CN109923222B - 取向性电磁钢板的制造方法 - Google Patents

取向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN109923222B
CN109923222B CN201780065933.0A CN201780065933A CN109923222B CN 109923222 B CN109923222 B CN 109923222B CN 201780065933 A CN201780065933 A CN 201780065933A CN 109923222 B CN109923222 B CN 109923222B
Authority
CN
China
Prior art keywords
slab
steel sheet
heating
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780065933.0A
Other languages
English (en)
Other versions
CN109923222A (zh
Inventor
竹中雅纪
今村猛
江桥有衣子
山口广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN109923222A publication Critical patent/CN109923222A/zh
Application granted granted Critical
Publication of CN109923222B publication Critical patent/CN109923222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明中对于不使用抑制剂形成成分而由薄板坯制造的取向性电磁钢板,可以稳定地得到优异的磁特性。一种取向性电磁钢板的制造方法,将具有如下成分组成的钢水供于连续铸造而形成厚度25mm~100mm的板坯,将该板坯加热后实施热轧而制成热轧钢板,其中,在加热上述板坯的工序中,温度为1000℃~1300℃且时间为10秒~600秒,并且,在该加热后30秒以内开始所述热轧,所述钢水具有如下成分组成:以质量%计含有C:0.002%~0.100%、Si:2.00%~8.00%和Mn:0.005%~1.000%,并且控制为Al:小于0.0100%、N:小于0.0050%、S:小于0.0050%以及Se:小于0.0050%,剩余部分为Fe和不可避免的杂质。

Description

取向性电磁钢板的制造方法
技术领域
本发明涉及适合作为变压器铁芯材料的取向性电磁钢板的制造方法。
背景技术
在取向性电磁钢板的制造中,作为一般的技术使用如下技术:使用被称为抑制剂的析出物,在纯化退火中二次再结晶具有Goss取向的晶粒。对于使二次再结晶粒稳定地生长,使用抑制剂是有用的,但为了使抑制剂在钢中微细分散,需要进行1300℃以上的高温下的板坯加热,使抑制剂形成成分一度固溶。此外,抑制剂成为在二次再结晶后使磁特性劣化的原因,因此需要通过将纯化退火设为1100℃以上的高温且控制气氛,从而从基底中除去抑制剂等析出物和夹杂物。
另一方面,近年来,为了降低成本,开发了减薄板坯厚度而直接进行热轧的技术。然而,如上所述,为了利用抑制剂,需要在热轧前通过高温板坯加热进行抑制剂的再固溶,而在制作减薄厚度的薄板坯而直接进行热轧的方法中,即使在热轧前的输送中加热,板坯也不会被充分高温化,存在这样的缺点。因此,专利文献1中提出了利用尽量去除Al而只有少量的MnS、MnSe的抑制剂的方法。
另一方面,专利文献2中提出了不含抑制剂形成成分而使高斯取向晶粒通过二次再结晶进行生长的技术。这是通过尽量排除抑制剂形成成分这样的杂质,从而使一次再结晶时的结晶晶界所具有的晶界能量的晶界取向差角依赖性显著化,即使不使用抑制剂也使具有Goss取向的晶粒二次再结晶的技术,将该效果也称为纹理抑制(Texture inhibition)作用。该方法中,由于无需纯化抑制剂的工序,因此无需使纯化退火高温化,而且,无需使抑制剂在钢中微细分散,因此也无需为了进行该微细分散所需的高温板坯加热等,是在成本方面和维护方面都提供了大的优势的方法。而且,由于消除了如上述的板坯加热时的问题,该方法也可以有利地应用于以降低成本为目的制作薄板坯而直接进行热轧的技术。
现有技术文献
专利文献
专利文献1:日本特开2002-212639号公报
专利文献2:日本特开2000-129356号公报
发明内容
如上所述,对于不使用抑制剂形成成分而制造取向性电磁钢板的技术,期待其与利用以降低成本为目的的薄板坯的制造技术的相容性良好。然而,在组合这些制造技术而制造取向性电磁钢板时,新发现了磁特性劣化这样的问题。
本发明是鉴于上述情况而完成的,其目的在于提供一种在不使用抑制剂形成成分而由薄板坯制造取向性电磁钢板时,用于稳定地得到优异的磁特性的方法。
本发明人等对解决上述课题的方法反复进行了深入研究,其结果,新发现了通过控制热轧前的加热过程的温度和时间,即使不使用抑制剂形成成分而由薄板坯制造取向性电磁钢板,也能够稳定地得到良好的磁特性。以下,对完成本发明的实验进行说明。
<实验>
由以质量%计含有C:0.018%、Si:3.21%、Mn:0.080%、Al:0.0032%、N:0.0013%、S:0.0019%和Se:0.0011%的钢水,以连续铸造法制造厚度60mm的薄的板坯,在将该板坯输送至热轧工序的中途,使该板坯通过隧道炉,从而进行热轧前的板坯加热。使上述加热过程的加热温度和加热时间进行各种变化而进行上述板坯的加热。
上述板坯加热过程结束后,使其经过各种时间后开始热轧。通过将薄板坯进行热轧,制成厚度2.7mm的热轧钢板。其后,在1000℃实施30秒的热轧板退火后,通过冷轧而精加工为0.27mm的板厚。其后,均热条件为850℃,60秒、50%H2+50%N2、露点50℃的气氛中实施兼作脱碳的一次再结晶退火后,涂布以MgO为主体的退火分离剂,进行在1200℃、50小时、以H2气氛进行保持的纯化退火。
其后,在800℃、15秒的条件实施平坦化退火,其还兼作以磷酸镁和铬酸为主体的张力赋予涂层的形成。按照JIS C2550所记载的方法测定所得的样品的磁通密度B8。对于所得的磁通密度B8以与热轧前的加热过程的加热温度和加热时间的关系进行整理,将其结果示于图1~图3。图1、图2和图3分别是在加热过程结束后10秒、30秒和40秒开始热轧时的结果。由这些图可知,通过设为加热过程的温度为1000℃~1300℃且时间为10秒~600秒的条件,而且,在加热后30秒以内开始热轧,从而能使磁通密度变高。
如此,热轧前的加热过程的温度和时间对磁特性产生影响的机理虽然尚未明确,但本发明人等认为如下。
作为薄的板坯的特征,可举出板坯的组织大体上为柱状晶体。这是因为与厚的板坯的情况相比薄的板坯在浇注时冷却快,凝固壳界面的温度梯度大,从板厚中央部难以产生等轴晶。已知柱状晶体的板坯组织在热轧后产生即使进行其后的热处理也难以进行再结晶的热轧加工组织,由于该难以再结晶的组织的影响,使取向性电磁钢板的最终制品的磁特性劣化。即,推定磁性劣化的原因是在热轧前的状态下,柱状晶体组织为板坯组织的主体。
为了解决该问题,需要减少柱状晶体组织。电磁钢板以外的一般的钢制品由于遵从α-γ相变,因此即使在高温的α相的温度区域形成的柱状晶体组织,也会在γ相的温度区域产生相变再结晶,能够减少柱状晶体组织。然而,取向性电磁钢板中为了防止因二次再结晶后的γ相变所致的Goss取向晶粒组织的破坏,γ相分率显著低,有时为α单相组织。因此,难以通过在上述γ相温度区域中的相变再结晶而减少柱状晶体组织。
因此,特别关注了薄板坯制造中的其它特征,即,积蓄在薄板坯的组织中的应变。通常,板坯向铅直方向浇注,在其后通过改变大致90°朝向的形式以某曲率进行矫正,向水平方向输送。板坯厚度为200mm左右的通常的板坯难以变形,因此其曲率小。但是,薄板坯由于厚度薄且容易弯曲,因此在该矫正时曲率增大,所以减小弯曲矫正所需的空间而降低制造成本。此时,具有在板坯组织中积蓄相当大的应变的特征。
在积蓄有该应变的状态下,通过实施某种程度高温的热处理,具体而言,实施在1000℃以上的温度区域加热的热处理,从而诱导部分的应变诱导晶粒生长或者与柱状晶体不同的组织(等轴)的再结晶,减少了柱状晶体组织,其结果,制品板的磁特性得到了改善的可能性高。在遵从α-γ相变的一般的钢制品中,即使例如积蓄应变,在相变时应变也会被释放,因此该现象有可能是取向性电磁钢板这样的以α相为主体的钢种中特有的。
此外,在加热过程的加热温度超过1300℃等加热温度过高的情况、加热时间超过600秒等加热时间过长的情况下,代替柱状晶体组织而产生的晶粒变得过于粗大,与柱状晶体组织同样地产生即使热处理也难以再结晶的热轧加工组织,由此,制品板的磁特性劣化。应予说明,从板坯输送速度的观点出发,加热时间的下限为10秒。
进而,从加热后到开始热轧为止的时间超过30秒而变长时,会发生杂质的析出,其结果,使制品板的磁特性劣化。
作为解决薄板坯的柱状晶体组织的问题的方法,也考虑在制造设备中新追加设置具有用于实现组织的等轴晶化的功能的设备,但这样的设备的追加存在成本大幅增大的缺点。与此相对,本发明很好地融合了取向性电磁钢板的组织的特征和薄板坯连续铸造法的特征,还能尽量抑制设置新设备这样的成本增大,是一种新技术。
如上所述,本发明人等关于无抑制剂坯料,由薄板坯制造取向性电磁钢板时,通过控制热轧前的加热过程的温度和时间,成功地防止了磁特性劣化。
本发明基于上述的新的发现,其主旨构成如下所述。
1.一种取向性电磁钢板的制造方法,将具有如下成分组成的钢水供于连续铸造而形成厚度25mm~100mm的板坯,将该板坯加热后实施热轧而制成热轧钢板,
对该热轧钢板实施1次冷轧或隔着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火,
对该一次再结晶退火后的冷轧钢板实施二次再结晶退火,
其中,加热上述板坯的工序中,温度为1000℃~1300℃且时间为10秒~600秒,并且,在该加热后30秒以内开始上述热轧,
所述钢水具有如下成分组成:
以质量%计含有
C:0.002%~0.100%、
Si:2.00%~8.00%、
Mn:0.005%~1.000%,
并且,控制为Al:小于0.0100%、N:小于0.0060%、S:小于0.0100%以及Se:小于0.0100%,
剩余部分为Fe和不可避免的杂质。
2.根据上述1所述的取向性电磁钢板的制造方法,其中,加热上述板坯的工序是将该板坯一边向铸造方向以10m/min以上的速度输送一边加热。
3.根据上述1或2所述的取向性电磁钢板的制造方法,其中,上述成分组成中,以质量%计S:小于0.0030%、Se:小于0.0030%。
4.根据上述1~3中任一项所述的取向性电磁钢板的制造方法,其中,上述成分组成以质量%计进一步含有选自
Cr:0.01%~0.50%、
Cu:0.01%~0.50%、
P:0.005%~0.50%、
Ni:0.001%~0.50%、
Sb:0.005%~0.50%、
Sn:0.005%~0.50%、
Bi:0.005%~0.50%、
Mo:0.005%~0.100%、
B:0.0002%~0.0025%、
Nb:0.0010%~0.0100%和
V:0.0010%~0.0100%
中的1种或2种以上。
5.根据上述1~4中任一项所述的取向性电磁钢板的制造方法,其中,加热上述板坯的工序是将该加热的至少一部分以感应加热方式进行。
根据本发明,在不使用抑制剂形成成分而由薄板坯制造取向性电磁钢板时,可以稳定地得到优异的磁特性。
附图说明
图1是表示在加热过程结束后10秒开始热轧时的加热过程中的加热温度和加热时间与磁束密度B8的关系的图。
图2是表示在加热过程结束后30秒开始热轧时的加热过程中的加热温度和加热时间与磁束密度B8的关系的图。
图3是表示在加热过程结束后40秒开始热轧时的加热过程中的加热温度和加热时间与磁束密度B8的关系的图。
具体实施方式
[成分组成]
以下,对本发明的一个实施方式的取向性电磁钢板和其制造方法进行说明。首先,对钢的成分组成的限定理由进行阐述。应予说明,本说明书中,表示各成分元素的含量的“%”只要没有特别说明则是指“质量%”。
C:0.002%~0.100%
若含有超过0.100%的C,则难以减少至在脱碳退火后不会发生磁时效的0.005%以下,因此限定为0.100%以下。另一方面,在小于0.002%时,因C所致的晶界强化效果丧失,引起在板坯产生裂纹等阻碍操作性的缺陷。因此,C为0.002%~0.100%。优选为0.010%~0.050%。
Si:2.00%~8.00%
Si是为了提高钢的电阻率、改善铁损所需的元素。为此,需要含有2.00%以上。另一方面,若超过8.00%,则钢的加工性劣化,轧制变难。因此,Si为2.00%~8.00%。优选为2.50%~4.50%。
Mn:0.005%~1.000%
Mn是为了使热加工性良好所需的元素。为此,需要含有0.005%以上。另一方面,若超过1.000%,则制品板的磁通密度降低。因此,Mn为0.005%~1.000%。优选为0.040%~0.200%。
如上所述,作为抑制剂形成成分的Al、N、S和Se的含量尽量减少。具体而言,限制为Al:小于0.0100%、N:小于0.0060%、S:小于0.0100%和Se:小于0.0100%。优选为Al:小于0.0080%、N:小于0.0040%、S:小于0.0030%、Se:小于0.0030%。
本发明中的基本成分如上所述,剩余部分为Fe和不可避免的杂质。作为上述不可避免的杂质,可举出从原料、制造设备等不可避免地混入的杂质。此外,本发明中,还可以适当含有以下所述的元素。
本发明中,以改善磁特性为目的,可以适当选择选自Cr:0.01%~0.50%、Cu:0.01%~0.50%、P:0.005%~0.50%、Ni:0.001%~0.50%、Sb:0.005%~0.50%、Sn:0.005%~0.50%、Bi:0.005%~0.50%、Mo:0.005%~0.100%、B:0.0002%~0.0025%、Nb:0.0010%~0.0100%和V:0.0010%~0.0100%中的1种或2种以上。各成分组成的添加量少于下限量时,没有提高磁特性的效果,在超过上限量时,二次再结晶晶粒的生长被抑制而磁特性劣化。
接着,对本发明的取向性电磁钢板的制造方法进行说明。
[板坯的厚度]
通过连续铸造法,由具有上述成分的钢水制造板坯。为了降低成本,所制造的板坯的厚度设为100mm以下。另一方面,从生产率的观点出发,板坯的厚度为25mm以上。优选为40mm~80mm。
[加热]
由钢水制造的上述板坯,通过热轧前的加热过程被加热。加热条件设为加热温度为1000℃~1300℃,且加热时间为10秒~600秒,如上述的图1和图2的实验结果所示,上述加热条件为必须条件。
上述加热过程中,无需用于使抑制剂固溶的长时间的高温退火,因此,从减少成本的观点出发,优选将加热温度设为1250℃以下且将加热时间设为300秒以下。进而,从磁特性的观点出发,优选将加热温度设为1110℃~1200℃且将加热时间设为10秒~200秒。此外,上述加热过程也可以通过感应加热方式进行加热的至少一部分。感应加热方式例如是对板坯施加交流磁场而通过自加热进行加热的方式。
应予说明,加热方法优选使用被称为隧道炉的、输送台和加热炉呈一体的设备,在输送中进行加热保持。通过该方法,凝固抑制板坯内的温度变动。
在此,以往的板坯加热方法中,通常在加热炉中具有滑动装置,在加热中以步进梁等间歇地提升板坯而向板坯宽度方向输送,但在薄的板坯中,由于其薄度,在炉内提升时会产生板坯下垂的问题。此外,滑动装置部的温度降低变显著且该部位直接关系到制品板的磁性劣化,因此上述的方法在薄板坯中是不适当的。因此,本发明中,优选隧道炉方式这样的相对于板坯的浇注方向并行输送的同时加热的方法。即使在这样的情况下,由于通常在工作台辊上输送板坯,因此有可能在辊间发生下垂,成为表面缺陷等的原因。因此,一边加热一边输送时,将输送速度设为10m/min以上,从而可以抑制板坯的下垂、防止从辊散热,因此优选。
[热轧]
在上述加热后进行热轧。由于板坯薄,因此省略粗轧而仅实施利用串联式轧机的精轧,这从成本的观点出发优选。此时,为了得到优异的磁特性,需要将从加热后到开始热轧为止的时间控制在30秒以内。优选为20秒以内,更优选为10秒以内。
对于热轧温度,将开始温度设为900℃以上、将结束温度设为700℃以上则在不含抑制剂的成分体系中使最终磁性良好,因此优选。但是,若结束温度过高,则轧制后的形状容易变差,因此优选为1000℃以下。
[热轧板退火]
进行热轧而得到的热轧钢板可根据需要实施热轧板退火。为了得到良好的磁性,热轧板退火温度优选为800℃~1150℃。若热轧板退火温度小于800℃,则热轧中的带组织残留,难以实现整粒的一次再结晶组织,阻碍二次再结晶的生长。若热轧板退火温度超过1150℃,则热轧板退火后的粒径过于粗大化,因此在实现整粒的一次再结晶组织的方面极其不利。优选为950℃~1080℃。退火时间优选为10秒~200秒。若小于10秒,则带组织容易残留,若超过200秒,则有可能引起偏析元素等偏析于晶界二在其后的冷轧中容易发生裂纹等缺陷。
[冷轧]
在热轧后或热轧板退火后,根据需要实施隔着中间退火的1次以上的冷轧而制成具有最终板厚的冷轧钢板。中间退火温度优选为900℃~1200℃。若该温度小于900℃,则再结晶粒变细,一次再结晶组织中的Goss核减少而磁性劣化。另一方面,若超过1200℃,则如同热轧板退火,粒径过于粗大化,因此在实现整粒的一次再结晶组织的方面极其不利。
此外,中间退火温度更优选为900℃~1150℃左右。最终冷轧中,为了使再结晶集合组织变化而提高磁特性,有效的是使冷轧的温度上升至100℃~300℃而进行以及在冷轧中途进行1次或多次100~300℃的范围的时效处理。
[一次再结晶退火]
上述冷轧后实施一次再结晶退火。该一次再结晶退火也可以兼作脱碳退火。对于退火温度,从脱碳性的观点出发有效的是800℃~900℃。从脱碳性的观点出发,气氛优选为湿润气氛。此外,退火时间优选为30~300秒左右。但是,在无需脱碳的只含有C:0.005%以下时不限定于此。
[退火分离剂的涂布]
在上述一次再结晶退火后的钢板上根据需要涂布退火分离剂。在此,重视铁损而形成镁橄榄石被膜时,应用以MgO为主体的退火分离剂,其后,兼作纯化退火实施二次再结晶退火,从而使二次再结晶组织生长的同时形成镁橄榄石被膜。在重视冲裁加工性,不形成镁橄榄石被膜时,不应用退火分离剂,或者即使应用的情况下也不使用形成镁橄榄石被膜的MgO,而是使用二氧化硅、氧化铝等。在涂布这些退火分离剂时,进行不混入水分的静电涂布等是有效的。也可以使用耐热无机材料片材(二氧化硅、氧化铝、云母)。
[二次再结晶退火]
在上述一次再结晶退火后或退火分离剂涂布后进行二次再结晶退火。二次再结晶退火也可以兼作纯化退火。为了表达二次再结晶,优选在800℃以上进行兼作纯化退火的二次再结晶退火。此外,为了使二次再结晶结束,优选在800℃以上的温度保持20小时以上。在上述重视冲裁性而未形成镁橄榄石被膜时,只要二次再结晶结束即可,因此也能够在850~950℃的温度区域保持而结束退火。另一方面,在重视上述铁损,或者为了降低变压器的噪音而形成镁橄榄石被膜时,优选升温至1200℃左右。
[平坦化退火]
上述二次再结晶退火后,可以进一步进行平坦化退火。此时,在应用退火分离剂时,进行水洗或刷洗、酸洗,除去所附着的退火分离剂。其后,为了降低铁损,进行平坦化退火而矫正形状是有效的。从形状矫正的观点出发优选的是平坦化退火温度为700~900℃左右。
[绝缘涂层]
在层叠使用钢板时,为了改善铁损,有效的是在平坦化退火之前或之后,在钢板表面实施绝缘涂层。为了降低铁损,优选以能够对钢板赋予张力的涂层作为涂层。优选采用介由粘合剂的张力涂层涂布方法或通过物理蒸镀法、化学蒸镀法使无机物蒸镀于钢板表层而涂布的方法。这是因为这些方法的涂布密合性优异且可得到显著的铁损降低效果。
[磁畴细分化处理]
在上述平坦化退火后,为了降低铁损,可以进行磁畴细分化处理。作为处理方法,例如,可举出通常实施的那样的在最终制品板形成沟槽的方法,通过激光、电子束以线状导入热应变、冲击应变的方法,在达到最终精加工板厚的冷轧板等中间制品预先形成沟槽的方法。
其它制造条件按照取向性电磁钢板的通常的条件即可。
实施例
(实施例1)
由以质量%计含有C:0.015%、Si:3.44%、Mn:0.050%、Al:0.0037%、N:0.0022%和S:0.0026%且剩余部分为Fe和不可避免的杂质的钢水,通过连续铸造制造厚度25mm的板坯,利用再生燃烧器加热方式的隧道炉在表1所记载的条件下实施加热处理作为热轧前的加热过程,其后,经过表1所记载的时间后开始热轧,精加工为2.2mm的厚度。接着,在980℃实施100秒的热轧板退火后,通过冷轧而精加工为0.23mm的板厚。
其后,实施均热条件为在840℃、60秒、50%H2+50%N2、露点53℃的兼作脱碳退火的一次再结晶退火后,涂布以MgO为主体的退火分离剂,进行在1150℃、30小时、H2气氛下保持的兼作纯化退火的二次再结晶退火。其后,在820℃、15秒的条件实施平坦化退火,其还兼作以磷酸镁和铬酸为主体的张力赋予涂层的形成。将以JIS C2550所记载的方法测定如此得到的样品的磁通密度B8的结果一并记于表1。由表1明确可知,通过本发明得到的钢板具有良好的磁特性。
[表1]
Figure BDA0002038549310000111
(实施例2)
由含有表2所记载的成分且剩余部分为Fe和不可避免的杂质的钢水,通过连续铸造制造厚度100mm的板坯,作为热轧前的加热过程,利用隧道炉,将其通过保持在1300℃的隧道炉,在1300℃保持300秒后,在经过20秒后开始热轧,通过热轧而精加工为3.0mm的厚度。利用隧道炉的加热过程中的板坯输送速度为40mm/min。此外,700℃为止的加热是以感应加热方式进行加热,其后以燃气燃烧器进行加热和保持。其后,在1000℃实施60秒的热轧板退火后,通过冷轧而制成1.8mm的板厚。进而,在1050℃实施60秒的中间退火后,通过冷轧而精加工为0.23mm厚。
其后,实施均热条件为820℃、20秒、50%H2+50%N2、露点55℃的兼作脱碳退火的一次再结晶退火后,涂布以MgO为主体的退火分离剂,进行在1220℃、50小时、H2气氛下保持的兼作纯化退火的二次再结晶退火。其后,在850℃、10秒的条件下实施平坦化退火,其还兼作以磷酸镁和铬酸为主体的张力赋予涂层的形成。将以JIS C2550所记载的方法测定如此得到的样品的磁通密度B8的结果一并记于表2。由表2明确可知,通过本发明得到的钢板具有良好的磁特性。
Figure BDA0002038549310000131
产业上的可利用性
本发明中,不仅对于不使用抑制剂形成成分而由薄板坯制造的取向性电磁钢板,能够稳定地得到优异的磁特性,而且还可以将其应用于具有与取向性电磁钢板同样的α单相组织的不锈钢。

Claims (9)

1.一种取向性电磁钢板的制造方法,将具有如下成分组成的钢水供于连续铸造,形成厚度25mm~100mm的板坯,将该板坯加热后实施热轧而制成热轧钢板,
对该热轧钢板实施1次冷轧或隔着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火,
对该一次再结晶退火后的冷轧钢板实施二次再结晶退火,
其中,加热所述板坯的工序中,温度为1000℃~1300℃且时间为10秒~600秒,并且,在该加热后30秒以内开始所述热轧,
所述钢水具有如下成分组成:
以质量%计含有
C:0.002%~0.100%、
Si:2.00%~8.00%、
Mn:0.005%~1.000%,
并且,控制为Al:小于0.0100%、N:小于0.0060%、S:小于0.0100%以及Se:小于0.0100%,
剩余部分为Fe和不可避免的杂质。
2.根据权利要求1所述的取向性电磁钢板的制造方法,其中,加热所述板坯的工序是将该板坯一边向铸造方向以10m/min以上的速度输送一边加热。
3.根据权利要求1所述的取向性电磁钢板的制造方法,其中,
所述成分组成中,以质量%计,S:小于0.0030%、Se:小于0.0030%。
4.根据权利要求2所述的取向性电磁钢板的制造方法,其中,
所述成分组成中,以质量%计,S:小于0.0030%、Se:小于0.0030%。
5.根据权利要求1所述的取向性电磁钢板的制造方法,其中,所述成分组成以质量%计进一步含有选自
Cr:0.01%~0.50%、
Cu:0.01%~0.50%、
P:0.005%~0.50%、
Ni:0.001%~0.50%、
Sb:0.005%~0.50%、
Sn:0.005%~0.50%、
Bi:0.005%~0.50%、
Mo:0.005%~0.100%、
B:0.0002%~0.0025%、
Nb:0.0010%~0.0100%和
V:0.0010%~0.0100%
中的1种或2种以上。
6.根据权利要求2所述的取向性电磁钢板的制造方法,其中,所述成分组成以质量%计进一步含有选自
Cr:0.01%~0.50%、
Cu:0.01%~0.50%、
P:0.005%~0.50%、
Ni:0.001%~0.50%、
Sb:0.005%~0.50%、
Sn:0.005%~0.50%、
Bi:0.005%~0.50%、
Mo:0.005%~0.100%、
B:0.0002%~0.0025%、
Nb:0.0010%~0.0100%和
V:0.0010%~0.0100%
中的1种或2种以上。
7.根据权利要求3所述的取向性电磁钢板的制造方法,其中,所述成分组成以质量%计进一步含有选自
Cr:0.01%~0.50%、
Cu:0.01%~0.50%、
P:0.005%~0.50%、
Ni:0.001%~0.50%、
Sb:0.005%~0.50%、
Sn:0.005%~0.50%、
Bi:0.005%~0.50%、
Mo:0.005%~0.100%、
B:0.0002%~0.0025%、
Nb:0.0010%~0.0100%和
V:0.0010%~0.0100%
中的1种或2种以上。
8.根据权利要求4所述的取向性电磁钢板的制造方法,其中,所述成分组成以质量%计进一步含有选自
Cr:0.01%~0.50%、
Cu:0.01%~0.50%、
P:0.005%~0.50%、
Ni:0.001%~0.50%、
Sb:0.005%~0.50%、
Sn:0.005%~0.50%、
Bi:0.005%~0.50%、
Mo:0.005%~0.100%、
B:0.0002%~0.0025%、
Nb:0.0010%~0.0100%和
V:0.0010%~0.0100%
中的1种或2种以上。
9.根据权利要求1~8中任一项所述的取向性电磁钢板的制造方法,其中,加热所述板坯的工序是将该加热的至少一部分以感应加热方式进行。
CN201780065933.0A 2016-11-01 2017-11-01 取向性电磁钢板的制造方法 Active CN109923222B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016214617 2016-11-01
JP2016-214617 2016-11-01
PCT/JP2017/039617 WO2018084203A1 (ja) 2016-11-01 2017-11-01 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN109923222A CN109923222A (zh) 2019-06-21
CN109923222B true CN109923222B (zh) 2021-04-27

Family

ID=62075692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780065933.0A Active CN109923222B (zh) 2016-11-01 2017-11-01 取向性电磁钢板的制造方法

Country Status (8)

Country Link
US (1) US20190256938A1 (zh)
EP (1) EP3536813B1 (zh)
JP (1) JP6631725B2 (zh)
KR (1) KR102254944B1 (zh)
CN (1) CN109923222B (zh)
BR (1) BR112019008529B1 (zh)
RU (1) RU2710243C1 (zh)
WO (1) WO2018084203A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512386B2 (ja) 2017-02-20 2019-05-15 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN115433876B (zh) * 2022-09-20 2024-03-26 武汉钢铁有限公司 一种基于薄板坯连铸连轧生产的取向硅钢及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129015A1 (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340754B2 (ja) * 1991-07-25 2002-11-05 川崎製鉄株式会社 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
IT1284268B1 (it) * 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
IT1285153B1 (it) * 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP2000129354A (ja) * 1998-10-27 2000-05-09 Kawasaki Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
JP4032162B2 (ja) * 2000-04-25 2008-01-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP2002212639A (ja) 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
JP4389553B2 (ja) * 2003-11-11 2009-12-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
SI1752549T1 (sl) * 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Postopek za proizvodnjo zrnato usmerjene magnetne jeklene vzmeti
DE102007005015A1 (de) * 2006-06-26 2008-01-03 Sms Demag Ag Verfahren und Anlage zur Herstellung von Warmband-Walzgut aus Siliziumstahl auf der Basis von Dünnbrammen
JP5001611B2 (ja) * 2006-09-13 2012-08-15 新日本製鐵株式会社 高磁束密度方向性珪素鋼板の製造方法
IT1396714B1 (it) * 2008-11-18 2012-12-14 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato a partire da bramma sottile.
RU2407809C1 (ru) * 2009-08-03 2010-12-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
RU2536150C2 (ru) * 2009-11-25 2014-12-20 Тата Стил Эймейден Б.В. Способ получения полосы из электротехнической стали с ориентированным зерном и полученная таким образом электротехническая сталь с ориентированным зерном
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129015A1 (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3536813A4 (en) 2019-09-11
CN109923222A (zh) 2019-06-21
JPWO2018084203A1 (ja) 2019-02-28
RU2710243C1 (ru) 2019-12-25
EP3536813A1 (en) 2019-09-11
KR20190075986A (ko) 2019-07-01
EP3536813B1 (en) 2020-12-23
US20190256938A1 (en) 2019-08-22
BR112019008529A2 (pt) 2019-07-09
JP6631725B2 (ja) 2020-01-15
WO2018084203A1 (ja) 2018-05-11
BR112019008529B1 (pt) 2023-02-14
KR102254944B1 (ko) 2021-05-21

Similar Documents

Publication Publication Date Title
KR101445467B1 (ko) 방향성 전자강판의 제조방법
CN108699620B (zh) 取向性电磁钢板的制造方法
CN109906277B (zh) 取向性电磁钢板的制造方法
CN108699621B (zh) 取向性电磁钢板的制造方法
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
JP6132103B2 (ja) 方向性電磁鋼板の製造方法
JP5782527B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JP4932544B2 (ja) 板幅方向にわたり安定して磁気特性が得られる方向性電磁鋼板の製造方法
KR102295735B1 (ko) 방향성 전기 강판의 제조 방법
CN109923222B (zh) 取向性电磁钢板的制造方法
EP3960887B1 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP5565419B2 (ja) 無方向性電磁鋼板の製造方法
JP2003193131A (ja) 磁気特性の優れた方向性電磁鋼板の製造方法
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP6228956B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JP2003277830A (ja) 板幅方向に均一な磁気特性を有する方向性電磁鋼板の製造方法
JP2018090851A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant