CN109818045A - 锂电池生产工艺 - Google Patents

锂电池生产工艺 Download PDF

Info

Publication number
CN109818045A
CN109818045A CN201910036791.6A CN201910036791A CN109818045A CN 109818045 A CN109818045 A CN 109818045A CN 201910036791 A CN201910036791 A CN 201910036791A CN 109818045 A CN109818045 A CN 109818045A
Authority
CN
China
Prior art keywords
lithium battery
components
finished
product
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910036791.6A
Other languages
English (en)
Inventor
梅承寨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910036791.6A priority Critical patent/CN109818045A/zh
Priority to PCT/CN2019/073936 priority patent/WO2020147153A1/zh
Publication of CN109818045A publication Critical patent/CN109818045A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池生产工艺,包括:将所述锂电池半成品、锂电池零部件或者锂电池零部件的制作原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述锂电池半成品、锂电池零部件或者锂电池零部件的制作原料,并在干燥环境下将所述锂电池半成品、锂电池零部件或者锂电池零部件的制作原料进行解冻的解冻工序。通过上述实施方式,不仅能够提高锂电池的导电性、散热性,还能够提高正负极片耐腐蚀性进而提高锂电池的循环次数。

Description

锂电池生产工艺
技术领域
本发明涉及锂电池技术领域,尤其涉及一种锂电池生产工艺。
背景技术
随着科技的发展,越来越多的便携式电子设备如手机、笔记本电脑、音箱、电子书等,以及新能源电动车等逐渐普及到寻常百姓家,这些设备通常都需要配置锂电池以进行供电,因此对于锂电池的性能如电池发挥容量、导电性、散热性等的要求越来越高。通常,研究人员是通过对锂电池的原料和/或零件采用新材料、新配方来对其性能进行改良和提升,这些涉及到相当复杂的工艺,而且锂电池发展至今己有二十多年,各种原料性能发挥己接近瓶颈,造成锂电池生产制作成本居高不下。因而现今期待全新的技术来推动电池技术继续进步。
发明内容
本发明为解决上述技术问题提供一种锂电池生产工艺,不仅能够提高锂电池的导电性、散热性,还能够提高正负极片耐腐蚀性进而提高锂电池的循环次数。
为解决上述技术问题,本发明提供一种锂电池生产工艺,包括:抽真空并密封未注入电解液的锂电池半成品的准备工序;将所述锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述锂电池半成品,并在干燥环境下将所述锂电池半成品进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:向所述锂电池半成品中添加电解液并进行密封的注液工序。
进一步地,在注液工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
为解决上述技术问题,本发明还提供一种锂电池生产工艺,包括:将制作锂电池的零部件密封到防潮袋中的准备工序;其中,所述零部件包括涂布有正极粉的正极片、涂布有负极粉的负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装;将封装有所述零部件的所述防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的封装有所述零部件的所述防潮袋,取出所述零部件并在干燥环境下将所述零部件进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:利用所述零部件制作形成锂电池半成品的制作工序;向所述锂电池半成品中添加电解液并进行密封的注液工序。
进一步地,在制作工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
为解决上述技术问题,本发明还提供一种锂电池生产工艺,包括:准备制作锂电池的零部件的原料的准备工序;其中,所述原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带;将所述原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述原料,并在干燥环境下将所述原料进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:利用所述原料制作形成锂电池的零部件的零部件制作工序;利用所述零部件制作产生锂电池半成品的半成品制作工序;
向所述锂电池半成品中添加电解液并进行密封的注液工序。进一步地,在零部件制作工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
进一步地,在所述深冷工序之中,包括:将成卷的所述原料直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的所述原料密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
本发明的锂电池生产工艺,具有如下有益效果:
通过将锂电池半成品、制作成锂电池的零部件或制作成锂电池零部件的原料浸没于液态氮或液态氦处理后,能够提高锂电池的导电性、散热性以及正负极片耐腐蚀性,进而能够提高锂电池的各项性能指标,其工艺方法简单巧妙,极其适用于推广。
附图说明
图1是本发明锂电池生产工艺第一实施例的流程图。
图2是本发明锂电池生产工艺第二实施例的流程图。
图3是本发明锂电池生产工艺第三实施例的流程图。
具体实施方式
下面结合附图和实施方式对本发明进行详细说明。
本发明提供一种锂电池生产工艺。该锂电池生产工艺主要对锂电池半成品进行处理,锂电池半成品具体指通过组装或加工后已具备基本的锂电池形态、但未注入电解液时的半产品,因为电解液不能进行如下所述的深冷工序。如图1所示,该锂电池生产工艺包括:步骤S11,抽真空并密封未注入电解液的锂电池半成品的准备工序。
步骤S12,将锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序。
其中,液态氮的临界温度是-196℃,液态氦的临界温度是-272℃。深冷工序中,温度越低则锂电池性能提升得更高。然而,考虑到液态氮或液态氦的获取成本,现阶段更考虑成本较低的液态氮。当然,随着工业技术的进步,在液态氦获取成本降低之后可以优选考虑液态氦。
以及步骤S13,取出冷冻一定时间后的锂电池半成品,并在干燥环境下将锂电池半成品进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间,可以视需要而进行调整。
进一步地,在工序S13即解冻工序之后,包括:步骤S14,向锂电池半成品中添加电解液并进行密封的注液工序。其中,密封一般通过热封来实现。在该锂电池生产工艺中,电解液一般是液态电解液,进而制作而成的锂电池通常属于液态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在注液工序之前,可以重复进行一次以上深冷工序和解冻工序。进而能够帮助稳固其性能。
在该锂电池生产工艺中,经过深冷工序处理后的锂电池半成品由于在极低温的条件下提高密度,接近超导体状态,从而达到高导电性,高散热性,正负极片耐腐蚀性提高。其中,高导电性使得电池容量发挥性更好,正负极充放电时效率更高;电池内阻变小,铜箔、铝箔以及正负极粉的导电性大幅提高,尤其是包括极耳的焊接点的导电性也得到了大幅提高,并且强度也会增加;电池的散热性也会大幅提高,有利于大功率充放电散热,减慢电池衰减速度。并且有利于缩短冬季对电池升温时间,夏季散热;此外,隔膜的分子缩小,从而耐腐蚀耐温性也会提高;且正负极耐腐蚀性提高有助于电池的衰减减慢,循环寿命提高;电池内部胶粘剂也会粘着力增加,减少极粉脱落,并且降低老化速度。
上述的锂电池生产工艺尤其适合于软包锂电池使用,当然也可以是其他类型的锂电池。该实施例的锂电池生产工艺适用于液态锂电池的生产制作,而由于固态电解液的添加方式与液态电解液的添加方式完全不同,所以该实施例的锂电池生产工艺并不适用于固态锂电池的生产制作。
本发明还提供一种锂电池生产工艺。该锂电池生产工艺主要对制作锂电池的零部件进行处理,锂电池的零部件通常指涂布有正极粉的(分切或为分切的)正极片、涂布有负极粉的(分切或为分切的)负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装,外层包装可选为铝塑膜或者铝外壳。如图2所示,该锂电池生产工艺包括:
步骤S21,将制作锂电池的零部件密封到防潮袋中的准备工序。该防潮袋可选择为塑料袋,优选为铝塑薄膜袋,因为铝塑薄膜袋具有良好的导热性。
其中,涂布有正极粉的正极片和涂布有负极粉的负极片需要防潮袋密封,而其他未涂布粉体原料的零部件可以放入防潮袋、也可以不放入防潮袋密封。
步骤S22,将封装有零部件的防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序。
以及步骤S23,取出冷冻一定时间后的封装有零部件的防潮袋,取出零部件并在干燥环境下将零部件进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间。
进一步地,在步骤S23即解冻工序之后,包括:
步骤S24,利用零部件制作形成锂电池半成品的制作工序。
步骤S25,向锂电池半成品中添加电解液并进行密封的注液工序。
按照步骤S24~步骤S25所描述的工序制作而成的锂电池通常也是液态锂电池,也即在步骤S25中添加的电解液是液态电解液。
而在其它实施例中,可以不通过上述的步骤S24~步骤S25所描述的工序而制作固态锂电池,具体的,固态锂电池的制作工艺是步骤S23即解冻工序之后、并在后续的捲绕或叠片工序之前添加固态电解液,进而进一步制作形成固态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在制作工序之前,包括:重复一次以上深冷工序和解冻工序,进而帮助稳固其性能。
该实施例的锂电池生产工艺不仅适用于液态锂电池的生产制作,也适用于固态锂电池的生产制作,能取得除极耳的焊接点的导电性也得到了大幅提高并且强度也会增加以外与本发明第一实施例的锂电池生产工艺相同的效果。
本发明还提供一种锂电池生产工艺。该锂电池生产工艺主要对制作锂电池零部件的原料进行处理,制作锂电池的零部件的原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带,该包装带可选自铝塑膜带或铝外壳带。如图3所示,该锂电池生产工艺包括:
步骤S31,准备制作锂电池的零部件的原料的准备工序。
步骤S32,将原料浸没于液态氮或液态氦之中进行冷冻的深冷工序。
以及步骤S33,取出冷冻一定时间后的原料,并在干燥环境下将原料进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间。
进一步地,在步骤S33即解冻工序之后,包括:
步骤S34,利用原料制作成锂电池的零部件的零部件制作工序。
步骤S35,利用零部件制作产生锂电池半成品的半成品制作工序。
步骤S36,向锂电池半成品中添加电解液并进行密封的注液工序。
按照步骤S34~步骤S36所描述的工序制作而成的锂电池通常也是液态锂电池,也即在步骤S36中添加的电解液是液态电解液。
而在其它实施例中,可以不通过上述的步骤S34~步骤S36所描述的工序而制作固态锂电池,具体的,固态锂电池的制作工艺是步骤S34即零部件制作工序之后、并在后续的捲绕或叠片工序之前添加固态电解液,进而进一步制作形成固态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在步骤S34即零部件制作工序之前,包括:重复一次以上深冷工序和解冻工序,进而帮助稳固其性能。
在一具体实施例中,在深冷工序之中,包括:将成卷的原料(包括铝箔、铜箔、隔膜带、镍带以及包装带等)直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的原料(包括正极粉、负极粉以及胶黏剂等)密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
该实施例的锂电池生产工艺,同样能取得除极耳的焊接点的导电性也得到了大幅提高并且强度也会增加以外与本发明第一实施例的锂电池生产工艺相同的效果。
举例而言,液态锂电池可以采用这样的工序来制作:
拌料工序(将正负极原料按配方比例进行搅拌);涂布工序(将拌好的原料涂布到铝箔或铜箔表面);分切工序(将铜箔或铝箔(用对辊机)压实并(用压条机)分切制成正负极片);捲绕或叠片工序(将分切制成的正负极片进行卷绕或叠片);套壳工序(将卷绕或叠片后的正负极片套上铝外壳再焊接盖板或热封边进而制作形成锂电池半成品);密封工序(抽真空并封注液口);深冷工序;解冻工序;重复一次以上的深冷工序和解冻工序(即固化工序);注液工序(添加液态电解液);化成工序;分容工序;包装工序。
举例而言,固态锂电池可以采用这样的工序来制作:
拌料工序;涂布工序;分切工序;深冷工序;解冻工序;重复一次以上的深冷工序和解冻工序;注液工序(添加固态电解液);捲绕或叠片工序;套壳工序;化成工序;分容工序;包装工序。
在本发明锂电池生产工艺的原理指导下,可以对锂电池的具体工序进行调整,以适用于对锂电池半成品、锂电池的零部件或制作锂电池的零部件的原料进行深冷处理;同时,通过对相应工序的适应性调整可适合液态锂电池或固态锂电池的生产。上述如图1~图3所示的实施例的具体工艺流程简要介绍如下:
(1)将待处理的电池半成品、零部件或原料平整的放置于不锈钢框内,其中,如果采用防潮袋密封,推荐每袋厚度不超过15cm,以更快的进行热传导;(2)打开冷处理柜电源,向冷处理柜内注入液态氮或液态氦;把不锈钢框缓慢的放入冷处理柜中并使液态氮或液态氦冷够浸没(即液面高于)待处理的电池半成品、零部件或原料;(3)盖上并锁紧冷处理柜的柜门;(4)设定冷冻时间,举例可以在-150℃时停留2h~3h,再升温至-30℃;(5)将不锈钢框从冷处理柜取出并放置于干燥环境(如干燥室)下回到室温;(6)可以根据需要重复进行上述步骤(2)~(5)一次以上以进行固化冷处理,此时,冷冻时间可设定为8h,时间到达后可取出不锈钢框并放置于干燥环境下。在步骤(1)~(6)后可进行后续工序,直至生产出完整的锂电池。
上述实施例所采用的锂电池生产工艺,对锂电池性能的提升卓有成效。举例以磷酸铁锂电池为例,该工艺对其具有互补的作用。具体而言,(1)磷酸铁锂电池正极的振实密度小,密度一般在0.8~1.3之间,其体积较大;而通过超冷处理后可让原料晶体缩小,电池密度大幅提高。(2)磷酸铁锂电池导电性能差,锂离子扩散速度慢,高倍充放电时,实际的比容量低;而通过超冷处理后密度提高,晶体之间空隙更小,有利于电子穿过,从而让电池容量充份发挥。(3)磷酸铁锂电池的低温性能差;而通过超冷处理后密度提高会使得导热性提高,如(通过电动车电池加热板)可更快加热电池,让电力恢复输出。(4)磷酸铁锂电池单个电池的寿命长,在2000次左右,但是磷酸铁锂电池组的寿命短,一般在500次左右;而通过超冷处理后,由于密度提高会让原料晶体更耐腐蚀,从而提大幅提高循环寿命,因此可延长电池组寿命。
进一步以锰酸锂电池为例对同一标准下的两块电池在不进行任何处理和经过如上述实施例所述的深冷(超冷)处理后在相关参数上进行对比。选择型号804470R铝壳、设计理论容量2650mA的锰酸锂电池进行上述实验,对比结果显示如下表一所示。
【表1】
由表1的对比结果可以看出,深冷处理后容量的发挥很好,可见导电性是大幅增加了。经过超深冷处理后,电池在循环放电方面也差距十分明显,即使对于锰酸锂这种容易衰减的原料也能做到经300次循环后还可以剩余90%以上的容量,而且原料的抗腐蚀性明显增加。
本发明的锂电池生产工艺,具有如下有益效果:
通过将锂电池半成品、制作成锂电池的零部件或制作成锂电池零部件的原料浸没于液态氮或液态氦处理后,能够提高锂电池的导电性、散热性以及正负极片耐腐蚀性,进而提高锂电池的各项性能指标,其工艺方法简单巧妙,极其适用于推广。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种锂电池生产工艺,其特征在于,包括:
抽真空并密封未注入电解液的锂电池半成品的准备工序;
将所述锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序;
以及取出冷冻一定时间后的所述锂电池半成品,并在干燥环境下将所述锂电池半成品进行解冻的解冻工序。
2.根据权利要求1所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
向所述锂电池半成品中添加电解液并进行密封的注液工序。
3.根据权利要求2所述的锂电池生产工艺,其特征在于,在注液工序之前,包括:
重复一次以上所述深冷工序和所述解冻工序。
4.一种锂电池生产工艺,其特征在于,包括:
将制作锂电池的零部件密封到防潮袋中的准备工序;其中,所述零部件包括涂布有正极粉的正极片、涂布有负极粉的负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装;
将封装有所述零部件的所述防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序;
以及取出冷冻一定时间后的封装有所述零部件的所述防潮袋,取出所述零部件并在干燥环境下将所述零部件进行解冻的解冻工序。
5.根据权利要求4所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
利用所述零部件制作形成锂电池半成品的制作工序;
向所述锂电池半成品中添加电解液并进行密封的注液工序。
6.根据权利要求5所述的锂电池生产工艺,其特征在于,在制作工序之前,包括:
重复一次以上所述深冷工序和所述解冻工序。
7.一种锂电池生产工艺,其特征在于,包括:
准备制作锂电池的零部件的原料的准备工序;其中,所述原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带;
将所述原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;
以及取出冷冻一定时间后的所述原料,并在干燥环境下将所述原料进行解冻的解冻工序。
8.根据权利要求7所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
利用所述原料制作形成锂电池的零部件的零部件制作工序;
利用所述零部件制作产生锂电池半成品的半成品制作工序;
向所述锂电池半成品中添加电解液并进行密封的注液工序。
9.根据权利要求8所述的锂电池生产工艺,其特征在于,在零部件制作工序之前,包括:
重复一次以上所述深冷工序和所述解冻工序。
10.根据权利要求7所述的锂电池生产工艺,其特征在于,在所述深冷工序之中,包括:
将成卷的所述原料直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的所述原料密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
CN201910036791.6A 2019-01-15 2019-01-15 锂电池生产工艺 Pending CN109818045A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910036791.6A CN109818045A (zh) 2019-01-15 2019-01-15 锂电池生产工艺
PCT/CN2019/073936 WO2020147153A1 (zh) 2019-01-15 2019-01-30 锂电池生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910036791.6A CN109818045A (zh) 2019-01-15 2019-01-15 锂电池生产工艺

Publications (1)

Publication Number Publication Date
CN109818045A true CN109818045A (zh) 2019-05-28

Family

ID=66603821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910036791.6A Pending CN109818045A (zh) 2019-01-15 2019-01-15 锂电池生产工艺

Country Status (2)

Country Link
CN (1) CN109818045A (zh)
WO (1) WO2020147153A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957471A (zh) * 2019-12-17 2020-04-03 横店集团东磁股份有限公司 一种提高类固态电池电极界面润湿性方法
US20230268492A1 (en) * 2022-02-18 2023-08-24 International Business Machines Corporation Method to protect a lithium metal anode in a rechargeable lithium metal battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451551A (zh) * 2021-07-05 2021-09-28 焦作伴侣纳米材料工程有限公司 一种锂离子电池电极材料的改性方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012086A (ja) * 1998-06-17 2000-01-14 Toyota Central Res & Dev Lab Inc 非水電解液電池の製造方法
CN102569750A (zh) * 2012-03-21 2012-07-11 中国科学院宁波材料技术与工程研究所 锂离子电池负极复合材料及其制备方法
CN102714306A (zh) * 2010-01-15 2012-10-03 丰田自动车株式会社 用于制造复合正电极活性材料的方法
CN104134777A (zh) * 2014-06-12 2014-11-05 深圳市信宇人科技有限公司 锂离子电池或电池极片的高效率深度除水方法及烘烤线
CN107180939A (zh) * 2017-05-08 2017-09-19 深圳市星源材质科技股份有限公司 一种结构均匀的锂离子电池微孔膜的制备方法
CN108933223A (zh) * 2018-07-20 2018-12-04 中航锂电技术研究院有限公司 锂电池极耳双重加强方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW499766B (en) * 2000-03-29 2002-08-21 Elite Ionergy Co Ltd Battery manufacturing method
CN106099128A (zh) * 2016-07-05 2016-11-09 深圳大学 一种三维锂电池制造方法
CN106486703A (zh) * 2016-11-02 2017-03-08 浙江超威创元实业有限公司 一种使用复合凝胶隔膜的软包锂离子电池制作方法
JP2018156886A (ja) * 2017-03-21 2018-10-04 三菱自動車工業株式会社 スタック電池の製造方法
CN107317037B (zh) * 2017-06-28 2019-10-25 惠州博磊达新能源科技有限公司 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108199087A (zh) * 2017-12-25 2018-06-22 福建省致格新能源电池科技有限公司 一种增加电池保液量的方法
CN109148879A (zh) * 2018-09-30 2019-01-04 桑顿新能源科技有限公司 一种锂离子电池用富锂锰基正极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012086A (ja) * 1998-06-17 2000-01-14 Toyota Central Res & Dev Lab Inc 非水電解液電池の製造方法
CN102714306A (zh) * 2010-01-15 2012-10-03 丰田自动车株式会社 用于制造复合正电极活性材料的方法
CN102569750A (zh) * 2012-03-21 2012-07-11 中国科学院宁波材料技术与工程研究所 锂离子电池负极复合材料及其制备方法
CN104134777A (zh) * 2014-06-12 2014-11-05 深圳市信宇人科技有限公司 锂离子电池或电池极片的高效率深度除水方法及烘烤线
CN107180939A (zh) * 2017-05-08 2017-09-19 深圳市星源材质科技股份有限公司 一种结构均匀的锂离子电池微孔膜的制备方法
CN108933223A (zh) * 2018-07-20 2018-12-04 中航锂电技术研究院有限公司 锂电池极耳双重加强方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957471A (zh) * 2019-12-17 2020-04-03 横店集团东磁股份有限公司 一种提高类固态电池电极界面润湿性方法
US20230268492A1 (en) * 2022-02-18 2023-08-24 International Business Machines Corporation Method to protect a lithium metal anode in a rechargeable lithium metal battery
US12009511B2 (en) * 2022-02-18 2024-06-11 International Business Machines Corporation Method to protect a lithium metal anode in a rechargeable lithium metal battery

Also Published As

Publication number Publication date
WO2020147153A1 (zh) 2020-07-23

Similar Documents

Publication Publication Date Title
CN202067875U (zh) 一种软包装电池及其电池组
CN109818045A (zh) 锂电池生产工艺
CN103779579A (zh) 锂电池负极片及其制备方法和相应的锂电池制备方法
CN104659333B (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN101685878A (zh) 聚合物锂离子电池的制备方法
CN109687028A (zh) 一种高能量密度锂离子电池及其制作方法
CN107732288A (zh) 用于超低温放电的聚合物锂离子电池及其制备方法
CN112467224A (zh) 一种锂离子电池的电化学均匀预锂方法
CN103187568A (zh) 一种锂离子电池正极材料及其合成方法
CN204793030U (zh) 混合正极极片及锂离子动力电池
CN102299384A (zh) 160ah磷酸铁锂方形电池及其制作工艺
CN107819096A (zh) 一种常温循环改善型三元锂离子电池的制备方法
CN105703016B (zh) 一种用于电池极片与隔膜粘结的热复合设备
CN107732177A (zh) 硫/剑麻炭锂离子电池复合负极材料的制备方法
Xiang et al. Thermal transport in lithium-ion battery: A micro perspective for thermal management
CN102637848B (zh) 一种锂离子电池极片的制备方法
CN114759269A (zh) 基于陶瓷基电解质片的一体化全固态电池及制备方法
CN103560280B (zh) 锂离子电池的化成方法
CN207459090U (zh) 一种锂离子电池
CN102290603B (zh) 磷酸铁锂圆形电池及其制作工艺
CN104085923A (zh) 过渡金属硫属化物纳米线及其制备方法和储能应用
CN101685876A (zh) 聚合物电池的制备方法
CN102888539B (zh) 一种具有超高容量特性的低成本ab5型贮氢合金及其制法和应用
CN103715461A (zh) 一种柔性锂离子电池及网络状钛酸锂电极结构的制备方法
CN109962200A (zh) 一种锂金属二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190528

RJ01 Rejection of invention patent application after publication