CN108699621B - 取向性电磁钢板的制造方法 - Google Patents

取向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN108699621B
CN108699621B CN201780015647.3A CN201780015647A CN108699621B CN 108699621 B CN108699621 B CN 108699621B CN 201780015647 A CN201780015647 A CN 201780015647A CN 108699621 B CN108699621 B CN 108699621B
Authority
CN
China
Prior art keywords
less
hot
annealing
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780015647.3A
Other languages
English (en)
Other versions
CN108699621A (zh
Inventor
江桥有衣子
竹中雅纪
早川康之
高岛稔
今村猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN108699621A publication Critical patent/CN108699621A/zh
Application granted granted Critical
Publication of CN108699621B publication Critical patent/CN108699621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

本发明提供一种无需高温钢坯加热而具有比以往优异的磁特性的取向性电磁钢板。一种取向性电磁钢板的制造方法,是将钢坯在1300℃以下的温度区域加热,对该钢坯实施热轧而制成热轧钢板,对该热轧钢板实施或不实施热轧板退火,对上述热轧后的热轧钢板或上述热轧板退火后的热轧钢板实施1次冷轧或夹着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,对该冷轧钢板实施一次再结晶退火和二次再结晶退火的取向性电磁钢板的制造方法,在不实施上述中间退火时实施上述热轧板退火,在该热轧板退火的升温过程中,在700℃~950℃的温度区域内进行10秒~120秒之间、升温速度10℃/s以下的升温,在实施上述中间退火时,在最后的中间退火的升温过程中,在700℃~950℃的温度区域内进行10秒~120秒之间、升温速度10℃/s以下的升温。

Description

取向性电磁钢板的制造方法
技术领域
本发明涉及适于变压器的铁芯材料的取向性电磁钢板的制造方法。
背景技术
取向性电磁钢板主要是作为变压器、发电机等电气设备的铁芯材料使用的软磁特性材料,具有属于铁易磁化轴的<001>位向在钢板的轧制方向高度对准的结晶组织。这种集合组织是通过在取向性电磁钢板的制造工序中的二次再结晶退火时,使被称为所谓的高斯(Goss)位向的(110)[001]位向的晶粒优先巨大生长的二次再结晶而形成的。
关于该取向性电磁钢板,作为一般的技术使用如下方法:使用被称为抑制剂的析出物,在最终退火中使具有Goss位向的晶粒二次再结晶。例如,专利文献1中公开了使用AlN、MnS的方法,专利文献2中公开了使用MnS、MnSe的方法,已在工业上实用化。这些使用抑制剂的方法虽然需要超过1300℃这样的高温下的钢坯加热,但对稳定地使二次再晶粒发展极其有用。而且,为了强化这些抑制剂的作用,专利文献3中公开了利用Pb、Sb、Nb、Te的方法,专利文献4中公开了利用Zr、Ti、B、Nb、Ta、V、Cr、Mo的方法。
此外,专利文献5中提出了通过含有0.010~0.060%的酸溶铝(sol.Al)并抑制N的含量,由此将钢坯加热抑制为低温,在脱碳退火工序中在适当的氮化环境下进行氮化,从而在二次再结晶时使(Al,Si)N析出而作为抑制剂使用的方法。
现有技术文献
专利文献
专利文献1:日本特公昭40-15644号公报
专利文献2:日本特公昭51-13469号公报
专利文献3:日本特公昭38-8214号公报
专利文献4:日本特开昭52-24116号公报
专利文献5:专利第2782086号公报
专利文献6:日本特开2000-129356号公报
发明内容
然而,(Al,Si)N虽然在二次再结晶时在钢中微细分散而作为有效的抑制剂发挥功能,但由于抑制剂的强度取决于Al的含量,因此在制钢中的Al量的命中精度不充分的情况或氮化处理中的N增加量不充分的情况下,有时无法得到充分的晶粒生长抑制力。
另一方面,专利文献6中公开了在不含抑制剂成分的坯料中,使高斯位向晶粒优先地二次再结晶的技术。该方法中无需使抑制剂在钢中微细分散,所以也无需进行以前必须要进行的高温钢坯加热等,因此是在成本方面和维护方面都具有很大的优点的方法。然而,在无抑制剂的坯料中,不存在具有在一次再结晶退火时抑制晶粒生长而向一定的粒径均匀化的功能的抑制剂,因此成为不均匀的粒径分布,并不容易实现优异的磁特性。
鉴于上述课题,本发明的目的在于提供一种稳定地具有比以往优异的磁特性的取向性电磁钢板的制造方法,其不需要高温钢坯加热。
以下,对导出本发明的实验结果进行说明。
<实验>
将以质量%计为C:0.04%、Si:3.8%、酸溶铝:0.005%、N:0.003%、Mn:0.1%、S:0.005%、Se:0.003%且剩余部分由Fe和不可避免的杂质构成的钢熔炼,加热至1250℃,进行热轧而制成板厚2.2mm的热轧板,对该热轧板以1030℃×100秒实施热轧板退火。使该热轧板退火的升温过程的升温速度在750~850℃的温度区域为3~20℃/s,在其以外的温度区域以15℃/s升温。其后,进行1次冷轧,制成最终板厚0.22mm的冷轧板。
接下来,在55vol%H2-45vol%N2的湿润环境下实施860℃×100秒的兼作脱碳的一次再结晶退火。其后,将以MgO为主体的退火分离剂涂布于钢板表面并干燥后,在氢环境下实施1200℃×5小时的包含纯化和二次再结晶的最终退火。从如此得到的钢板分别提取各10片宽度100mm的试验片,分别通过JIS C2556所记载的方法测定磁通密度B8。对于该测定结果,将热轧板退火的升温过程的750~850℃的温度区域的升温速度设为横轴,将磁通密度B8的平均值作为纵轴示于图1。根据图1可知,通过以10℃/s以下的速度升温热轧板退火的750~850℃的温度区域,可没有偏差地得到优异的磁通密度。
对通过以10℃/s以下的速度升温热轧板退火的升温过程的750~850℃的温度区域而可提高磁通密度的理由尚不明确,但本发明的发明人等认为如下。即,在该温度区域,发生从α相向γ相的相变,温度越变高相变越进行(γ相分率增加),但因减慢升温速度,相变核减少。其结果,热轧板退火中阻碍α相的晶粒生长的γ相的数量减少,冷轧前的粒径粗大化,一次再结晶组织的{411}位向晶粒增加,因此{110}<001>位向晶粒优先地二次再结晶,得到优异的磁特性。
此外,对磁通密度的偏差减少的理由尚不明确,但本发明的发明人等认为如下。即,在升温速度快时相变急速地进行,因此由于热轧后的碳化物的偏移而相变核的密度产生变化,冷轧前的粒径变得不均匀,但通过减慢升温速度,相变核密度整体地变得稀疏,冷轧前的粒径均匀化,由于冷轧前的粒径差而产生的一次再结晶组织的位向的偏差减少,磁通密度的偏差减少。
即,本发明是基于上述实验结果进一步反复研究后完成的,其要旨构成如下所述。
1.一种取向性电磁钢板的制造方法,其中,
将钢坯在1300℃以下的温度区域加热,
对该钢坯实施热轧而制成热轧钢板,
对该热轧钢板实施或不实施热轧板退火,
对上述热轧后的热轧钢板或上述热轧板退火后的热轧钢板实施1次冷轧或夹着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火和二次再结晶退火,
上述钢坯具有如下成分组成:
以质量%计含有
C:0.02%~0.08%、
Si:2.0%~5.0%、
Mn:0.02%~1.00%、以及
S和/或Se:合计为0.0015%~0.0100%,
将N抑制为小于0.006%并将酸溶铝抑制为小于0.010%,剩余部分由Fe和不可避免的杂质构成,
在不实施上述中间退火时实施上述热轧板退火,在该热轧板退火的升温过程中,在700℃~950℃的温度区域内进行10秒~120秒之间、升温速度10℃/秒以下的升温,在实施上述中间退火时,在最后的中间退火的升温过程中,在700℃~950℃的温度区域内进行10秒~120秒之间、升温速度10℃/秒以下的升温。
2.根据上述1所记载的取向性电磁钢板的制造方法,其中,
上述成分组成以质量%计进一步含有选自如下成分中的1种或2种以上:
Sn:0.5%以下、
Sb:0.5%以下、
Ni:1.5%以下、
Cu:1.5%以下、
Cr:0.1%以下、
P:0.5%以下、
Mo:0.5%以下、
Ti:0.1%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0025%以下、
Bi:0.1%以下、
Te:0.01%以下、和
Ta:0.01%以下。
根据本发明,通过使最终冷轧正前的退火(热轧板退火或中间退火)的升温加热模式最佳化(通过在升温过程中具有在700℃~950℃的温度范围中以10秒~120秒之间、10℃/s以下缓慢地升温的范围),从而无需高温钢坯加热就能提供具有比以往优异的磁特性的取向性电磁钢板。
附图说明
图1是表示升温速度与磁通密度的关系的图。
具体实施方式
以下,对本发明的一个实施方式的取向性电磁钢板的制造方法进行说明。首先,对钢的成分组成的限定理由进行阐述。应予说明,本说明书中,表示各成分元素的含量的“%”只要没有特别说明,则意味着“质量%”。
C:0.02%~0.08%
若C小于0.02%,则不会发生α-γ相变,此外,碳化物自身减少,难以表现因控制碳化物所致的效果。另一方面,若超过0.08%,则在脱碳退火中,难以将C减少至不发生磁时效的0.005%以下。因此,C为0.02%~0.08%的范围。优选为0.02%~0.05%的范围。
Si:2.0%~5.0%
Si是提高钢的电阻率且减少铁损所需的元素。上述效果在小于2.0%时不充分,另一方面,若超过5.0%,则加工性降低,难以进行轧制而制造。因此,Si设为2.0%~5.0%的范围。优选为2.5%~4.5%的范围。
Mn:0.02%~1.00%
Mn是为了改善钢的热加工性所需的元素。上述效果在小于0.02%时不充分,另一方面,若超过1.00%,则使制品板的磁通密度降低。因此,Mn设为0.02%~1.00%的范围。优选为0.05%~0.70%的范围。
S和/或Se:合计为0.0015%~0.0100%
S和/或Se在形成MnS、Cu2S和/或MnSe、Cu2Se的同时,以固溶S、Se的形式抑制晶粒生长,发挥磁特性稳定化效果。若S和/或Se的合计小于0.0015%,则固溶S和/或Se量不足而磁特性变得不稳定,若超过0.0100%,则热轧前的钢坯加热中的析出物的固溶不充分,磁特性变得不稳定。因此,设为0.0015%~0.0100%的范围。优选为0.0015%~0.0070%的范围。
N:小于0.006%
N有时成为钢坯加热时的膨胀等缺陷的原因,因此设为小于0.006%。
酸溶铝:小于0.010%
Al有时在表面形成致密的氧化膜,阻碍脱碳。因此,Al以酸溶铝量计设为小于0.010%。优选为0.008%以下。
以上,对本发明的基本成分进行了说明。上述成分以外的剩余部分为Fe和不可避免的杂质,另外也可以根据需要,以改善磁特性为目的,适当添加选自Sn:0.5%以下、Sb:0.5%以下、Ni:1.5%以下、Cu:1.5%以下、Cr:0.1%以下、P:0.5%以下、Mo:0.5%以下、Ti:0.1%以下、Nb:0.1%以下、V:0.1%以下、B:0.0025%以下、Bi:0.1%以下、Te:0.01%以下、Ta:0.01%以下中的1种或2种以上。
此外,若各成分含有超过0%且上述上限以下则就有效,因此下限没有特别限定,优选含有Sn:0.001%以上、Sb:0.001%以上、Ni:0.005%以上、Cu:0.005%以上、Cr:0.005%以上、P:0.005%以上、Mo:0.005%以上、Ti:0.005%以上、Nb:0.0001%以上、V:0.001%以上、B:0.0001%以上、Bi:0.001%以上、Te:0.001%以上、Ta:0.001%以上。
特别优选的是以Sn:0.1%以下、Sb:0.1%以下、Ni:0.8%以下、Cu:0.8%以下、Cr:0.08%以下、P:0.15%以下、Mo:0.1%以下、Ti:0.05%以下、Nb:0.05%以下、V:0.05%以下、B:0.0020%以下、Bi:0.08%以下、Te:0.008%以下、Ta:0.008%以下的范围添加。
接着,对本发明所涉及的取向性电磁钢板的制造条件进行说明。
将具有前述成分组成的钢以常规方法的精炼工艺熔炼后,可以通过公知的铸锭-开坯轧制法或连续铸造法制造钢坯料(钢坯),或者,可以通过直接铸造法制造100mm以下的厚度的薄铸片。
[加热]
上述钢坯按照常规方法加热至1300℃以下的温度。通过将加热温度抑制在1300℃以下,可以抑制制造成本。此外,为了使MnS、CuS和/或MnSe、CuSe完全地固溶,加热温度优选为1200℃以上。
[热轧]
上述加热后,进行热轧。对于热轧温度,将开始温度设为1100℃以上,将结束温度设为750℃以上则在控制组织方面优选。其中,为了控制抑制力,结束温度优选设为900℃以下。
另外,也可以在铸造后不进行加热而直接热轧。此外,在薄铸片的情况下,可以进行热轧,也可以省略热轧而进入接下来的工序。
[热轧板退火]
其后,根据需要进行热轧板退火。对于该热轧板退火的退火温度,为了得到良好的磁特性,后述的冷轧工序中,在仅进行1次该冷轧的情况下优选为1000~1150℃,在实施夹着中间退火的2次以上的冷轧的情况下,优选为800~1200℃。
[冷轧]
其后,进行冷轧。通过包含中间退火的2次以上的冷轧而轧制至最终板厚时,热轧板退火的退火温度优选设为800~1200℃。在小于800℃时,热轧中形成的带状组织残留,难以得到整粒的一次再结晶组织,阻碍二次再结晶的生长。另一方面,若超过1200℃,则热轧板退火后的粒径显著粗大化,难以得到最佳的一次再结晶集合组织,因此优选为1200℃以下。为了热轧板退火后的组织的均匀化,该温度范围内的保持时间需要为10秒以上,但即使长时间保持也没有提高磁特性的效果,因此从操作成本的观点出发,优选设为300秒为止。另外,在通过包含中间退火的2次以上的冷轧而轧制至最终板厚时,可以省略热轧板退火。
在仅进行1次冷轧时(1次冷轧法),热轧板退火为最终冷轧正前的退火,因此需要热轧板退火,此外,从控制最终冷轧前的粒径的观点出发,热轧板退火的退火温度优选为1000℃~1150℃。为了热轧板退火后的组织的均匀化,该温度范围内的保持时间需要为10秒以上,但由于即使长时间保持也没有提高磁特性的效果,因此从操作成本的观点出发,优选设为300秒为止。
在1次冷轧法的情况下,需要在该热轧板退火的升温过程中的700℃~950℃的温度区域内,在至少10秒、至多120秒之间以10℃/s以下的升温速度进行升温。这是因为通过以这种方式进行,使在上述温度区域发生的相变核减少,在1000~1150℃的温度范围保持期间,可以抑制γ相阻碍α相的晶粒生长。
在2次冷轧法的情况下,对热轧后或者热轧板退火后的热轧钢板进行1次冷轧或夹着中间退火的2次以上的冷轧而制成最终板厚的冷轧板。中间退火的退火温度优选设为900~1200℃的范围。在小于900℃时,中间退火后的再晶粒微细,进而,存在一次再结晶组织中的Goss核减少而制品板的磁特性有降低的趋势。另一方面,若超过1200℃,则与热轧板退火同样地晶粒显著粗大化,难以得到最佳的一次再结晶集合组织。尤其是最终冷轧前的中间退火优选为1000~1150℃的温度范围,保持时间为了热轧板退火后的组织的均匀化而需要10秒以上,但由于即使长时间保持也没有提高磁特性的效果,因此从操作成本的观点出发,优选设为300秒为止。
此外,在2次冷轧法的情况下,需要在最终冷轧前的中间退火的升温过程中的700℃~950℃的温度区域内,在至少10秒、至多120秒之间以10℃/s以下的升温速度进行升温。这是因为通过以这种方式进行,使在上述温度区域发生的相变核减少,在1000~1150℃的温度范围保持期间,可以抑制γ相阻碍α相的晶粒生长。
此外,用于制成最终板厚的冷轧(最终冷轧)中,为了在一次再结晶退火板组织中使<111>//ND位向充分生长,优选将压下率设为80~95%。
[一次再结晶退火]
其后,实施一次再结晶退火。该一次再结晶退火可以兼作脱碳退火,从脱碳性的观点出发,退火温度优选设为800~900℃的范围,此外,环境优选设为湿润环境。此外,通过将一次再结晶退火的升温过程的500~700℃的区间以30℃/s以上急速加热,Goss位向晶粒的再结晶核增加,由此,能够低铁损化,因此可得到兼具高磁通密度和低铁损的取向性电磁钢板。但是,若超过400℃/s,则会产生过度的集合组织的无规化,引起磁性劣化,因此设为30℃/s~400℃/s。优选为50℃/s~300℃/s。
[退火分离剂的涂布]
对实施了一次再结晶退火的钢板涂布退火分离剂。通过应用以MgO为主体的退火分离剂,其后,通过实施二次再结晶退火,可以使二次再结晶组织发达的同时形成镁橄榄石被膜。在重视冲压加工性而不需要镁橄榄石被膜的情况下,不使用形成镁橄榄石被膜的MgO而使用二氧化硅、氧化铝等。在涂布这些退火分离剂时,进行不带有水分的静电涂布等是有效的。也可以使用耐热无机材料片材(二氧化硅、氧化铝、云母)。
[二次再结晶退火]
其后,进行二次再结晶退火(最终退火)。为了显现二次再结晶而二次再结晶退火优选在800℃以上进行,此外,为了完成二次再结晶,优选以800℃以上的温度保持20小时以上。进而,为了形成良好的镁橄榄石被膜,优选升温至1200℃左右的温度,保持1小时以上。
[平坦化退火]
二次再结晶退火后的钢板其后进行用于除去附着于钢板表面的未反应的退火分离剂的水洗或刷洗、酸洗等后,实施平坦化退火而进行形状矫正,从而可以有效地减少铁损。这是因为二次再结晶退火一般以钢卷状态进行,因此带有钢卷的缠绕打弯,由于该原因,有时在测定铁损时特性劣化。平坦化退火的退火温度优选为750~1000℃,退火时间优选为10秒~30秒。
[绝缘被膜形成]
进而,在层叠使用钢板时,在上述平坦化退火之前或之后,在钢板表面形成绝缘被膜是有效的,尤其是为了实现铁损的降低,作为绝缘被膜,优选应用能够对钢板赋予张力的张力赋予被膜。应予说明,对于张力赋予被膜的形成,若采用介由粘合剂涂布张力被膜的方法、通过物理蒸镀法、化学蒸镀法使无机物蒸镀于钢板表层的方法,则可以形成被膜密合性优异且铁损降低效果显著大的绝缘被膜。
[磁畴细分化处理]
进而,为了进一步降低铁损,可以实施磁畴细分化处理。作为处理方法,可使用通常实施的那样的在最终制品板形成槽,或者利用电子束照射、激光照射、等离子体照射等以线状或点列状导入热应变或冲击应变的方法;对冷轧为最终板厚的钢板等中间工序的钢板表面实施蚀刻加工而形成槽的方法等。
其它制造条件按照取向性电磁钢板的一般的制造方法即可。
实施例
(实施例1)
将以质量%计为C:0.05%、Si:3.0%、酸溶铝:0.005%、N:0.003%、Mn:0.06%、S:0.004%且剩余部分由Fe和不可避免的杂质构成的钢进行熔炼,加热至1250℃,进行热轧而制成板厚2.4mm的热轧钢板,以1000℃×100秒进行热轧板退火,进行夹着1030℃×100秒的中间退火的2次冷轧,制成最终板厚0.27mm的冷轧钢板。中间退火的升温过程设为表1所示的条件。其中,所记载温度区域外的升温速度为到1000℃为止的升温的速度。
接下来,在55vol%H2-45vol%N2的湿润环境下实施兼作840℃×100秒的脱碳退火的一次再结晶退火。其后,将以MgO为主体的退火分离剂涂布于钢板表面并干燥后,在氢环境下实施1200℃×5小时的包含纯化处理和二次再结晶的最终退火。分别提取各10片宽度100mm的试验片,分别通过JIS C2556所记载的方法测定磁通密度B8。将所测定的磁通密度B8的平均值、最大值、最小值记载于表1。由表1的结果可知,通过在最终冷轧前的退火中,在700℃~950℃的温度区域以10秒~120秒之间、10℃/s以下进行升温,从而表示磁特性的磁通密度B8提高,偏差也减少。
[表1]
Figure BDA0001791168750000101
(实施例2)
将含有表2所记载的成分组成的钢熔炼,加热至1300℃,进行热轧而制成板厚2.2mm的热轧钢板,以1060℃×50秒进行热轧板退火,将该升温过程的900~950℃以2℃/s升温,将其以外的温度区域以15℃/s升温,进行1次冷轧,制成最终板厚0.23mm的冷轧钢板。接下来,在55vol%H2-45vol%N2的湿润环境下进行850℃×100秒的兼作脱碳退火的一次再结晶退火。
其后,将以MgO为主体的退火分离剂涂布于钢板表面并干燥后,在氢环境下实施1200℃×5小时的包含纯化处理和二次再结晶的最终退火。分别提取各10片宽度100mm的试验片,分别通过JIS C2556所记载的方法测定磁通密度B8。将所测定的磁通密度B8的平均值、最大值、最小值记载于表2。由表2可知,通过使钢板含有本发明所规定的成分组成,从而磁特性提高,偏差也减少。
[表2]
Figure BDA0001791168750000111

Claims (1)

1.一种取向性电磁钢板的制造方法,其特征在于,
将钢坯在1300℃以下的温度区域加热,
对该钢坯实施热轧而制成热轧钢板,
对该热轧钢板实施或不实施热轧板退火,
对上述热轧后的热轧钢板或上述热轧板退火后的热轧钢板实施1次冷轧或夹着中间退火的2次以上的冷轧而制成具有最终板厚的冷轧钢板,
对该冷轧钢板实施一次再结晶退火和二次再结晶退火,
所述钢坯具有如下成分组成:
以质量%计含有
C:0.02%~0.08%、
Si:2.0%~5.0%、
Mn:0.02%~1.00%、以及
S和/或Se:合计为0.0015%~0.0100%,
并且,将N抑制为小于0.006%,将酸溶铝抑制为小于0.010%,
且任意地含有选自Sn:0.5%以下、Sb:0.5%以下、Ni:1.5%以下、Cu:1.5%以下、Cr:0.1%以下、P:0.5%以下、Mo:0.5%以下、Ti:0.1%以下、Nb:0.1%以下、V:0.1%以下、B:0.0025%以下、Bi:0.1%以下、Te:0.01%以下、以及Ta:0.01%以下中的1种或2种以上,
剩余部分由Fe和不可避免的杂质构成,
其中,在不实施上述中间退火时实施上述热轧板退火,在该热轧板退火的升温过程中,在700℃~950℃的升温温度区域内,存在进行10秒~120秒之间、升温速度10℃/秒以下的升温的温度区域以及进行升温速度超过10℃/秒的升温的温度区域,在实施上述中间退火时,在最后的中间退火的升温过程中,在700℃~950℃的升温温度区域内,存在进行10秒~120秒之间、升温速度10℃/秒以下的升温的温度区域以及进行升温速度超过10℃/秒的升温的温度区域。
CN201780015647.3A 2016-03-09 2017-03-09 取向性电磁钢板的制造方法 Active CN108699621B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-046016 2016-03-09
JP2016046016 2016-03-09
PCT/JP2017/009561 WO2017155057A1 (ja) 2016-03-09 2017-03-09 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN108699621A CN108699621A (zh) 2018-10-23
CN108699621B true CN108699621B (zh) 2020-06-26

Family

ID=59789527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780015647.3A Active CN108699621B (zh) 2016-03-09 2017-03-09 取向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US11332801B2 (zh)
EP (1) EP3428294A4 (zh)
JP (1) JP6617827B2 (zh)
KR (1) KR102140991B1 (zh)
CN (1) CN108699621B (zh)
RU (1) RU2697115C1 (zh)
WO (1) WO2017155057A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021012781A2 (pt) * 2019-01-08 2021-09-08 Nippon Steel Corporation Método para fabricar chapa de aço eletromagnética de grão orientado, e, chapa de aço eletromagnética de grão orientado
CN113825847B (zh) * 2019-04-23 2023-05-23 杰富意钢铁株式会社 取向性电磁钢板的制造方法
JP6813143B1 (ja) * 2019-04-23 2021-01-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR102326327B1 (ko) * 2019-12-20 2021-11-12 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR20240010726A (ko) * 2021-05-31 2024-01-24 제이에프이 스틸 가부시키가이샤 방향성 전자 강판의 제조 방법
JP7439943B2 (ja) 2021-05-31 2024-02-28 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253336A (ja) * 2002-03-06 2003-09-10 Jfe Steel Kk 表面性状に優れた高磁束密度方向性電磁鋼板の製造方法
JP2008031498A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板およびその製造方法
CN102197149A (zh) * 2008-10-22 2011-09-21 杰富意钢铁株式会社 方向性电磁钢板的制造方法
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
CN104903473A (zh) * 2013-02-14 2015-09-09 杰富意钢铁株式会社 取向性电磁钢板的制造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (zh) 1972-10-13 1976-04-28
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
US4468551A (en) 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor
US4919733A (en) 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JP3271654B2 (ja) * 1996-10-01 2002-04-02 日本鋼管株式会社 極薄けい素鋼板の製造方法及び極薄けい素鋼板
KR19990088437A (ko) * 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3018221B1 (en) 2006-05-24 2020-02-05 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP5119710B2 (ja) * 2007-03-28 2013-01-16 Jfeスチール株式会社 高強度無方向性電磁鋼板およびその製造方法
JP5338254B2 (ja) * 2008-10-22 2013-11-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN101768697B (zh) * 2008-12-31 2012-09-19 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
EP2412831B8 (en) * 2009-03-23 2021-03-10 Nippon Steel Corporation Manufacturing method of grain oriented electrical steel sheet
BR112012020687B1 (pt) 2010-02-18 2019-11-26 Nippon Steel Corporation Método de produção de chapa de aço elétrico com grão orientado
JP5648331B2 (ja) 2010-06-14 2015-01-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2011158519A1 (ja) * 2010-06-18 2011-12-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
DE102011054004A1 (de) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
RU2580776C1 (ru) * 2012-03-29 2016-04-10 ДжФЕ СТИЛ КОРПОРЕЙШН Способ изготовления листа из текстурированной электротехнической стали
US9589606B2 (en) * 2014-01-15 2017-03-07 Samsung Electronics Co., Ltd. Handling maximum activation count limit and target row refresh in DDR4 SDRAM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253336A (ja) * 2002-03-06 2003-09-10 Jfe Steel Kk 表面性状に優れた高磁束密度方向性電磁鋼板の製造方法
JP2008031498A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板およびその製造方法
CN102197149A (zh) * 2008-10-22 2011-09-21 杰富意钢铁株式会社 方向性电磁钢板的制造方法
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
CN104903473A (zh) * 2013-02-14 2015-09-09 杰富意钢铁株式会社 取向性电磁钢板的制造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2017155057A1 (ja) 2018-09-06
EP3428294A1 (en) 2019-01-16
WO2017155057A1 (ja) 2017-09-14
JP6617827B2 (ja) 2019-12-11
KR102140991B1 (ko) 2020-08-04
US11332801B2 (en) 2022-05-17
BR112018017171A2 (pt) 2019-01-02
RU2697115C1 (ru) 2019-08-12
US20190271054A1 (en) 2019-09-05
EP3428294A4 (en) 2019-01-16
CN108699621A (zh) 2018-10-23
KR20180113556A (ko) 2018-10-16

Similar Documents

Publication Publication Date Title
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
CN108699621B (zh) 取向性电磁钢板的制造方法
CN108699620B (zh) 取向性电磁钢板的制造方法
KR101921401B1 (ko) 방향성 전기 강판의 제조 방법
CN107849656B (zh) 取向性电磁钢板的制造方法
KR101498404B1 (ko) 방향성 전기 강판의 제조 방법
CN109844156B (zh) 用于制造电磁钢板的热轧钢板及其制造方法
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
CA2900111A1 (en) Method for producing grain-oriented electrical steel sheet
CN109906277B (zh) 取向性电磁钢板的制造方法
JP6260513B2 (ja) 方向性電磁鋼板の製造方法
JP5375694B2 (ja) 方向性電磁鋼板の製造方法
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP6813143B1 (ja) 方向性電磁鋼板の製造方法
JP6947147B2 (ja) 方向性電磁鋼板の製造方法
CN109923222B (zh) 取向性电磁钢板的制造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
KR102295735B1 (ko) 방향성 전기 강판의 제조 방법
JP3928275B2 (ja) 電磁鋼板
JP5310510B2 (ja) 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 方向性電磁鋼板の製造方法
JP4377477B2 (ja) 高磁束密度一方向性電磁鋼板の製造方法
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP6544344B2 (ja) 方向性電磁鋼板の製造方法
KR20230159875A (ko) 방향성 전자 강판의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant