CN115433876B - 一种基于薄板坯连铸连轧生产的取向硅钢及方法 - Google Patents

一种基于薄板坯连铸连轧生产的取向硅钢及方法 Download PDF

Info

Publication number
CN115433876B
CN115433876B CN202211141220.7A CN202211141220A CN115433876B CN 115433876 B CN115433876 B CN 115433876B CN 202211141220 A CN202211141220 A CN 202211141220A CN 115433876 B CN115433876 B CN 115433876B
Authority
CN
China
Prior art keywords
casting
rolling
temperature
casting blank
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211141220.7A
Other languages
English (en)
Other versions
CN115433876A (zh
Inventor
孙亮
刘义滔
李国保
郭小龙
赵胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202211141220.7A priority Critical patent/CN115433876B/zh
Publication of CN115433876A publication Critical patent/CN115433876A/zh
Application granted granted Critical
Publication of CN115433876B publication Critical patent/CN115433876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种基于薄板坯连铸连轧生产的取向硅钢,其组分及wt%为:C:0.030~0.065%,Si:2.5~4.0%,Mn:0.05~0.20%,S;0.005~0.015%,P≤0.030%,Als:0.02~0.05%,N:0.005~0.010%;生产方法:经冶炼后浇铸;铸坯经切断后直接送入隧道炉保温;除鳞后热轧;常化后进行一次性冷轧;初次再结晶退火并渗氮;经涂布退火隔离剂后按进行二次再结晶退火;常规进行后续工序。本发明在保证磁感强度B800不低于1.9T,铁损不高于1.05W/Kg,生产周期可缩短至少20min,相应工序能耗可降低至少5%。

Description

一种基于薄板坯连铸连轧生产的取向硅钢及方法
技术领域
本发明涉及一种取向硅钢及生产方法,特别涉及一种基于薄板坯连铸连轧生产的取向硅钢及其方法。
背景技术
取向硅钢含硅量3%左右,存在较强的GOSS择优取向,使得其轧向具有优良的电磁性能,被广泛应用于制作变压器铁芯。传统制造流程一般包含以下工序:具有一定成分的钢水冶炼、精炼及合金化后,经连铸成板坯,板坯在专用的加热炉内再加热到一定温度后热轧成一定厚度的热轧卷,热轧卷经常化酸洗后进行冷轧,得到一定厚度的冷轧卷,冷轧卷再经脱碳退火或脱碳渗氮退火,完成初次再结晶,随后进行高温退火完成二次再结晶、形成硅酸镁底层以及净化氮、硫等对磁性有害元素后,获得磁性优异的成品,涂布绝缘涂层后经拉伸平整退火得到商用产品。
根据板坯再加热温度,取向硅钢制造方法大致可以分为高温板坯加热和低温板坯加热两种。高温板坯加热法一般以细小弥散的AlN+MnS或AlN+MnSe为抑制剂,有时辅助添加Sn、Sb、B、Bi等晶界抑制元素来进一步增加抑制力,抑制初次晶粒长大,从而得到位向准确的单一GOSS织构二次再结晶组织。为了使铸态组织中粗大的MnS颗粒完全固溶,其板坯的再加热温度一般为1380-1400℃并保温数个小时。高温长时间保温使板坯中粗大的MnS完全固溶并在随后的热轧过程中重新析出成为细小弥散的有效抑制剂,而细小弥散的AlN则在随后的常化过程中通过γ-α相变析出.先将热轧板加热到1150℃左右,此时钢板中γ相比例最多,保温一定时间后快速冷却到900℃左右,γ相比例降低,原本固溶在γ相中的AlN析出成为细小弥散的AlN。
高温板坯加热由于长时间高温加热,其板坯烧损大,加热炉负荷重寿命低,铸坯晶粒容易粗化,容易产生边裂,成材率低,因而人们开发出了所谓的低温板坯加热技术,其主要工艺思想是用固溶温度低的化合物代替MnS,以在二次再结晶之前获得尺寸和数量合适的抑制剂。典型的低温板坯加热技术以后工序气体渗氮工艺最为成熟。冷轧板脱碳后随即在一定温度下,于氨气、氮气和氢气混合气氛中进行连续渗氮,控制气氛中的PH2O/PH2比例及渗入钢板中的氮含量,促使钢板中形成以(Al、Si)N为主的新的细小质点发挥抑制剂的作用。由于不需要MnS完全固溶,该方法可以将板坯再加热温度降低到1150-1200℃(取向硅钢低温铸坯加热技术的研发进展[J].钢铁,2007, 42 (10): 72-75.)。
上述方法所采用的连铸主要是传统的连铸工艺,其铸坯厚度一般为200-250mm,浇铸速度较低,铸机内板坯冷却速度慢,夹杂物尺寸相对较大(薄板坯连铸连轧流程生产高磁感取向硅钢的研究现状与技术分析[J].材料导报A,2013, 27 (4): 110-114.)。铸坯切割成定尺长度后经辊道运输到热轧加热炉区域,或进入保温坑保温后进入加热炉,或直接进入加热炉。过程中铸坯温降大,表面和芯部温差大,组织不均匀,对热轧板形精度控制不利,未充分利用板坯自有热量,能源利用率相对较低。且为使板坯温度均匀,往往需要数小时加热,生产效率相对较低。
近年来,一种名为薄板坯连铸连轧的新工艺得到快速发展,其铸坯厚度一般小于100mm,最高浇铸速度可以达到6m/min,铸坯从铸机出口切断后直接进入隧道式均热炉进行均热,入炉温度可以超过900℃,能有效避免传统板坯运输过程中的温降,铸坯三维方向温度均匀,有利于组织和性能的均匀性控制。基于上述优点,通过薄板坯连铸连轧生产取向硅钢的尝试也逐渐成为研究热点。
如经检索:
中国专利公开号为CN109923222A的文献,公开了《一种基于薄板坯的取向硅钢制造方法》,其板坯厚度在25~100mm;主要成分为C:0.002%~0.100%、Si:2.00%~8.00%和Mn:0.005%~1.000%,Al小于0.0100%、N小于0.0050%、S小于0.0050%以及Se小于0.0050%,板坯加热工艺温度为1000~1300℃且时间为10秒~600秒,并且,在该加热后30秒以内开始所述热轧。该文献由于采用无抑制剂成分体系,一次再结晶退火时的晶粒容易长大,导致二次再结晶开始温度增加,使成品晶粒组织难以控制。
中国专利公开号为CN1850430A的文献,公开了《一种以AlN+Nb(C,N)为抑制剂的基于薄板坯的高磁感取向硅钢的方法》,其板坯加热工艺为1150-1300℃,保温2-5小时。其不仅铸坯加热温度高,且保温时间长,实际生产中受设备长度、生产节奏影响,难以实现。
中国专利公开号为CN1743127A的文献,公开了《一种采用两段式常化的基于薄板坯生产取向硅钢的工艺》,其主要成分如下:C:0.025-0.1%,Si:2.5-4.5%,Mn:0.02-0.15%,S:0.01-0.05%,Al:0.015-0.08%,N:0.003-0.015%,Cu:0.02-0.15%,Sn:0.06-0.2%,Se:0.01-0.04%,铸坯温度850-1100℃,终轧温度850-1000℃,常化高温段温度1100℃±20℃。通过其成分推测,该文献采用的抑制剂体系为MnS、AlN和Cu2S。通过热轧、常化工艺使抑制剂析出,后工序不渗氮。其拉速2-3m/min,在薄板坯连铸连轧中属于相对较低的浇铸速度,且要保证铸坯温度在850-1100℃,其二冷段冷却强度相对较弱,势必导致铸坯中先析出的部分抑制剂长大,后续均热炉温度又不足以使这部分抑制剂固溶,容易导致抑制能力不足,成品性能不稳定。
发明内容
本发明在于克服现有技术存在的不足,提供一种在保证磁感强度B800不低于1.9T,铁损不高于1.05W/Kg,生产周期可缩短至少20min,相应工序能耗可降低至少5%的基于薄板坯连铸连轧生产的取向硅钢及方法。
实现上述目的的措施:
一种基于薄板坯连铸连轧生产的取向硅钢,其组分及重量百分比含量为 :C:0.030~0.065%,Si:2.5~4.0%,Mn:0.05~0.20%,S;0.005~0.015%,P≤0.030%,Als:0.02~0.05%,N:0.005~0.010%,其余为Fe及不可避免的杂质。
优选地:Mn的重量百分比含量为0.072~0.16%。
优选地:Als的重量百分比含量为0.024~0.046%。
优选地:添加有0.1%的Sn或Sb或Bi或其中两种及以上的复合。
一种基于薄板坯连铸连轧生产的取向硅钢的方法,其步骤:
1)经冶炼后浇注成坯,其间,控制拉坯速度在3.0~5.0m/min,铸坯厚度在60~90mm;
2)铸坯经切断后直接送入隧道炉进行保温,并控制铸坯入隧道炉之前的表面温度不低于790℃,铸坯出隧道炉温度在950-1100℃,在炉时间控制在10~40min;
3)经高压水除鳞后进行热轧;
4)经一段式常化后进行一次冷轧制至产品厚度,并控制常化温度不超过1050℃;
5)常规进行初次再结晶退火并渗氮,其间,控制渗氮量在140~180ppm;
6)经涂布以MgO为主的退火隔离剂后按常规进行二次再结晶退火;
7)常规进行后续工序。
优选地:所述铸坯入隧道炉之前的表面温度不低于850℃,在炉时间控制在15~33min。
优选地:铸坯出隧道炉温度在995~1075℃。
本发明中各原料及主要工艺的作用及机理
C作为一种能显著扩大两相区的元素,本专利限定为0.030-0.065%,能保证热轧过程中有合适珠光体条带组织,该组织作为Goss晶核起源,对成品磁性有较强影响.低于0.030%,热轧板中珠光体条带组织较少,Goss晶核起源较少,成品磁性恶化.超过0.065%,导致常化后析出过多马氏体,对冷轧不利.
Si能显著改善电阻率,提高磁性能,添加量不足2.5%,难以获得较低的铁损,添加量超过4.0%,热轧卷边裂较多,冷轧困难.
Mn能显著改善热加工性能,也能扩大两相区,同时析出MnS质点作为AlN的析出核心,对磁性有利.本专利限定尾0.05-0.20%,超过0.20%对成品组织不利,低于0.05%时MnS固溶积较低,浇铸过程中MnS容易过早析出并长大,失去抑制剂作用.
S与Mn形成Mns,本专利限定为0.005-0.015%.超过0.015%,导致铸坯组织发生偏析,对成品磁性不利;从脱硫成本考虑,S下限限定在0.005%.
P作为杂质元素难以避免,从成本角度出发,限定为0.03%以下,超过0.03%对磁性能不利.
Als作为本发明的主要抑制剂形成元素,限定在0.02~0.05%,优选地Als的重量百分比含量为0.024~0.046%,低于0.02%,形成的抑制剂数量不足,难以抑制初次晶粒长大,导致成品磁性能恶化.超过0.05%,在最后二次再结晶退火过程中大量剩余Als进入底层,导致成品表面质量不良.
N与Als形成抑制剂,保证在初次再结晶退火之前有足够的抑制力,因此限定在0.005-0.01%.超过0.01%容易在铸坯中形成泡疤缺陷,低于0.005%形成的抑制剂数量不足.
Sn、Sb、Bi作为晶界偏析元素,作为辅助抑制剂,有助于提高0.23mm及以下规格产品的性能稳定性,超过0.1%对底层有不良影响。
本发明控制浇铸速度为3-5m/min,其理由在于,拉速低于3m/min,铸坯冷却速度较慢,对铸坯织构和析出相控制不利;受生产节奏和成本影响,拉速不宜超过5m/min;
控制铸坯入隧道炉之前的表面温度不低于790℃,在炉时间控制在10~40min,优选地铸坯入隧道炉之前的表面温度不低于850℃,在炉时间控制在15~33min,出炉温度在950~1100℃,优选地铸坯加热温度在995~1075℃,其目的是有效保持钢水中MnS和AlN的固溶和析出状态,阻止铸坯中抑制剂从二冷段末到进入隧道炉之前继续长大和析出.此时板坯芯部仍然处于较高的温度,隧道炉仅起到保温和补热的作用,使板坯表面和芯部温度均匀化,同时控制在1100℃以下,在炉时间控制在10-40min,避免二冷段快速冷却析出的细小析出相重新固溶.在炉时间小于10min时生产节奏紧张,难以组织实际生产。
由于不需要通过γ-α相变使抑制剂重新固溶析出从而控制析出相尺寸分布,本专利采用一段式常化,常化温度控制在1050℃以下,其理由是:与厚板坯相比,薄板坯芯部温度高,热轧压下率较小,热轧板芯部存在较多回复组织,因而需要通过热轧板常化使其组织均匀化,同时对其织构进行调控,减小热轧板中的立方织构,促进形变组织回复再结晶。温度超过1050℃,短时间内退火即会使热轧板表层形成较深的脱碳层,且显著增加回复组织晶粒度,对磁性均匀性不利。
渗氮量在140~180ppm,是为了进一步增加抑制剂数量,保证有合适的二次再结晶开始温度,渗氮量超过180ppm时,钢带中抑制力过强,二次再结晶开始温度过高,成品容易出现细晶,磁性恶化.渗氮量低于140ppm,抑制剂数量不足,在二次再结晶开始前失去抑制力,导致正常晶粒长大,成品磁性降低。
与现有技术相比,本发明充分利用薄板坯连铸连轧的工艺优势,采用较高的拉速使板坯保持在较高的温度进入隧道炉保温,尽可能保留钢水中原始析出相的固溶析出状态.由于拉速较高,铸坯出连铸机后进入隧道炉的时间也能得到有效控制,能进一步防止铸坯降温,阻止抑制剂进一步析出和长大。此外,隧道炉内短时间低温加热防止已析出抑制剂长大,适当提高Als的含量,后续常化过程中即使采用较低的退火温度,也能在初次再结晶时保留相当强度的抑制力,有利于控制初次再结晶的组织。随后,通过渗氮,控制钢板中氮含量在相对较低的水平,促使钢板中形成尺寸和数量合适的(Al,Si)N复合析出相,进一提高抑制力,从而获得磁感强度B800不低于1.9T的高磁感取向硅钢。
具体实施方式
下面对本发明予以详细描述:
表1为本发明各实施例及对比例的化学成分列表;
表2为本发明各实施例及对比例的主要工艺参数列表;
表3为本发明各实施例性能检测情况列表。
本发明各实施例按照以下步骤生产
1)经冶炼后浇注成坯,其间,控制拉坯速度在3.0~5.0m/min,铸坯厚度在60~90mm;
2)铸坯经切断后直接送入隧道炉进行保温,并控制铸坯入隧道炉之前的表面温度不低于790℃,铸坯出隧道炉温度在950-1100℃,在炉时间控制在10~40min;
3)经高压水除鳞后进行热轧;
4)经一段式常化后进行一次冷轧制至产品厚度,并控制常化温度不超过1050℃;
5)常规进行初次再结晶退火并渗氮,其间,控制渗氮量在140~180ppm;
6)经涂布以MgO为主的退火隔离剂后按常规进行二次再结晶退火;
7)常规进行后续工序。
表1本发明各实施例及对比例的化学成分列表(wt%)
表2本发明各实施例及对比例的主要工艺参数列表
表3本发明各实施例及对比例力学性能检测结果列表
从表3可以看出,采用本专利实施例磁性稳定,磁感较高,对比例磁性波动大,部分对比例未发生二次再结晶,磁性较差。
本具体实施方式仅为最佳例举,并非对本发明技术方案的限制性实施。

Claims (1)

1.一种基于薄板坯连铸连轧生产的取向硅钢的方法,其步骤:
1)经冶炼后浇注成坯,其间,控制拉坯速度在3.2~5.0m/min,铸坯厚度在60~90mm;
2)铸坯经切断后直接送入隧道炉进行保温,并控制铸坯入隧道炉之前的表面温度不低于790℃,铸坯出隧道炉温度在950-1048℃,在炉时间控制在10~40min;
3)经高压水除鳞后进行热轧;
4)经一段式常化后进行一次冷轧制至产品厚度,并控制常化温度不超过1050℃;
5)常规进行初次再结晶退火并渗氮,其间,控制渗氮量在140~180ppm;
6)经涂布以MgO为主的退火隔离剂后按常规进行二次再结晶退火;
7)常规进行后续工序;
所述基于薄板坯连铸连轧生产的取向硅钢,其组分及重量百分比含量为:C:0.030~0.065%,Si:2.5~4.0%,Mn:0.05~0.20%,S;0.005~0.009%,P≤0.030%,Als:0.02~0.05%,N:0.005~0.010%,其余为Fe及不可避免的杂质。
CN202211141220.7A 2022-09-20 2022-09-20 一种基于薄板坯连铸连轧生产的取向硅钢及方法 Active CN115433876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211141220.7A CN115433876B (zh) 2022-09-20 2022-09-20 一种基于薄板坯连铸连轧生产的取向硅钢及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211141220.7A CN115433876B (zh) 2022-09-20 2022-09-20 一种基于薄板坯连铸连轧生产的取向硅钢及方法

Publications (2)

Publication Number Publication Date
CN115433876A CN115433876A (zh) 2022-12-06
CN115433876B true CN115433876B (zh) 2024-03-26

Family

ID=84248223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211141220.7A Active CN115433876B (zh) 2022-09-20 2022-09-20 一种基于薄板坯连铸连轧生产的取向硅钢及方法

Country Status (1)

Country Link
CN (1) CN115433876B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938807A (en) * 1988-02-03 1990-07-03 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having high flux density
CN1743127A (zh) * 2005-09-29 2006-03-08 东北大学 薄板坯连铸连轧生产取向硅钢带的方法
CN102517429A (zh) * 2011-12-26 2012-06-27 武汉钢铁(集团)公司 一种用薄板坯连铸连轧生产高磁感取向硅钢的方法
CN103774042A (zh) * 2013-12-23 2014-05-07 钢铁研究总院 一种薄板坯连铸连轧高磁感取向硅钢及其制备方法
CN104726670A (zh) * 2013-12-23 2015-06-24 鞍钢股份有限公司 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN105274427A (zh) * 2015-11-24 2016-01-27 武汉钢铁(集团)公司 一种高磁感取向硅钢及生产方法
CN108546814A (zh) * 2018-04-11 2018-09-18 北京科技大学 一种基于esp无头轧制技术生产高磁感取向硅钢的方法
CN109923222A (zh) * 2016-11-01 2019-06-21 杰富意钢铁株式会社 取向性电磁钢板的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002256076A1 (en) * 2001-04-10 2002-10-28 Interlock Industries, Inc. Water based adhesive
US20160108488A1 (en) * 2014-10-15 2016-04-21 Sms Siemag Ag Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
CN104451378B (zh) * 2014-12-03 2017-11-03 武汉钢铁(集团)公司 一种磁性能优良的取向硅钢及生产方法
CN107746942B (zh) * 2017-12-15 2019-09-10 武汉钢铁有限公司 一种b800≥1.962t低温超高磁感取向硅钢及生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938807A (en) * 1988-02-03 1990-07-03 Nippon Steel Corporation Process for production of grain oriented electrical steel sheet having high flux density
CN1743127A (zh) * 2005-09-29 2006-03-08 东北大学 薄板坯连铸连轧生产取向硅钢带的方法
CN102517429A (zh) * 2011-12-26 2012-06-27 武汉钢铁(集团)公司 一种用薄板坯连铸连轧生产高磁感取向硅钢的方法
CN103774042A (zh) * 2013-12-23 2014-05-07 钢铁研究总院 一种薄板坯连铸连轧高磁感取向硅钢及其制备方法
CN104726670A (zh) * 2013-12-23 2015-06-24 鞍钢股份有限公司 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN105274427A (zh) * 2015-11-24 2016-01-27 武汉钢铁(集团)公司 一种高磁感取向硅钢及生产方法
CN109923222A (zh) * 2016-11-01 2019-06-21 杰富意钢铁株式会社 取向性电磁钢板的制造方法
CN108546814A (zh) * 2018-04-11 2018-09-18 北京科技大学 一种基于esp无头轧制技术生产高磁感取向硅钢的方法

Also Published As

Publication number Publication date
CN115433876A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN113242911A (zh) 取向电工钢板及其制备方法
JP2003166019A (ja) 磁気特性の優れた一方向性電磁鋼板とその製造方法
JP2014508858A (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
KR101131729B1 (ko) 고자속밀도 방향성 전기강판의 제조방법
EP0477384A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
CN116254472B (zh) 一种改进的低温高磁感取向硅钢及其制备方法
JP2000282142A (ja) 一方向性電磁鋼板の製造方法
CN115433876B (zh) 一种基于薄板坯连铸连轧生产的取向硅钢及方法
CN115449741B (zh) 一种基于薄板坯连铸连轧生产高磁感取向硅钢及方法
KR20020041021A (ko) 고자속밀도 일방향성 전기강판의 제조방법
CN113789476B (zh) 低温Hi-B钢及能够增强先天AlN抑制能力的生产方法
JP2784687B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2521585B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN118048574B (zh) 无取向硅钢及其生产方法
KR100347597B1 (ko) 고자속밀도방향성전기강판의제조방법
KR20020044243A (ko) 자기특성이 우수한 방향성 전기강판의 제조방법
JP2521586B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JPH05230534A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN116586429A (zh) 一种中厚度板坯取向硅钢热连轧生产制造方法
KR20020044244A (ko) 방향성 전기강판의 제조방법
JPH06240358A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
CN115747650A (zh) 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法
JPH05295438A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN116004961A (zh) 取向硅钢的制备方法及取向硅钢

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant