限制,陶瓷的温度稳定性较差,如在室温到150℃,钛酸铋钠基压电陶瓷的电致应变衰减达到近50%,远低于PZT压电陶瓷的10%左右(甚至更小),严重制约了其实际应用。钛酸钡基陶瓷通常居里温度小于120℃,更是限制了其使用上限及应用范围。BiFeO3具有高的居里温度(Tc=825℃)、反铁磁奈尔温度370℃,及大的电致应变(~0.4%),同时,BiFeO3具有非常大的极化能力(Pmax~100μC/cm2),为高性能储能材料提供了巨大的潜力。然而,制备纯BiFeO3很难,性能也很难达到预期。这是因为氧化铋在高温烧结过程中(大于830℃)的挥发引起氧空位,同时铁离子的价态波动,导致存在一些杂质相,如Bi25FeO40、Bi2Fe4O9,与BF本身相比从热力学角度出发,在室温下更稳定。杂质第二相的存在导致陶瓷漏电流大、电阻低、电绝缘性差,导致击穿场强低、铁电性能差。在过去的几年中,研究人员就如何改善BiFeO3系统的电性能进行了一系列研究,包括改进的合成技术,如化学浸出、溶胶-凝胶方法和取代方法,包括A位点替换方法(如La3+,Ca2+,Sm3 +)、B位取代方法(如Mn4+,Nb5+)和其他ABO3型钙钛矿取代方法(如BaTiO3,CaTiO3,NaNbO3)。其中,BaTiO3是一种强介电化合物材料,具有高介电常数和低介电损耗,具有良好的铁电和压电潜力。与其它无铅固溶体相比,BiFeO3-BaTiO3(BF-BT)固溶体的居里温度更高、铁电-顺电相变之前没有结构相变,预示着其介电、压电性能具有良好的温度稳定性,能在宽温度范围内应用,是目前国际领域的研究重点。
发明内容
本发明基于满足在高温环境下具备一定储能性质的无铅铁电陶瓷材料提出的更高要求,提供一种居里温度高、在一定范围内的高温下温度稳定性好、兼具良好储能特性的铁酸铋基无铅铁电陶瓷材料,并为其提供一种工艺简单、重复性好、成本低廉的制备方法。
针对上述目的,本发明提供的铁酸铋基无铅铁电陶瓷材料的通式为(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3,其中x的取值为0.06~0.12;陶瓷材料的介电常数为2195~10194,居里温度为395~424℃,最大极化强度为23.3~33.7μC/cm2
上述铁酸铋基无铅铁电陶瓷材料的通式中,优选x的取值为0.1。当x=0.1时,所述陶瓷材料的介电常数为10194,居里温度为424℃,最大极化强度为33.7μC/cm2,有效储能密度为1.603J/cm3,储能效率为81%。
本发明铁酸铋基无铅铁电陶瓷材料的制备方法由下述步骤组成:
1、配料
按照(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.5%以上的Bi2O3、Fe2O3、BaCO3、TiO2、SrCO3、Ga2O3、Ta2O5,混合均匀后装入尼龙罐中,然后以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~90℃下干燥12~24小时,用研钵研磨,得到原料混合物。
2、预烧
将步骤1的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,在850~950℃预烧2~4小时,然后自然冷却至室温,用研钵研磨,得到(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3预烧粉。
3、二次球磨
将步骤2的(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3预烧粉装入尼龙罐中,充分混合球磨20~24小时,在60~90℃下干燥12~24小时,用研钵研磨,过180目筛,得到(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3粉体。
4、压片
将步骤3的(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3粉体用粉末压片机压制成圆柱状坯件,然后在150~200MPa的压力下进行冷等静压5~7分钟。
5、无压密闭烧结
将步骤4冷等静压后的圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,1050~1090℃恒温烧结3~5小时,随炉自然冷却至室温,制备成铁酸铋基无铅铁电陶瓷材料。
上述步骤3中,优选预烧的升温速率为2~5℃/分钟。
上述步骤5中,优选1070℃恒温烧结5小时。
上述步骤5中,进一步优选烧结的升温速率为2~5℃/分钟。
本发明的有益效果如下:
1、本发明通过向(0.67-x)BiFeO3-0.33BaTiO3基体中引入第三组元Sr(Ga0.5Ta0.5)O3,达到了诱导极化、有效降低其剩余极化强度等作用效果,在具有大介电常数、高居里温度下,获得了具有良好储能密度及储能效率高的电介质陶瓷材料。
2、本发明陶瓷材料通过高温传统固相法制备,制备方法简单、成本低廉、重复性好、成品率高。所制备的陶瓷介电常数大、居里温度高,介电常数为2195~10194、居里温度为395~424℃,在250~450℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有良好的铁电储能特性,最大极化强度可达23.3~33.7μC/cm2,有效储能密度最高可达1.603J/cm3,储能效率为81%,兼具良好的储能特性。
3、本发明在陶瓷材料的制备过程中,使用了先进的冷等静压成型技术,坯体密度高、减少了缺陷,这为陶瓷在高温条件下的稳定性和优异的电学性能提供了保障,实用性强、易于生产,能兼顾电学性能和储能性能,是一种性能优良的无铅铁电陶瓷,对环境友好。
附图说明
图1是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料的XRD图。
图2是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料在10kHz下的介电常数随温度的变化关系图。
图3是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料在10kHz下的介电常数及介电常数的变化图。
图4是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料的单极电滞回线图。
图5是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料的击穿场强、极化强度的变化图
图6是实施例1~4制备的铁酸铋基无铅铁电陶瓷材料的极化强度差、储能密度、储能效率的变化图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.99%以上的Bi2O3 9.92134g、Ga2O3 0.18693g、Ta2O5 0.44069g,纯度为99.95%以上的BaCO3 4.33147g、SrCO3 0.58916g,纯度为99.9%以上的Fe2O3 3.24117g,纯度为99.5%以上的TiO2 1.76168g,混合均匀后装入尼龙罐中,然后以锆球为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离锆球,在60℃下干燥24小时,用研钵研磨,得到原料混合物。
2、预烧
将步骤1的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,以3℃/分钟的升温速率升温至900℃,恒温预烧3小时,然后自然冷却至室温,用研钵研磨,得到0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3预烧粉。
3、二次球磨
将步骤2的0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3预烧粉装入尼龙罐中,充分混合球磨24小时,在60℃下干燥24小时,用研钵研磨,过180目筛,得到0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3粉体。
4、压片
将步骤3的0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3粉体用粉末压片机压制成直径为11.5mm、厚度为0.8mm的圆柱状坯件,然后在180MPa的压力下进行冷等静压5分钟。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,以3℃/分钟的升温速率升温至1070℃,恒温烧结5小时,随炉自然冷却至室温,制备成分子式为0.61BiFeO3-0.33BaTiO3-0.06Sr(Ga0.5Ta0.5)O3的铁酸铋基无铅铁电陶瓷材料。
实施例2
本实施例的步骤1中,按照0.59BiFeO3-0.33BaTiO3-0.08Sr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.99%以上的Bi2O3 9.60108g、Ga2O3 0.24938g、Ta2O5 0.5879g,纯度为99.95%以上的BaCO3 4.33374g、SrCO3 0.78596g,纯度为99.9%以上的Fe2O3 3.13654g,纯度为99.5%以上的TiO2 1.7626g,其他步骤与实施例1相同,制备成分子式为0.59BiFeO3-0.33BaTiO3-0.08Sr(Ga0.5Ta0.5)O3的铁酸铋基无铅铁电陶瓷材料。
实施例3
本实施例的步骤1中,按照0.57BiFeO3-0.33BaTiO3-0.1Sr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.99%以上的Bi2O3 9.280480g、Ga2O3 0.311882g、Ta2O5 0.73526g,纯度为99.95%以上的BaCO3 4.33601g、SrCO3 0.98296g,纯度为99.9%以上的Fe2O33.03181g,纯度为99.5%以上的TiO2 1.76353g,其他步骤与实施例1相同,制备成分子式为0.57BiFeO3-0.33BaTiO3-0.1Sr(Ga0.5Ta0.5)O3的铁酸铋基无铅铁电陶瓷材料。
实施例4
本实施例的步骤1中,按照0.55BiFeO3-0.33BaTiO3-0.12Sr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.99%以上的Bi2O3 8.95955g、Ga2O3 0.37445g、Ta2O5 0.88278g,纯度为99.95%以上的BaCO3 4.33829g、SrCO3 1.18017g,纯度为99.9%以上的Fe2O3 2.92696g,纯度为99.5%以上的TiO2 1.76445g,其他步骤与实施例1相同,制备成分子式为0.55BiFeO3-0.33BaTiO3-0.12Sr(Ga0.5Ta0.5)O3的铁酸铋基无铅铁电陶瓷材料。
将上述实施例1~4制备的陶瓷材料选取其中一个表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.15mm厚,用酒精超声并搽拭干净后研磨成粉,采用日本理学MiniFlex600型衍射仪进行XRD测试,安捷伦科技有限公司生产的4294A、E4980A介电分析仪、美国Radiant公司生产的铁电测试仪对其结构和性能进行表征测试、美国Radiant公司生产的铁电测试仪对其结构和性能进行表征测试,结果见图1~6。
由图1可见,所有组分的陶瓷均形成了均匀的钙钛矿结构,随着固溶度的增加,有可被检测到的Bi-Ga氧化物第二相。由图2和图3是实施例1~4制备的陶瓷材料在10kHz下的介电常数随温度的变化关系图介电常数及介电常数的变化图,测试温度范围为从室温到500℃。由图可见,陶瓷材料的介电常数为2195~10194、居里温度为395~424℃。在250~450℃范围内,介电常数随温度变化小,具有优异的温度稳定性,随着Sr(Ga0.5Ta0.5)O3掺杂含量的增加,介电常数降低,居里峰逐渐宽化,说明随着第三元Sr(Ga0.5Ta0.5)O3掺杂量的增加,生成了极性纳米微区,陶瓷材料弛豫性增强,再次证实了实施例1~4陶瓷材料在高温领域具有应用的潜力。
图4是实施例1~4制备的陶瓷材料的单极电滞回线图,随着第三组元Sr(Ga0.5Ta0.5)O3掺杂量的增加,电滞回线由刚开始的圆形变为具有驰豫特性的细长型电滞回线,说明具有较好的储能性能。图5是实施例1~4制备的陶瓷材料的击穿场强、极化强度的变化图,随着第三元Sr(Ga0.5Ta0.5)O3掺杂量的增加,陶瓷材料的最大极化强度和剩余极化强度下降,但仍保持20以上的大极化强度,在x=0.1时有最大的击穿电场,储能特性最佳。
图6是实施例1~4制备的陶瓷材料的极化强度差、储能密度、储能效率的变化图,由图可见,陶瓷材料同时具有良好的铁电储能特性,最大极化强度可达23.3~33.7μC/cm2。在x=0.1时,有效储能密度可达1.603J/cm3,储能效率为81%,兼具良好的储能特性。
综合上述结果可见,本发明陶瓷材料在一定条件下兼具优异的电学性能和储能性,有望进一步扩宽电子功能材料的应用范围。

Claims (8)

1.一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料,其特征在于:所述陶瓷材料的通式为(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3,其中x的取值为0.06~0.12。
2.根据权利要求1所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料,其特征在于:所述陶瓷材料的介电常数为2195~10194,居里温度为395~424℃,最大极化强度为23.3~33.7μC/cm2
3.根据权利要求1所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料,其特征在于:所述x的取值为0.1。
4.根据权利要求3所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料,其特征在于:所述陶瓷材料的介电常数为10194,居里温度为424℃,最大极化强度为33.7μC/cm2,有效储能密度为1.603J/cm3,储能效率为81%。
5.一种权利要求1所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3的化学计量,分别称取纯度为99.5%以上的Bi2O3、Fe2O3、BaCO3、TiO2、SrCO3、Ga2O3、Ta2O5,混合均匀后装入尼龙罐中,然后以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~90℃下干燥12~24小时,用研钵研磨,得到原料混合物;
(2)预烧
将步骤(1)的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,在850~950℃预烧2~4小时,然后自然冷却至室温,用研钵研磨,得到(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3预烧粉;
(3)二次球磨
将步骤(2)的(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3预烧粉装入尼龙罐中,充分混合球磨20~24小时,在60~90℃下干燥12~24小时,用研钵研磨,过180目筛,得到(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3粉体;
(4)压片
将步骤(3)的(0.67-x)BiFeO3-0.33BaTiO3-xSr(Ga0.5Ta0.5)O3粉体用粉末压片机压制成圆柱状坯件,然后在150~200MPa的压力下进行冷等静压5~7分钟;
(5)无压密闭烧结
将步骤(4)冷等静压后的圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,1050~1090℃恒温烧结3~5小时,随炉自然冷却至室温,制备成铁酸铋基无铅铁电陶瓷材料。
6.根据权利要求5所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料的制备方法,其特征在于:步骤(2)中,预烧的升温速率为2~5℃/分钟。
7.根据权利要求5所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料的制备方法,其特征在于:步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,1070℃恒温烧结5小时,随炉自然冷却至室温。
8.根据权利要求5或7所述的高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料的制备方法,其特征在于:步骤(5)中,烧结的升温速率为2~5℃/分钟。
CN202210965118.2A 2022-08-12 2022-08-12 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法 Active CN115385675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210965118.2A CN115385675B (zh) 2022-08-12 2022-08-12 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210965118.2A CN115385675B (zh) 2022-08-12 2022-08-12 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115385675A CN115385675A (zh) 2022-11-25
CN115385675B true CN115385675B (zh) 2023-03-24

Family

ID=84118887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210965118.2A Active CN115385675B (zh) 2022-08-12 2022-08-12 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115385675B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117735974B (zh) * 2024-02-20 2024-04-30 成都大学 一种无铅高熵铁电陶瓷材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017950A1 (ja) * 2005-08-11 2007-02-15 Hitachi Metals, Ltd. 電子デバイス用誘電体磁器組成物
CN102424572B (zh) * 2011-09-02 2013-07-10 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN110511018B (zh) * 2019-08-13 2022-02-01 华南师范大学 一种高储能密度陶瓷电容器电介质及其制备方法
CN114180950A (zh) * 2021-12-06 2022-03-15 北京科技大学 一种两步烧结制备铁酸铋-钛酸钡(BiFeO3-BaTiO3)陶瓷的方法

Also Published As

Publication number Publication date
CN115385675A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN102249659B (zh) 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
Zheng et al. Enhanced piezoelectricity in (1− x) Bi 1.05 Fe 1− y A y O 3–x BaTiO 3 lead-free ceramics: site engineering and wide phase boundary region
CN101024574B (zh) 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN101462875A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
WO2006032872A1 (en) Piezoelectric materials
Wang et al. Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na) NbO 3-based ceramics with different additives
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN103102154A (zh) Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
Wang et al. Pb (In1/2Nb1/2) O3-PbZrO3-PbTiO3 ternary ceramics with temperature-insensitive and superior piezoelectric property
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN103172374A (zh) 压电陶瓷和压电元件
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
CN111333413B (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
GB2550887A (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN103951405A (zh) 三元高居里温度压电陶瓷材料及其制备方法
KR102540032B1 (ko) 압전 세라믹 적층체
KR20210111525A (ko) 우수한 기계적 품질 계수 및 높은 상전이 온도를 가지는 무연 압전 세라믹스 및 그 제조방법
CN114292102B (zh) 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN114276134B (zh) 一种具有高温度稳定电致应变的无铅压电陶瓷材料及其制备方法
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant