WO2020147153A1 - 锂电池生产工艺 - Google Patents

锂电池生产工艺 Download PDF

Info

Publication number
WO2020147153A1
WO2020147153A1 PCT/CN2019/073936 CN2019073936W WO2020147153A1 WO 2020147153 A1 WO2020147153 A1 WO 2020147153A1 CN 2019073936 W CN2019073936 W CN 2019073936W WO 2020147153 A1 WO2020147153 A1 WO 2020147153A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
semi
thawing
parts
production process
Prior art date
Application number
PCT/CN2019/073936
Other languages
English (en)
French (fr)
Inventor
梅承寨
Original Assignee
梅承寨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梅承寨 filed Critical 梅承寨
Publication of WO2020147153A1 publication Critical patent/WO2020147153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium batteries, in particular to a lithium battery production process.
  • the present invention provides a lithium battery production process, which can not only improve the conductivity and heat dissipation of the lithium battery, but also improve the corrosion resistance of the positive and negative plates and thereby increase the cycle number of the lithium battery.
  • the present invention provides a lithium battery production process, including: vacuuming and sealing the semi-finished lithium battery without electrolyte injection; immersing the semi-finished lithium battery in liquid nitrogen or liquid helium. A cryogenic process of freezing; and a thawing process of removing the semi-finished lithium battery after being frozen for a certain period of time, and thawing the semi-finished lithium battery in a dry environment.
  • the thawing process includes: a liquid injection process of adding electrolyte to the semi-finished lithium battery and sealing it.
  • the method includes repeating the deep cooling step and the thawing step more than once.
  • the present invention also provides a lithium battery production process, including: a preparation process of sealing the parts for making the lithium battery in a moisture-proof bag; wherein the parts include a positive electrode sheet coated with positive electrode powder , The negative electrode sheet coated with negative electrode powder, the divided separator, the prepared positive electrode ear, the prepared negative electrode ear, and the finished outer packaging; immerse the moisture-proof bag with the components in the liquid A cryogenic process of freezing in nitrogen or liquid helium; and taking out the moisture-proof bag encapsulating the parts after being frozen for a certain period of time, taking out the parts and thawing the parts in a dry environment Thawing process.
  • the thawing process includes: a manufacturing process of using the components to form a semi-finished lithium battery; and a liquid injection process of adding electrolyte to the semi-finished lithium battery and sealing.
  • the manufacturing process includes repeating the cryogenic process and the thawing process more than once.
  • the present invention also provides a lithium battery production process, including: preparing the raw materials for the production of lithium battery parts; wherein the raw materials include positive electrode powder, negative electrode powder, and coating positive electrode powder
  • the raw materials include positive electrode powder, negative electrode powder, and coating positive electrode powder
  • a cryogenic process of immersing the raw material in liquid nitrogen or liquid helium for freezing; and a thawing process of removing the raw material frozen for a certain period of time and thawing the raw material in a dry environment.
  • the thawing process includes: a part manufacturing process of using the raw materials to make parts that form a lithium battery; a semi-finished product manufacturing process of using the parts to make a semi-finished lithium battery;
  • a liquid injection step of adding electrolyte to the semi-finished lithium battery and sealing includes repeating the cryogenic process and the thawing process more than once.
  • the deep-cooling process includes: directly immersing the rolled raw material in the liquid nitrogen or liquid helium for freezing, and sealing the powdered raw material in a moisture-proof bag and then immersing it in the The freezing is carried out in liquid nitrogen or liquid helium.
  • the conductivity, heat dissipation and corrosion resistance of the positive and negative plates of the lithium battery can be improved ,
  • the process method is simple and ingenious, and is extremely suitable for promotion.
  • Fig. 1 is a flow chart of the first embodiment of the lithium battery production process of the present invention.
  • Fig. 2 is a flowchart of a second embodiment of the lithium battery production process of the present invention.
  • Fig. 3 is a flowchart of a third embodiment of the lithium battery production process of the present invention.
  • the invention provides a lithium battery production process.
  • the lithium battery production process mainly processes the semi-finished products of lithium batteries.
  • the semi-finished products of lithium batteries specifically refer to the semi-products that have a basic lithium battery form after assembly or processing, but have not been injected with electrolyte, because the electrolyte cannot be used as described below Cryogenic process.
  • the lithium battery production process includes: step S11, a preparation process of vacuuming and sealing the semi-finished lithium battery without electrolyte injection.
  • step S12 the semi-finished lithium battery is immersed in liquid nitrogen or liquid helium for a cryogenic process of freezing.
  • liquid nitrogen which is cheaper, is more considered at this stage.
  • liquid helium may be preferably considered after the cost of obtaining liquid helium is reduced.
  • step S13 taking out the semi-finished lithium battery after being frozen for a certain period of time, and thawing the semi-finished lithium battery in a dry environment.
  • the freezing time can be customized, usually between 1h and 24h, and can be adjusted as needed.
  • step S14 a liquid injection step of adding electrolyte to the semi-finished lithium battery and sealing it.
  • sealing is generally achieved by heat sealing.
  • the electrolyte is generally a liquid electrolyte, and the lithium battery produced is usually a liquid lithium battery.
  • the cryogenic process and the thawing process may be repeated more than once before the liquid injection process. In turn, it can help stabilize its performance.
  • the semi-finished lithium battery after the cryogenic process has increased density under extremely low temperature conditions, close to the superconductor state, so as to achieve high conductivity, high heat dissipation, and improved corrosion resistance of the positive and negative plates .
  • the high conductivity makes the battery capacity better, and the positive and negative electrodes are more efficient during charging and discharging; the internal resistance of the battery is reduced, and the conductivity of the copper foil, aluminum foil and the positive and negative powders is greatly improved, especially for those with tabs.
  • the conductivity of the solder joints has also been greatly improved, and the strength will also increase; the heat dissipation of the battery will also be greatly improved, which is conducive to high-power charging and discharging heat dissipation and slowing down the battery decay rate. And it is helpful to shorten the heating time of the battery in winter and heat dissipation in summer; in addition, the molecules of the separator are reduced, so that the corrosion resistance and temperature resistance will be improved; and the improvement of the corrosion resistance of the positive and negative electrodes will help slow the attenuation of the battery and increase the cycle life ; The adhesive inside the battery will also increase the adhesive force, reduce the shedding of polar powder, and reduce the aging speed.
  • the above-mentioned lithium battery production process is particularly suitable for the use of soft-packed lithium batteries, of course, other types of lithium batteries can also be used.
  • the lithium battery production process of this embodiment is suitable for the production of liquid lithium batteries, and since the way of adding solid electrolyte is completely different from that of liquid electrolyte, the production process of lithium battery of this embodiment is not suitable for solid lithium Production of batteries.
  • the invention also provides a lithium battery production process.
  • the lithium battery production process mainly processes the parts of the lithium battery.
  • the parts of the lithium battery usually refer to the positive electrode plate coated with the positive electrode powder (split or cut), and the negative electrode powder coated (split or cut). Or it may be divided) negative electrode sheet, divided separator, produced positive electrode ear, produced negative electrode ear, and produced outer packaging.
  • the outer packaging can be aluminum plastic film or aluminum casing.
  • the lithium battery production process includes:
  • Step S21 a preparatory process of sealing the parts for making the lithium battery into a moisture-proof bag.
  • the moisture-proof bag can be selected as a plastic bag, preferably an aluminum-plastic film bag, because the aluminum-plastic film bag has good thermal conductivity.
  • the positive electrode sheet coated with positive electrode powder and the negative electrode sheet coated with negative electrode powder need to be sealed in a moisture-proof bag, and other parts without powder coating can be placed in a moisture-proof bag or not in a moisture-proof bag.
  • Step S22 immersing the moisture-proof bag containing the components in liquid nitrogen or liquid helium for a cryogenic freezing process.
  • step S23 taking out the moisture-proof bag encapsulating the parts after being frozen for a certain period of time, taking out the parts and thawing the parts in a dry environment.
  • the freezing time can be customized, usually between 1h and 24h.
  • the method includes:
  • Step S24 a manufacturing process of forming a semi-finished lithium battery by using parts.
  • Step S25 adding electrolyte to the semi-finished lithium battery and performing a liquid injection process of sealing.
  • the lithium battery manufactured according to the procedures described in step S24 to step S25 is usually a liquid lithium battery, that is, the electrolyte added in step S25 is a liquid electrolyte.
  • the solid-state lithium battery may not be manufactured through the steps described in steps S24 to S25 above.
  • the manufacturing process of the solid-state lithium battery is step S23, that is, after the thawing process and after the subsequent winding Or add a solid electrolyte before the lamination process, and further produce a solid lithium battery.
  • in order to prevent the performance of the semi-finished lithium battery from rebounding, before the manufacturing process it includes: repeating the cryogenic process and the thawing process more than once to help stabilize its performance.
  • the lithium battery production process of this embodiment is not only suitable for the production and production of liquid lithium batteries, but also for the production and production of solid-state lithium batteries.
  • the conductivity of the solder joints except for the tabs has also been greatly improved and the strength will also increase. The same effect as the lithium battery production process of the first embodiment of the present invention.
  • the invention also provides a lithium battery production process.
  • the lithium battery production process mainly processes the raw materials for the production of lithium battery parts.
  • the raw materials for the production of lithium battery parts include positive electrode powder, negative electrode powder, aluminum foil used to coat positive electrode powder to make positive electrode sheet, and used to coat negative electrode powder
  • the packaging tape can be selected from aluminum-plastic film tape or aluminum Shell belt.
  • the lithium battery production process includes:
  • step S31 a preparation process for preparing the raw materials of the parts of the lithium battery.
  • step S32 the raw material is immersed in liquid nitrogen or liquid helium to perform a cryogenic process of freezing.
  • step S33 the raw material frozen for a certain period of time is taken out, and the raw material is subjected to a thawing process of thawing in a dry environment.
  • the freezing time can be customized, usually between 1h and 24h.
  • the method includes:
  • Step S34 a component manufacturing process of using raw materials to manufacture parts of a lithium battery.
  • Step S35 a semi-finished product manufacturing process for producing a semi-finished lithium battery by using parts.
  • Step S36 adding electrolyte to the semi-finished lithium battery and performing a liquid injection process of sealing.
  • the lithium battery manufactured according to the procedures described in step S34 to step S36 is usually a liquid lithium battery, that is, the electrolyte added in step S36 is a liquid electrolyte.
  • the solid-state lithium battery may not be manufactured through the processes described in steps S34 to S36 above.
  • the manufacturing process of the solid-state lithium battery is step S34, that is, after the parts manufacturing process and in the subsequent The solid electrolyte is added before the winding or lamination process, and the solid lithium battery is further fabricated.
  • the component manufacturing process in order to prevent the performance of the semi-finished lithium battery from rebounding, before step S34, the component manufacturing process, it includes repeating the cryogenic process and the thawing process more than once to help stabilize the performance.
  • the cryogenic process includes: directly immersing the rolled raw materials (including aluminum foil, copper foil, diaphragm tape, nickel tape, packaging tape, etc.) in the liquid nitrogen or liquid helium.
  • the powder raw materials including positive electrode powder, negative electrode powder, adhesive, etc.
  • the liquid nitrogen or liquid helium for freezing.
  • the lithium battery production process of this embodiment can also achieve the same effects as the lithium battery production process of the first embodiment of the present invention except that the conductivity of the solder joints of the tabs is also greatly improved and the strength is also increased.
  • a liquid lithium battery can be manufactured using such a process:
  • solid-state lithium batteries can be made using such a process:
  • the specific procedures of the lithium battery can be adjusted to be suitable for the cryogenic treatment of the semi-finished lithium battery, the parts of the lithium battery, or the raw materials for the parts of the lithium battery; at the same time, It can be suitable for the production of liquid lithium batteries or solid-state lithium batteries by adapting the corresponding processes.
  • the specific process flow of the embodiment shown in Figs. 1 to 3 is briefly introduced as follows:
  • the lithium battery production process adopted in the foregoing embodiments is effective in improving the performance of the lithium battery.
  • This process has a complementary effect on it. Specifically, (1) The tap density of the positive electrode of lithium iron phosphate battery is small, the density is generally between 0.8 and 1.3, and its volume is relatively large; and the raw material crystal can be reduced after ultra-cooling treatment, and the battery density can be greatly increased. (2)
  • the conductivity of lithium iron phosphate batteries is poor, the diffusion speed of lithium ions is slow, and the actual specific capacity is low when charging and discharging at high times; and the density increases after ultra-cooling treatment, and the gap between the crystals is smaller, which is beneficial for electrons to pass through. Let the battery capacity fully play.
  • the conductivity, heat dissipation and corrosion resistance of the positive and negative plates of the lithium battery can be improved , Thereby improving the performance indicators of lithium batteries, the process method is simple and ingenious, and is extremely suitable for promotion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂电池生产工艺,包括:将锂电池半成品、锂电池零部件或者锂电池零部件的制作原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述锂电池半成品、锂电池零部件或者锂电池零部件的制作原料,并在干燥环境下将所述锂电池半成品、锂电池零部件或者锂电池零部件的制作原料进行解冻的解冻工序。通过上述工艺,不仅能够提高锂电池的导电性、散热性,还能够提高正负极片耐腐蚀性进而提高锂电池的循环次数。

Description

锂电池生产工艺 技术领域
本发明涉及锂电池技术领域,尤其涉及一种锂电池生产工艺。
背景技术
随着科技的发展,越来越多的便携式电子设备如手机、笔记本电脑、音箱、电子书等,以及新能源电动车等逐渐普及到寻常百姓家,这些设备通常都需要配置锂电池以进行供电,因此对于锂电池的性能如电池发挥容量、导电性、散热性等的要求越来越高。通常,研究人员是通过对锂电池的原料和/或零件采用新材料、新配方来对其性能进行改良和提升,这些涉及到相当复杂的工艺,而且锂电池发展至今己有二十多年,各种原料性能发挥己接近瓶颈,造成锂电池生产制作成本居高不下。因而现今期待全新的技术来推动电池技术继续进步。
发明内容
本发明为解决上述技术问题提供一种锂电池生产工艺,不仅能够提高锂电池的导电性、散热性,还能够提高正负极片耐腐蚀性进而提高锂电池的循环次数。
为解决上述技术问题,本发明提供一种锂电池生产工艺,包括:抽真空并密封未注入电解液的锂电池半成品的准备工序;将所述锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述锂电池半成品,并在干燥环境下将所述锂电池半成品进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:向所述锂电池半成品中添加电解液并进行密封的注液工序。
进一步地,在注液工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
为解决上述技术问题,本发明还提供一种锂电池生产工艺,包括:将制作锂电池的零部件密封到防潮袋中的准备工序;其中,所述零部件包括涂布有正极粉的正极片、涂布有负极粉的负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装;将封装有所述零部件的所述防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的封装有所述零部件的所述防潮袋,取出所述零部件并在干燥环境下将所述零部件进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:利用所述零部件制作形成锂电池半成品的制作工序;向所述锂电池半成品中添加电解液并进行密封的注液工序。
进一步地,在制作工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
为解决上述技术问题,本发明还提供一种锂电池生产工艺,包括:准备制作锂电池的零部件的原料的准备工序;其中,所述原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带;将所述原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;以及取出冷冻一定时间后的所述原料,并在干燥环境下将所述原料进行解冻的解冻工序。
进一步地,在解冻工序之后,包括:利用所述原料制作形成锂电池的零部件的零部件制作工序;利用所述零部件制作产生锂电池半成品的半成品制作工序;
向所述锂电池半成品中添加电解液并进行密封的注液工序。进一步地,在零部件制作工序之前,包括:重复一次以上所述深冷工序和所述解冻工序。
进一步地,在所述深冷工序之中,包括:将成卷的所述原料直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的所述原料密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
本发明的锂电池生产工艺,具有如下有益效果:
通过将锂电池半成品、制作成锂电池的零部件或制作成锂电池零部件的原料浸没于液态氮或液态氦处理后,能够提高锂电池的导电性、散热性以及正负极片耐腐蚀性,进而能够提高锂电池的各项性能指标,其工艺方法简单巧妙,极其适用于推广。
附图说明
图1是本发明锂电池生产工艺第一实施例的流程图。
图2是本发明锂电池生产工艺第二实施例的流程图。
图3是本发明锂电池生产工艺第三实施例的流程图。
具体实施方式
下面结合附图和实施方式对本发明进行详细说明。
本发明提供一种锂电池生产工艺。该锂电池生产工艺主要对锂电池半成品进行处理,锂电池半成品具体指通过组装或加工后已具备基本的锂电池形态、但未注入电解液时的半产品,因为电解液不能进行如下所述的深冷工序。如图1所示,该锂电池生产工艺包括:步骤S11,抽真空并密封未注入电解液的锂电池半成品的准备工序。
步骤S12,将锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序。
其中,液态氮的临界温度是-196℃,液态氦的临界温度是-272℃。深冷工序中,温度 越低则锂电池性能提升得更高。然而,考虑到液态氮或液态氦的获取成本,现阶段更考虑成本较低的液态氮。当然,随着工业技术的进步,在液态氦获取成本降低之后可以优选考虑液态氦。
以及步骤S13,取出冷冻一定时间后的锂电池半成品,并在干燥环境下将锂电池半成品进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间,可以视需要而进行调整。
进一步地,在工序S13即解冻工序之后,包括:步骤S14,向锂电池半成品中添加电解液并进行密封的注液工序。其中,密封一般通过热封来实现。在该锂电池生产工艺中,电解液一般是液态电解液,进而制作而成的锂电池通常属于液态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在注液工序之前,可以重复进行一次以上深冷工序和解冻工序。进而能够帮助稳固其性能。
在该锂电池生产工艺中,经过深冷工序处理后的锂电池半成品由于在极低温的条件下提高密度,接近超导体状态,从而达到高导电性,高散热性,正负极片耐腐蚀性提高。其中,高导电性使得电池容量发挥性更好,正负极充放电时效率更高;电池内阻变小,铜箔、铝箔以及正负极粉的导电性大幅提高,尤其是包括极耳的焊接点的导电性也得到了大幅提高,并且强度也会增加;电池的散热性也会大幅提高,有利于大功率充放电散热,减慢电池衰减速度。并且有利于缩短冬季对电池升温时间,夏季散热;此外,隔膜的分子缩小,从而耐腐蚀耐温性也会提高;且正负极耐腐蚀性提高有助于电池的衰减减慢,循环寿命提高;电池内部胶粘剂也会粘着力增加,减少极粉脱落,并且降低老化速度。
上述的锂电池生产工艺尤其适合于软包锂电池使用,当然也可以是其他类型的锂电池。该实施例的锂电池生产工艺适用于液态锂电池的生产制作,而由于固态电解液的添加方式与液态电解液的添加方式完全不同,所以该实施例的锂电池生产工艺并不适用于固态锂电池的生产制作。
本发明还提供一种锂电池生产工艺。该锂电池生产工艺主要对制作锂电池的零部件进行处理,锂电池的零部件通常指涂布有正极粉的(分切或为分切的)正极片、涂布有负极粉的(分切或为分切的)负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装,外层包装可选为铝塑膜或者铝外壳。如图2所示,该锂电池生产工艺包括:
步骤S21,将制作锂电池的零部件密封到防潮袋中的准备工序。该防潮袋可选择为塑料袋,优选为铝塑薄膜袋,因为铝塑薄膜袋具有良好的导热性。
其中,涂布有正极粉的正极片和涂布有负极粉的负极片需要防潮袋密封,而其他未涂布粉体原料的零部件可以放入防潮袋、也可以不放入防潮袋密封。
步骤S22,将封装有零部件的防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序。
以及步骤S23,取出冷冻一定时间后的封装有零部件的防潮袋,取出零部件并在干燥环境下将零部件进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间。
进一步地,在步骤S23即解冻工序之后,包括:
步骤S24,利用零部件制作形成锂电池半成品的制作工序。
步骤S25,向锂电池半成品中添加电解液并进行密封的注液工序。
按照步骤S24~步骤S25所描述的工序制作而成的锂电池通常也是液态锂电池,也即在步骤S25中添加的电解液是液态电解液。
而在其它实施例中,可以不通过上述的步骤S24~步骤S25所描述的工序而制作固态锂电池,具体的,固态锂电池的制作工艺是步骤S23即解冻工序之后、并在后续的捲绕或叠片工序之前添加固态电解液,进而进一步制作形成固态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在制作工序之前,包括:重复一次以上深冷工序和解冻工序,进而帮助稳固其性能。
该实施例的锂电池生产工艺不仅适用于液态锂电池的生产制作,也适用于固态锂电池的生产制作,能取得除极耳的焊接点的导电性也得到了大幅提高并且强度也会增加以外与本发明第一实施例的锂电池生产工艺相同的效果。
本发明还提供一种锂电池生产工艺。该锂电池生产工艺主要对制作锂电池零部件的原料进行处理,制作锂电池的零部件的原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带,该包装带可选自铝塑膜带或铝外壳带。如图3所示,该锂电池生产工艺包括:
步骤S31,准备制作锂电池的零部件的原料的准备工序。
步骤S32,将原料浸没于液态氮或液态氦之中进行冷冻的深冷工序。
以及步骤S33,取出冷冻一定时间后的原料,并在干燥环境下将原料进行解冻的解冻工序。
其中,冷冻时间可以自定义设置,通常在1h~24h之间。
进一步地,在步骤S33即解冻工序之后,包括:
步骤S34,利用原料制作成锂电池的零部件的零部件制作工序。
步骤S35,利用零部件制作产生锂电池半成品的半成品制作工序。
步骤S36,向锂电池半成品中添加电解液并进行密封的注液工序。
按照步骤S34~步骤S36所描述的工序制作而成的锂电池通常也是液态锂电池,也即在步骤S36中添加的电解液是液态电解液。
而在其它实施例中,可以不通过上述的步骤S34~步骤S36所描述的工序而制作固态锂电池,具体的,固态锂电池的制作工艺是步骤S34即零部件制作工序之后、并在后续的捲绕或叠片工序之前添加固态电解液,进而进一步制作形成固态锂电池。
在一较佳实施例中,为了防止锂电池半成品性能反弹,在步骤S34即零部件制作工序之前,包括:重复一次以上深冷工序和解冻工序,进而帮助稳固其性能。
在一具体实施例中,在深冷工序之中,包括:将成卷的原料(包括铝箔、铜箔、隔膜带、镍带以及包装带等)直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的原料(包括正极粉、负极粉以及胶黏剂等)密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
该实施例的锂电池生产工艺,同样能取得除极耳的焊接点的导电性也得到了大幅提高并且强度也会增加以外与本发明第一实施例的锂电池生产工艺相同的效果。
举例而言,液态锂电池可以采用这样的工序来制作:
拌料工序(将正负极原料按配方比例进行搅拌);涂布工序(将拌好的原料涂布到铝箔或铜箔表面);分切工序(将铜箔或铝箔(用对辊机)压实并(用压条机)分切制成正负极片);捲绕或叠片工序(将分切制成的正负极片进行卷绕或叠片);套壳工序(将卷绕或叠片后的正负极片套上铝外壳再焊接盖板或热封边进而制作形成锂电池半成品);密封工序(抽真空并封注液口);深冷工序;解冻工序;重复一次以上的深冷工序和解冻工序(即固化工序);注液工序(添加液态电解液);化成工序;分容工序;包装工序。
举例而言,固态锂电池可以采用这样的工序来制作:
拌料工序;涂布工序;分切工序;深冷工序;解冻工序;重复一次以上的深冷工序和解冻工序;注液工序(添加固态电解液);捲绕或叠片工序;套壳工序;化成工序;分容工序;包装工序。
在本发明锂电池生产工艺的原理指导下,可以对锂电池的具体工序进行调整,以适用于对锂电池半成品、锂电池的零部件或制作锂电池的零部件的原料进行深冷处理;同时, 通过对相应工序的适应性调整可适合液态锂电池或固态锂电池的生产。上述如图1~图3所示的实施例的具体工艺流程简要介绍如下:
(1)将待处理的电池半成品、零部件或原料平整的放置于不锈钢框内,其中,如果采用防潮袋密封,推荐每袋厚度不超过15cm,以更快的进行热传导;(2)打开冷处理柜电源,向冷处理柜内注入液态氮或液态氦;把不锈钢框缓慢的放入冷处理柜中并使液态氮或液态氦冷够浸没(即液面高于)待处理的电池半成品、零部件或原料;(3)盖上并锁紧冷处理柜的柜门;(4)设定冷冻时间,举例可以在-150℃时停留2h~3h,再升温至-30℃;(5)将不锈钢框从冷处理柜取出并放置于干燥环境(如干燥室)下回到室温;(6)可以根据需要重复进行上述步骤(2)~(5)一次以上以进行固化冷处理,此时,冷冻时间可设定为8h,时间到达后可取出不锈钢框并放置于干燥环境下。在步骤(1)~(6)后可进行后续工序,直至生产出完整的锂电池。
上述实施例所采用的锂电池生产工艺,对锂电池性能的提升卓有成效。举例以磷酸铁锂电池为例,该工艺对其具有互补的作用。具体而言,(1)磷酸铁锂电池正极的振实密度小,密度一般在0.8~1.3之间,其体积较大;而通过超冷处理后可让原料晶体缩小,电池密度大幅提高。(2)磷酸铁锂电池导电性能差,锂离子扩散速度慢,高倍充放电时,实际的比容量低;而通过超冷处理后密度提高,晶体之间空隙更小,有利于电子穿过,从而让电池容量充份发挥。(3)磷酸铁锂电池的低温性能差;而通过超冷处理后密度提高会使得导热性提高,如(通过电动车电池加热板)可更快加热电池,让电力恢复输出。(4)磷酸铁锂电池单个电池的寿命长,在2000次左右,但是磷酸铁锂电池组的寿命短,一般在500次左右;而通过超冷处理后,由于密度提高会让原料晶体更耐腐蚀,从而提大幅提高循环寿命,因此可延长电池组寿命。
进一步以锰酸锂电池为例对同一标准下的两块电池在不进行任何处理和经过如上述实施例所述的深冷(超冷)处理后在相关参数上进行对比。选择型号804470R铝壳、设计理论容量2650mA的锰酸锂电池进行上述实验,对比结果显示如下表一所示。
【表1】
Figure PCTCN2019073936-appb-000001
由表1的对比结果可以看出,深冷处理后容量的发挥很好,可见导电性是大幅增加了。经过超深冷处理后,电池在循环放电方面也差距十分明显,即使对于锰酸锂这种容易衰减的原料也能做到经300次循环后还可以剩余90%以上的容量,而且原料的抗腐蚀性明显增加。
本发明的锂电池生产工艺,具有如下有益效果:
通过将锂电池半成品、制作成锂电池的零部件或制作成锂电池零部件的原料浸没于液态氮或液态氦处理后,能够提高锂电池的导电性、散热性以及正负极片耐腐蚀性,进而提高锂电池的各项性能指标,其工艺方法简单巧妙,极其适用于推广。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种锂电池生产工艺,其特征在于,包括:
    抽真空并密封未注入电解液的锂电池半成品的准备工序;
    将所述锂电池半成品浸没于液态氮或液态氦之中进行冷冻的深冷工序;
    以及取出冷冻一定时间后的所述锂电池半成品,并在干燥环境下将所述锂电池半成品进行解冻的解冻工序。
  2. 根据权利要求1所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
    向所述锂电池半成品中添加电解液并进行密封的注液工序。
  3. 根据权利要求2所述的锂电池生产工艺,其特征在于,在注液工序之前,包括:
    重复一次以上所述深冷工序和所述解冻工序。
  4. 一种锂电池生产工艺,其特征在于,包括:
    将制作锂电池的零部件密封到防潮袋中的准备工序;其中,所述零部件包括涂布有正极粉的正极片、涂布有负极粉的负极片、分切好的隔膜、制作好的正极耳、制作好的负极耳以及制作好的外层包装;
    将封装有所述零部件的所述防潮袋浸没于液态氮或液态氦之中进行冷冻的深冷工序;
    以及取出冷冻一定时间后的封装有所述零部件的所述防潮袋,取出所述零部件并在干燥环境下将所述零部件进行解冻的解冻工序。
  5. 根据权利要求4所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
    利用所述零部件制作形成锂电池半成品的制作工序;
    向所述锂电池半成品中添加电解液并进行密封的注液工序。
  6. 根据权利要求5所述的锂电池生产工艺,其特征在于,在制作工序之前,包括:
    重复一次以上所述深冷工序和所述解冻工序。
  7. 一种锂电池生产工艺,其特征在于,包括:
    准备制作锂电池的零部件的原料的准备工序;其中,所述原料包括正极粉、负极粉、用以涂布正极粉制作正极片的铝箔、用以涂布负极粉制作负极片的铜箔、胶粘剂、用以制作隔膜的隔膜带、用以制作正负极耳的镍带以及用以制作外层包装的包装带;
    将所述原料浸没于液态氮或液态氦之中进行冷冻的深冷工序;
    以及取出冷冻一定时间后的所述原料,并在干燥环境下将所述原料进行解冻的解冻工序。
  8. 根据权利要求7所述的锂电池生产工艺,其特征在于,在解冻工序之后,包括:
    利用所述原料制作形成锂电池的零部件的零部件制作工序;
    利用所述零部件制作产生锂电池半成品的半成品制作工序;
    向所述锂电池半成品中添加电解液并进行密封的注液工序。
  9. 根据权利要求8所述的锂电池生产工艺,其特征在于,在零部件制作工序之前,包括:
    重复一次以上所述深冷工序和所述解冻工序。
  10. 根据权利要求7所述的锂电池生产工艺,其特征在于,在所述深冷工序之中,包括:
    将成卷的所述原料直接浸没于所述液态氮或液态氦之中进行冷冻,将粉体的所述原料密封到防潮袋之后浸没于所述液态氮或液态氦之中进行冷冻。
PCT/CN2019/073936 2019-01-15 2019-01-30 锂电池生产工艺 WO2020147153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910036791.6 2019-01-15
CN201910036791.6A CN109818045A (zh) 2019-01-15 2019-01-15 锂电池生产工艺

Publications (1)

Publication Number Publication Date
WO2020147153A1 true WO2020147153A1 (zh) 2020-07-23

Family

ID=66603821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073936 WO2020147153A1 (zh) 2019-01-15 2019-01-30 锂电池生产工艺

Country Status (2)

Country Link
CN (1) CN109818045A (zh)
WO (1) WO2020147153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451551A (zh) * 2021-07-05 2021-09-28 焦作伴侣纳米材料工程有限公司 一种锂离子电池电极材料的改性方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957471A (zh) * 2019-12-17 2020-04-03 横店集团东磁股份有限公司 一种提高类固态电池电极界面润湿性方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036573A1 (en) * 2000-03-29 2001-11-01 Jen Chu Hou Method for manufacturing a battery
CN106099128A (zh) * 2016-07-05 2016-11-09 深圳大学 一种三维锂电池制造方法
CN106486703A (zh) * 2016-11-02 2017-03-08 浙江超威创元实业有限公司 一种使用复合凝胶隔膜的软包锂离子电池制作方法
CN107317037A (zh) * 2017-06-28 2017-11-03 惠州博磊达新能源科技有限公司 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108199087A (zh) * 2017-12-25 2018-06-22 福建省致格新能源电池科技有限公司 一种增加电池保液量的方法
JP2018156886A (ja) * 2017-03-21 2018-10-04 三菱自動車工業株式会社 スタック電池の製造方法
CN109148879A (zh) * 2018-09-30 2019-01-04 桑顿新能源科技有限公司 一种锂离子电池用富锂锰基正极材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012086A (ja) * 1998-06-17 2000-01-14 Toyota Central Res & Dev Lab Inc 非水電解液電池の製造方法
JP5040010B2 (ja) * 2010-01-15 2012-10-03 トヨタ自動車株式会社 複合正極活物質の製造方法
CN102569750A (zh) * 2012-03-21 2012-07-11 中国科学院宁波材料技术与工程研究所 锂离子电池负极复合材料及其制备方法
CN204067485U (zh) * 2014-06-12 2014-12-31 深圳市信宇人科技有限公司 锂离子电池或电池极片的高效率深度除水烘烤线
CN107180939B (zh) * 2017-05-08 2021-04-02 深圳市星源材质科技股份有限公司 一种结构均匀的锂离子电池微孔膜的制备方法
CN108933223B (zh) * 2018-07-20 2021-05-11 中航锂电技术研究院有限公司 锂电池极耳双重加强方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036573A1 (en) * 2000-03-29 2001-11-01 Jen Chu Hou Method for manufacturing a battery
CN106099128A (zh) * 2016-07-05 2016-11-09 深圳大学 一种三维锂电池制造方法
CN106486703A (zh) * 2016-11-02 2017-03-08 浙江超威创元实业有限公司 一种使用复合凝胶隔膜的软包锂离子电池制作方法
JP2018156886A (ja) * 2017-03-21 2018-10-04 三菱自動車工業株式会社 スタック電池の製造方法
CN107317037A (zh) * 2017-06-28 2017-11-03 惠州博磊达新能源科技有限公司 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN108199087A (zh) * 2017-12-25 2018-06-22 福建省致格新能源电池科技有限公司 一种增加电池保液量的方法
CN109148879A (zh) * 2018-09-30 2019-01-04 桑顿新能源科技有限公司 一种锂离子电池用富锂锰基正极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451551A (zh) * 2021-07-05 2021-09-28 焦作伴侣纳米材料工程有限公司 一种锂离子电池电极材料的改性方法及应用

Also Published As

Publication number Publication date
CN109818045A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
CN104157920B (zh) 一种用于高能量密度锂离子电池的化成方法
CN105140560B (zh) 一种对金属锂稳定的锂离子固体导体及其制备方法以及一种全固态锂二次电池
WO2020125516A1 (zh) 锂金属电极及其制备方法、锂电池
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
CN103400971A (zh) 硅基复合材料及其制备方法以及其应用
CN108550835B (zh) 一种磷酸铁锂/凝胶电解质复合正极材料及其制备方法和一种固态锂电池及其制备方法
CN104659333B (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN101183730A (zh) 一种磷酸铁锂铝壳8安时圆柱电池及其制作工艺
CN102299384A (zh) 160ah磷酸铁锂方形电池及其制作工艺
CN109802094A (zh) 一种低温磷酸铁锂电池及其制备方法
CN105762351A (zh) 一种锂离子电池用钛酸锂/m-石墨烯复合负极材料及其制备方法
CN111211323A (zh) 一种磷酸铁锂体系软包锂离子电池及其制备方法
CN104953181B (zh) 一种抑制以钛酸锂为负极的锂离子电池胀气的工艺
CN105789615A (zh) 一种改性镍钴锰酸锂正极材料及其制备方法
CN105140481A (zh) 一种高容量锂离子电池负极材料的制备方法
WO2020147153A1 (zh) 锂电池生产工艺
CN107317037A (zh) 一种锂离子电池正极复合极片及制备方法和锂离子电池
CN105845986A (zh) 一种提高钛酸锂电池循环性能的化成方法
CN105703016B (zh) 一种用于电池极片与隔膜粘结的热复合设备
CN102290568A (zh) 100ah磷酸铁锂方形电池及其制作工艺
CN104882630B (zh) 一种锂离子电池裸电芯及含有该裸电芯的锂离子电池的制备方法
CN109786841A (zh) 一种锂离子电化学储能器件的制备方法
CN113178633A (zh) 预锂化电池的化成方法、锂离子电池及其制备方法
CN110611120A (zh) 单离子导体聚合物全固态电解质及包含其的锂二次电池
CN109244531A (zh) 一种高纯铜基体石墨烯复合锂离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910036

Country of ref document: EP

Kind code of ref document: A1