CN109634063B - Exposure method, electronic device and master-slave system - Google Patents

Exposure method, electronic device and master-slave system Download PDF

Info

Publication number
CN109634063B
CN109634063B CN201810901250.0A CN201810901250A CN109634063B CN 109634063 B CN109634063 B CN 109634063B CN 201810901250 A CN201810901250 A CN 201810901250A CN 109634063 B CN109634063 B CN 109634063B
Authority
CN
China
Prior art keywords
processor
exposure
image acquisition
acquisition circuit
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810901250.0A
Other languages
Chinese (zh)
Other versions
CN109634063A (en
Inventor
张耕力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Tyrafos Semiconductor Technologies Co Ltd
Original Assignee
Guangzhou Tyrafos Semiconductor Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Tyrafos Semiconductor Technologies Co Ltd filed Critical Guangzhou Tyrafos Semiconductor Technologies Co Ltd
Publication of CN109634063A publication Critical patent/CN109634063A/en
Application granted granted Critical
Publication of CN109634063B publication Critical patent/CN109634063B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1096Write circuits, e.g. I/O line write drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/24Memory cell safety or protection circuits, e.g. arrangements for preventing inadvertent reading or writing; Status cells; Test cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00204Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
    • H04N1/00209Transmitting or receiving image data, e.g. facsimile data, via a computer, e.g. using e-mail, a computer network, the internet, I-fax
    • H04N1/00214Transmitting or receiving image data, e.g. facsimile data, via a computer, e.g. using e-mail, a computer network, the internet, I-fax details of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • H04N1/2137Intermediate information storage for one or a few pictures using still video cameras with temporary storage before final recording, e.g. in a frame buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • H04N23/662Transmitting camera control signals through networks, e.g. control via the Internet by using master/slave camera arrangements for affecting the control of camera image capture, e.g. placing the camera in a desirable condition to capture a desired image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/743Bracketing, i.e. taking a series of images with varying exposure conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0002Serial port, e.g. RS232C
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Abstract

The invention provides an exposure method, an electronic device and a master-slave system. The electronic device includes an image acquisition circuit and a processor coupled to the image acquisition circuit. The processor obtains an exposure instruction and a first number. The processor controls the image acquisition circuit to perform exposure according to the exposure instruction so as to acquire an image. The processor determines whether the number of images reaches a first number. And when the number of the images does not reach the first number, the processor performs the operation of controlling the image acquisition circuit to perform exposure again so as to acquire the images. When the number of images reaches a first number, the processor stops controlling the image acquisition circuit to perform exposure.

Description

Exposure method, electronic device and master-slave system
Technical Field
The invention relates to an exposure method, an electronic device and a master-slave system.
Background
Generally, when a conventional image sensor (or image capturing circuit) is applied in a camera, if a user wants to view an image captured by the camera in real time, the image sensor in the camera needs to be continuously exposed and maintain a certain frame rate (fps). However, in applications that are not viewed by the human eye (e.g., fingerprint recognition, fingerprint detection, etc.), a constant and stable frame rate is not a necessary condition. In this case, if the image sensor continues to be exposed, unnecessary power consumption of the apparatus is caused.
Disclosure of Invention
The invention provides an exposure method, an electronic device and a master-slave system, which can effectively control the exposure time of an image acquisition circuit, thereby avoiding unnecessary exposure to acquire excessive images and effectively reducing the power consumption of the device.
The invention provides an electronic device, which includes an image acquisition circuit and a processor coupled to the image acquisition circuit. The processor obtains an exposure instruction and a first number. And the processor controls the image acquisition circuit to perform exposure according to the exposure instruction so as to acquire an image. The processor determines whether the number of images reaches the first number. And when the number of the images does not reach the first number, the processor executes the operation of controlling the image acquisition circuit to carry out exposure again so as to acquire the images. And when the number of the images reaches the first number, the processor stops controlling the image acquisition circuit to perform exposure.
The invention provides an exposure method, which is used for an electronic device, wherein the electronic device comprises an image acquisition circuit and a processor, and the method comprises the following steps: obtaining, by the processor, an exposure instruction and a first quantity; controlling the image acquisition circuit to perform exposure to acquire an image according to the exposure instruction through the processor; determining, by the processor, whether the number of images reaches the first number; when the number of the images does not reach the first number, controlling the image acquisition circuit to perform exposure again through the processor to acquire the images; and stopping controlling, by the processor, the image acquisition circuit to expose when the number of images reaches the first number.
The invention provides a master-slave system, comprising: a master device and a slave device. The master device has a first interface. The slave device has a second interface and an image acquisition circuit. The second interface is electrically connected to the first interface. The slave device controls the image acquisition circuit to perform exposure to acquire a plurality of images. The master device provides a read command and a selection signal to the slave device. The slave device provides at least one first image in the plurality of images to the master device according to the reading instruction and the selection signal. In the operation of providing the first image of the plurality of images to the master device, when the slave device stops receiving the selection signal, the slave device stops performing the operation of controlling the image capturing circuit to perform exposure to capture the plurality of images and the operation of providing the first image of the plurality of images to the master device.
The invention provides an exposure method, which is used for a master-slave system, wherein the master-slave system comprises a master device and a slave device, the master device is provided with a first interface, the slave device is provided with a second interface and an image acquisition circuit, the second interface is electrically connected to the first interface, and the method comprises the following steps: controlling, by the slave device, the image acquisition circuit to perform exposure to acquire a plurality of images; providing, by the master device, a read instruction and a selection signal to the slave device; providing, by the slave device, at least a first image of the plurality of images to the master device according to the reading instruction and the selection signal; and in the step of providing the first image of the plurality of images to the master device, when the slave device stops receiving the selection signal, stopping performing, by the slave device, the step of controlling the image acquisition circuit to perform exposure to acquire the plurality of images and the step of providing the first image of the plurality of images to the master device.
Based on the above, the exposure method, the electronic device and the master-slave system of the invention can effectively control the exposure time of the image acquisition circuit, thereby avoiding unnecessary exposure to acquire excessive images and effectively reducing the power consumption of the device.
In order to make the aforementioned and other features and advantages of the invention more comprehensible, embodiments accompanied with figures are described in detail below.
Drawings
Fig. 1 is a schematic diagram of an electronic device according to an embodiment of the invention.
Fig. 2 is a flowchart illustrating an exposure method according to a first embodiment of the present invention.
Fig. 3 is a schematic diagram of a master-slave system according to an embodiment of the present invention.
Fig. 4 is a flowchart illustrating an exposure method according to a second embodiment of the present invention.
FIG. 5 is a schematic diagram illustrating the signaling of the SPI in accordance with one embodiment of the present invention.
Description of the reference numerals
100: electronic device
20: processor with a memory having a plurality of memory cells
22: image acquisition circuit
24: register with a plurality of registers
26: output circuit
S201: the processor obtains an exposure instruction and a first number of steps
S203: the processor controls the image acquisition circuit to carry out exposure to acquire an image according to the exposure instruction
S205: the processor temporarily stores the image in the register and stops controlling the image acquisition circuit to perform exposure
S207: step for judging whether the processor outputs the image temporarily stored in the register through the output circuit
S209: when the processor receives the output instruction, the processor outputs the image temporarily stored in the register through the output circuit according to the output instruction
S211: step for judging whether the number of the images reaches a first number by a processor
S213: step of stopping controlling image acquisition circuit to expose by processor
1000: master-slave system
200: master device
300: slave device
30: image acquisition circuit
50. 60: interface
SS, SCLK, MOSI, MISO: pin
S401: the master device provides the exposure command, the selection signal and the clock signal to the slave device
S403: the slave device controls the image acquisition circuit to perform exposure to acquire a plurality of images according to the exposure instruction, the selection signal and the clock signal
S405: the master device provides read command, selection signal and clock signal to the slave device
S407: the slave device provides at least one first image in the plurality of images to the master device according to the reading instruction, the selection signal and the clock signal
S409: step of judging whether to stop receiving selection signal from slave device
S411: the slave device controls the image acquisition circuit to perform exposure to acquire a plurality of images according to the exposure instruction, the selection signal and the clock signal
S413: the slave device stops executing the steps of controlling the image acquisition circuit to perform exposure to acquire an image and stopping executing the step of providing the first image to the master device
T1-T6: point in time
C1-C10: clock period
cmd1, cmd 2: instructions
D1-D6: image of a person
ES: state of exposure
Detailed Description
Reference will now be made in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Further, wherever possible, the same reference numbers will be used throughout the drawings and the description to refer to the same or like parts.
The exposure method of the present invention is described below in a plurality of embodiments.
[ first embodiment ]
Fig. 1 is a schematic diagram of an electronic device according to an embodiment of the invention.
Referring to fig. 1, the electronic device 100 includes a processor 20, an image capturing circuit 22, a register 24, and an output circuit 26. The image capturing circuit 22, the register 24 and the output circuit 26 are respectively coupled to the processor 20. The electronic device 100 is, for example, an electronic device such as a mobile phone, a tablet computer, a notebook computer, etc., and is not limited herein.
The Processor 20 may be a Central Processing Unit (CPU), or other programmable general purpose or special purpose Microprocessor (Microprocessor), Digital Signal Processor (DSP), programmable controller, Application Specific Integrated Circuit (ASIC), or other similar components or combinations thereof.
The image capturing circuit 22 is used to capture one or more images. For example, the image capturing circuit 22 may be equipped with a camera lens of a Charge Coupled Device (CCD), a Complementary Metal-Oxide Semiconductor (CMOS) Device or other types of photosensitive devices, and may be used to expose and capture at least one image.
The register 24 may be any type of fixed or removable Random Access Memory (RAM), read-only memory (ROM), flash memory (flash memory), or the like, or any combination thereof.
The output circuit 26 is mainly used for outputting the image acquired by the image acquisition circuit 22. The output circuit 26 is, for example, a transmission interface for transmitting data to other electronic devices, or a display device for displaying an image acquired by the image acquisition circuit 22, and is not limited herein.
In the present exemplary embodiment, the electronic device 100 further includes a storage circuit (not shown). The memory circuit of the electronic device 100 stores a plurality of program code segments, which are executed by the processor 20 after they are installed. For example, the memory circuit of the electronic device 100 includes a plurality of modules, and each of the modules is composed of one or more program code segments, and is used for performing each operation of the electronic device 100. However, the invention is not limited thereto, and the operations of the electronic device 100 may also be implemented by using other hardware forms.
Fig. 2 is a flowchart illustrating an exposure method according to a first embodiment of the present invention.
Referring to fig. 1 and fig. 2, in the present embodiment, the processor 20 may obtain an exposure command and a first quantity input (or issued) by a user (step S201). The first number refers to the number of images to be acquired. In one embodiment, the first number is included in the exposure instruction. However, in another embodiment, the register 24 may pre-fetch a first amount input by the user and pre-store the first amount in the register 24 for access by the processor 20.
After the processor 20 receives the exposure command, it controls the image capturing circuit 22 to perform exposure according to the exposure command to capture an image (step S203). Next, the processor 20 temporarily stores the acquired image in the register 24, and stops controlling the image acquiring circuit 22 to perform exposure (i.e. stops controlling the image acquiring circuit 22 to acquire the image) (step S205). Thereafter, the processor 20 determines whether the image temporarily stored in the register 24 is output through the output circuit 26 (step S207).
When the processor 20 receives an output command issued by the user or receives an output command from the outside, the processor 20 outputs the image temporarily stored in the register 24 through the output circuit 26 according to the output command (step S209). For example, the image buffered in the register 24 may be output through the output circuit 26 to be displayed on a screen, or the image buffered in the register 24 may be output to another device through the output circuit 26. Further, in the aforementioned step S207, when the processor 20 does not receive the aforementioned output instruction, the processor 20 does not output the image temporarily stored in the register 24 through the output circuit 26, and causes the image acquisition circuit 22 to be maintained in the state of stopping exposure when the remaining available capacity of the register 24 is insufficient to store the next image (i.e., returns to step S205).
After the processor 20 outputs the images temporarily stored in the register 24 through the output circuit 26 according to the output instruction (i.e., step S209), the processor 20 determines whether the number of the images acquired after the exposure by the image acquisition circuit 22 reaches the first number (step S211). If the number of the acquired images after the image acquisition circuit 22 performs the exposure does not reach the first number, the flow of fig. 2 returns to step S203 to allow the processor 20 to control the image acquisition circuit 22 to perform the exposure again to acquire the images, and the aforementioned steps S205 to S211 may be performed again. However, in step S211, if the processor 20 determines that the number of images acquired after the exposure by the image acquisition circuit 22 reaches the first number, the processor 20 stops controlling the image acquisition circuit 22 to perform the exposure (step S213).
In this way, the first embodiment of the present invention can set the number of images to be acquired by the image acquisition circuit 22, so as to avoid the image acquisition circuit 22 acquiring too many images. In addition, the first embodiment of the present invention directly stops the exposure after the image acquisition circuit 22 acquires the image and does not immediately acquire the next image, but the image acquisition circuit 22 acquires the next image after outputting the acquired image, so as to avoid the power consumption of the electronic device caused by the exposure (or image acquisition) of the image acquisition circuit 22.
[ second embodiment ]
Fig. 3 is a schematic diagram of a master-slave system according to an embodiment of the present invention.
Referring to fig. 3, the master-slave system 1000 includes a master device 200 and a slave device 300. The master device 200 and the slave device 300 may include, for example, a processor (not shown) and a memory circuit (not shown), respectively. In the master device 200 and the slave device 300, a memory circuit may be coupled to the processor. The master device 200 and the slave device 300 are, for example, electronic devices such as a mobile phone, a tablet computer, and a notebook computer, and are not limited herein. In addition, in other embodiments, the master device 200 and the slave device 300 may include other more elements. In particular, in other embodiments, the master device 200 and the slave device 300 may be configured in the same device. It should be noted that although fig. 3 shows only one master device 200 connected to one slave device 300, the present invention is not limited thereto. In other embodiments, one master device 200 may be connected to multiple slave devices 300.
The processor may be similar to the processor 20 in the first embodiment and will not be described herein. The memory circuit may be similar to the memory circuit of the electronic device 100 in the first embodiment, and is not described herein again. Furthermore, in the present exemplary embodiment, the slave device 300 further includes an image acquisition circuit 30 coupled to the processor of the slave device 300. The image capturing circuit 30 may be similar to the image capturing circuit 22 in the first embodiment, and will not be described herein.
In the present embodiment, the master device 200 has an interface 50 (also referred to as a first interface), and the slave device 300 has an interface 60 (also referred to as a second interface). The first interface and the second interface are electrically connected to each other so that the master device 200 can perform data transmission with the slave device 300. In the present exemplary embodiment, the interfaces 50 and 60 are Serial Peripheral Interface (SPI) interfaces, respectively. One of the Serial peripheral interfaces has a Select Slave (SS) pin, a Serial Clock (SCLK) pin, a Master Output Slave Input (MOSI) pin, and a Master Input Slave Output (MISO) pin. When the interface 50 is electrically connected to the interface 60, the SS pin of the master device 200 is electrically connected to the SS pin of the slave device 300, the SCLK pin of the master device 200 is electrically connected to the SCLK pin of the slave device 300, the MOSI pin of the master device 200 is electrically connected to the MOSI pin of the slave device 300, and the MISO pin of the master device 200 is electrically connected to the MISO pin of the slave device 300.
In the present exemplary embodiment, a plurality of program code segments are stored in the memory circuits of the master device 200 and the slave device 300, and are executed by the processors of the master device 200 and the slave device 300 after being installed. For example, the memory circuits of the master device 200 and the slave device 300 include a plurality of modules, and the modules are used to perform the operations of the master-slave system 1000, wherein each module is composed of one or more program code segments. However, the present invention is not limited thereto, and the operations described above may also be implemented by using other hardware forms. In addition, the processors of the master device 200 and the slave device 300 may also be used to control the transmission of data between the master device 200 and the slave device 300.
Fig. 4 is a flowchart illustrating an exposure method according to a second embodiment of the present invention. FIG. 5 is a schematic diagram illustrating the signaling of the SPI in accordance with one embodiment of the present invention.
Referring to fig. 4 and 5, first, as shown in fig. 5, the master device 200 provides a selection signal through the SS pin, a clock signal through the SCLK pin, and an exposure command cmd1 to the slave device 300 through the MOSI pin (step S401). As shown in fig. 5, the selection signal is, for example, a signal that adjusts a high level of the SS pin to a low level, so that the slave device 300 knows that it has been selected by the master device 200. In fig. 5, the low potential signal is between the time point T1 and the time point T2. In addition, the clock signal of step S401 includes a clock cycle C1.
Then, the slave device 300 controls the image obtaining circuit 30 to perform exposure to obtain a plurality of images according to the exposure command cmd1, the selection signal and the clock signal in step S401 (step S403). For example, at the time point T3, the slave device 300 adjusts an exposure state ES of the image capturing circuit 30 from a low level to a high level according to the exposure command cmd1, the selection signal and the clock signal, thereby enabling the exposure function of the image capturing circuit 30 to start the exposure of the image capturing circuit 30 and capture the image. And the acquired image may be stored in a register (not shown) of the slave device 300.
The master device 200 then provides a select signal through the SS pin, a clock signal through the SCLK pin, and a read command cmd2 through the MOSI pin to the slave device 300 (step S405). As shown in fig. 5, the selection signal is, for example, a signal that adjusts the high level of the original SS pin to a low level at a time point T4, so that the slave device 300 knows that it has been selected by the master device 200. In fig. 5, the low potential signal is between the time point T4 and the time point T5. In addition, the master device 200 continuously provides clock signals including clock cycles C2-C10 to the slave device 300.
Then, the slave device 300 provides the images D1-D6 (collectively referred to as the first image) of the images acquired by the image acquisition unit 30 to the master device 200 through the MISO pin according to the read command cmd2, the selection signal, and the clock signal (step S407). And in the process of providing the first image, the slave device 300 determines whether to stop receiving the selection signal (step S409). In other words, the slave device 300 determines whether the signal at the low voltage level in the SS pin is restored (or adjusted) to the high voltage level.
If the slave device 300 determines that the signal at the SS pin is always low, the slave device 300 determines that the slave device 300 continuously receives the selection signal. At this time, the slave device 300 controls the image capturing circuit 30 to continuously perform exposure to capture a plurality of images according to the exposure command cmd1, the selection signal, and the clock signal (step S411), and continuously provides the captured images to the master device 200 (i.e., returning to step S407).
However, in the process of providing the first image, when the slave device 300 determines that the signal at the SS pin is adjusted from the low level to the high level (e.g., at the time point T5), the slave device 300 determines that the slave device 300 stops receiving the selection signal. At this time, the slave device 300 stops performing the step of controlling the image capturing circuit 30 to perform the exposure and the step of providing the first image to the master device 200 (step S413). The step of stopping performing the exposure to control the image acquiring circuit 30 to acquire the image is, for example, adjusting the exposure state ES of the image acquiring circuit 30 from a high potential to a low potential at a time point T6, thereby turning off the exposure function of the image acquiring circuit 30 to stop the exposure of the image acquiring circuit 30 and stop acquiring the image. In addition, the step of stopping the execution of the providing of the first image to the master device 200 is, for example, the slave device 300 does not provide the image to the master device 200 through the MISO pin.
In this way, the second embodiment of the present invention can enable the slave device 300 to determine when to turn on the function of exposing the image capturing circuit 30 or turn off the function of exposing the image capturing circuit 30 according to the selection signal issued by the master device 200, thereby avoiding the power loss caused by the unnecessary exposure performed by the image capturing circuit 30 of the slave device 300.
In summary, the exposure method, the electronic device and the master-slave system of the invention can effectively control the exposure time of the image acquisition circuit, thereby avoiding unnecessary exposure to acquire excessive images and effectively reducing the power consumption of the device.
Although the present invention has been described with reference to the above embodiments, it should be understood that the invention is not limited to the embodiments, and various changes and modifications can be made by those skilled in the art without departing from the spirit and scope of the invention.

Claims (6)

1. An electronic device, wherein the electronic device is a slave device and is adapted to electrically connect to a master device, comprising:
an image acquisition circuit; and
a processor coupled to the image acquisition circuitry;
an output circuit coupled to the processor; and
a register coupled to the processor, wherein
The processor obtains an exposure instruction provided by the master device and a first number,
the processor controls the image acquisition circuit to perform exposure to acquire a plurality of images according to the exposure instruction,
wherein the processor determines whether the number of acquired images reaches the first number,
when the number of the acquired images does not reach the first number, the processor executes control of the image acquisition circuit to perform exposure again, and
the processor stops controlling the image acquisition circuit to perform exposure when the number of acquired images reaches the first number,
wherein the processor temporarily stores the acquired image in the register and stops controlling the image acquisition circuit to perform exposure after controlling the image acquisition circuit to perform exposure, and the processor determines whether the acquired image temporarily stored in the register is output through the output circuit,
when the processor does not receive an output instruction and the remaining available capacity of the register is insufficient to store the next image, the image acquisition circuit maintains a stop exposure,
when the processor receives the output instruction provided by the host device and the number of the acquired images does not reach the first number, the processor outputs the acquired images temporarily stored in the register through the output circuit according to the output instruction, and executes control of the image acquisition circuit to perform exposure again to acquire the next image, and
when the processor receives the output instruction and the number of the acquired images reaches the first number, the processor outputs the acquired images temporarily stored in the register through the output circuit according to the output instruction, and does not control the image acquisition circuit to perform exposure again.
2. The electronic device of claim 1, wherein the exposure instruction comprises the first number.
3. The electronic device of claim 1, wherein the register fetches the first number and stores the first number prior to fetching the exposure instruction and the first number of operations.
4. An exposure method for an electronic device, wherein the electronic device is a slave device and is adapted to be electrically connected to a master device, wherein the electronic device includes an image acquisition circuit, a processor, an output circuit, and a register, the method comprising:
obtaining, by the processor, an exposure instruction and a first number provided by the master device;
controlling the image acquisition circuit to perform exposure to acquire a plurality of images according to the exposure instruction through the processor;
determining, by the processor, whether the number of acquired images reaches the first number;
when the number of the acquired images does not reach the first number, controlling the image acquisition circuit to perform exposure again through the processor; and
stopping, by the processor, controlling the image acquisition circuit to expose when the number of acquired images reaches the first number,
wherein after controlling the image acquisition circuitry to perform the exposure, the method further comprises:
temporarily storing the acquired image in the register and stopping controlling the image acquisition circuit to perform exposure through the processor;
judging, by the processor, whether to output, by the output circuit, the acquired image temporarily stored in the register;
maintaining, by the image acquisition circuit, a stopped exposure when the processor does not receive an output instruction and the remaining available capacity of the register is insufficient to store a next image;
when the processor receives the output instruction provided by the main device and the number of the acquired images does not reach the first number, outputting the acquired images temporarily stored in the register through the output circuit according to the output instruction through the processor, and controlling the image acquisition circuit to perform exposure again to acquire the next image; and
when the processor receives the output instruction and the number of the acquired images reaches the first number, the acquired images temporarily stored in the register are output through the output circuit by the processor according to the output instruction, and the image acquisition circuit is not controlled to perform exposure again.
5. The exposure method according to claim 4, wherein the exposure instruction includes the first number.
6. The exposure method of claim 4, wherein prior to the steps of fetching the exposure instruction and the first number, the method further comprises:
retrieving the first quantity through the register and storing the first quantity.
CN201810901250.0A 2017-10-05 2018-08-09 Exposure method, electronic device and master-slave system Active CN109634063B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762568772P 2017-10-05 2017-10-05
US62/568,772 2017-10-05

Publications (2)

Publication Number Publication Date
CN109634063A CN109634063A (en) 2019-04-16
CN109634063B true CN109634063B (en) 2021-06-15

Family

ID=66066222

Family Applications (9)

Application Number Title Priority Date Filing Date
CN201810831550.6A Pending CN109638632A (en) 2017-10-05 2018-07-26 Optical devices
CN201810841816.5A Pending CN109635794A (en) 2017-10-05 2018-07-27 Optical recognition module
CN201810901250.0A Active CN109634063B (en) 2017-10-05 2018-08-09 Exposure method, electronic device and master-slave system
CN201810901261.9A Active CN109634883B (en) 2017-10-05 2018-08-09 Master-slave system, instruction execution method and data access method
CN201810938577.5A Active CN109639957B (en) 2017-10-05 2018-08-17 Image data transmission system and image data transmission method
CN201811085989.5A Pending CN109857281A (en) 2017-10-05 2018-09-18 Electronic device
CN201811167749.XA Active CN109640010B (en) 2017-10-05 2018-10-08 Electronic device and image capturing method
CN201811167338.0A Active CN109639988B (en) 2017-10-05 2018-10-08 Electronic device and automatic exposure convergence method
CN201811167356.9A Active CN109637565B (en) 2017-10-05 2018-10-08 Memory cell

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201810831550.6A Pending CN109638632A (en) 2017-10-05 2018-07-26 Optical devices
CN201810841816.5A Pending CN109635794A (en) 2017-10-05 2018-07-27 Optical recognition module

Family Applications After (6)

Application Number Title Priority Date Filing Date
CN201810901261.9A Active CN109634883B (en) 2017-10-05 2018-08-09 Master-slave system, instruction execution method and data access method
CN201810938577.5A Active CN109639957B (en) 2017-10-05 2018-08-17 Image data transmission system and image data transmission method
CN201811085989.5A Pending CN109857281A (en) 2017-10-05 2018-09-18 Electronic device
CN201811167749.XA Active CN109640010B (en) 2017-10-05 2018-10-08 Electronic device and image capturing method
CN201811167338.0A Active CN109639988B (en) 2017-10-05 2018-10-08 Electronic device and automatic exposure convergence method
CN201811167356.9A Active CN109637565B (en) 2017-10-05 2018-10-08 Memory cell

Country Status (3)

Country Link
US (9) US10609296B1 (en)
CN (9) CN109638632A (en)
TW (8) TW201915818A (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716142B (en) * 2019-10-08 2021-01-11 大陸商廣州印芯半導體技術有限公司 Optical identification module
CN110503044A (en) * 2018-12-03 2019-11-26 神盾股份有限公司 Fingerprint sensor and its finger sensing method
EP3796208B1 (en) * 2018-12-14 2023-03-15 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and electronic device
US11682230B2 (en) * 2019-03-07 2023-06-20 Novatek Microelectronics Corp. Fingerprint signal processing circuit and method for signal compensation in analog front-end
EP3944628A4 (en) * 2019-03-18 2023-02-22 Hanwha Techwin Co., Ltd. Camera analyzing images on basis of artificial intelligence, and operating method therefor
WO2020227986A1 (en) * 2019-05-15 2020-11-19 深圳市汇顶科技股份有限公司 Image collection apparatus and method, and electronic device
CN110164307B (en) * 2019-05-23 2021-01-26 厦门天马微电子有限公司 Display device with built-in fingerprint identification inductor
KR20200137079A (en) 2019-05-28 2020-12-09 삼성디스플레이 주식회사 Fingerprint sensor and display device including the same
US11314961B2 (en) * 2019-06-12 2022-04-26 Beijing Boe Display Technology Co., Ltd. Texture image acquisition method, texture image acquisition circuit and display panel
TWI748460B (en) * 2019-06-21 2021-12-01 大陸商廣州印芯半導體技術有限公司 Time of flight device and time of flight method
CN110445012A (en) * 2019-08-01 2019-11-12 浙江舜宇光学有限公司 Light emitting module, preparation method and the depth finding device with it
KR102494086B1 (en) * 2019-08-23 2023-01-30 선전 구딕스 테크놀로지 컴퍼니, 리미티드 Fingerprint detection device, method and electronic device
WO2021051820A1 (en) * 2019-09-22 2021-03-25 神盾股份有限公司 Fingerprint sensing module and electronic device
US11301708B2 (en) * 2019-10-01 2022-04-12 Novatek Microelectronics Corp. Image sensing circuit and method
CN112766017A (en) * 2019-10-21 2021-05-07 广州印芯半导体技术有限公司 Optical identification module
CN110944125B (en) * 2019-11-06 2022-02-22 西安理工大学 Nonlinear column-level ADC (analog to digital converter) and method for improving contrast ratio of CMOS (complementary metal oxide semiconductor) image sensor
CN110970454B (en) * 2019-11-28 2022-03-15 苏州晶方半导体科技股份有限公司 Packaging structure of biological characteristic recognition chip
CN110867165B (en) * 2019-11-29 2021-10-15 厦门天马微电子有限公司 Display panel and display device
WO2021107217A1 (en) * 2019-11-29 2021-06-03 엘지전자 주식회사 Radiation detector and radiographic method using same
US11062110B2 (en) * 2019-12-13 2021-07-13 Novatek Microelectronics Corp. Fingerprint detection device, method and non-transitory computer-readable medium for operating the same
TWI727550B (en) * 2019-12-13 2021-05-11 大陸商廣州印芯半導體技術有限公司 Optical identification module
CN111064073A (en) * 2019-12-26 2020-04-24 常州纵慧芯光半导体科技有限公司 Laser device and preparation method and application thereof
CN113296277A (en) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 Collimation film, interference reduction collimation film and preparation method thereof
CN113796853A (en) * 2020-06-16 2021-12-17 广州印芯半导体技术有限公司 Optical image comparison system and comparison method thereof
US11327907B2 (en) 2020-07-08 2022-05-10 Macronix International Co., Ltd. Methods and apparatus for improving SPI continuous read
US11675731B2 (en) 2020-08-20 2023-06-13 Global Unichip Corporation Data protection system and method thereof for 3D semiconductor device
US11031923B1 (en) * 2020-08-20 2021-06-08 Global Unichip Corporation Interface device and interface method for 3D semiconductor device
US11699683B2 (en) 2020-08-20 2023-07-11 Global Unichip Corporation Semiconductor device in 3D stack with communication interface and managing method thereof
US11687472B2 (en) * 2020-08-20 2023-06-27 Global Unichip Corporation Interface for semiconductor device and interfacing method thereof
US11144485B1 (en) 2020-08-20 2021-10-12 Global Unichip Corporation Interface for semiconductor device with symmetric bond pattern and method for arranging interface thereof
CN112104802B (en) * 2020-08-21 2021-07-20 深圳市睿联技术股份有限公司 Camera circuit and camera device
US20220067323A1 (en) * 2020-08-27 2022-03-03 Au Optronics Corporation Sensing device substrate and display apparatus having the same
TWI744113B (en) * 2020-09-30 2021-10-21 創意電子股份有限公司 Interface device and interface method for 3d semiconductor device
CN112511772A (en) * 2020-10-28 2021-03-16 深圳奥辰光电科技有限公司 Image sensor, method for enhancing linearity of image sensor and depth camera
CN114826811A (en) * 2021-01-28 2022-07-29 南宁富桂精密工业有限公司 Data transmission method and system
US11398102B1 (en) * 2021-03-29 2022-07-26 Innolux Corporation Method for recognizing fingerprint
US11798309B2 (en) * 2021-04-15 2023-10-24 Novatek Microelectronics Corp. Fingerprint identification method for panel, electronic device, and control circuit
CN115529828A (en) * 2021-04-26 2022-12-27 泉州三安半导体科技有限公司 Light emitting device
CN114359985A (en) * 2021-12-31 2022-04-15 深圳市汇顶科技股份有限公司 Fingerprint identification method and device and electronic equipment
TWI818536B (en) * 2022-05-06 2023-10-11 圓展科技股份有限公司 Communication method of wireless camera and pluggable device

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1249616B (en) * 1991-05-30 1995-03-09 Sgs Thomson Microelectronics BIT LINE PRELOAD CIRCUIT FOR READING AN EPROM MEMORY CELL.
US5805496A (en) * 1996-12-27 1998-09-08 International Business Machines Corporation Four device SRAM cell with single bitline
FR2775091B1 (en) * 1998-02-16 2000-04-28 Matra Communication METHOD FOR TRANSFERRING DATA IN SERIES, AND SYNCHRONOUS SERIAL BUS INTERFACE IMPLEMENTING SUCH A METHOD
JP3326560B2 (en) * 2000-03-21 2002-09-24 日本テキサス・インスツルメンツ株式会社 Semiconductor memory device
ATE506807T1 (en) * 2001-06-18 2011-05-15 Casio Computer Co Ltd PHOTOSENSOR SYSTEM AND CONTROL METHOD THEREOF
US7233350B2 (en) * 2002-01-05 2007-06-19 Candela Microsystems, Inc. Image sensor with interleaved image output
US7265784B1 (en) * 2002-08-19 2007-09-04 Pixim, Inc. Image processor with noise reduction circuit
TW562991B (en) * 2002-11-20 2003-11-21 Novatek Microelectronics Corp Fast convergence method for the appropriate exposure value
JP4219663B2 (en) * 2002-11-29 2009-02-04 株式会社ルネサステクノロジ Semiconductor memory device and semiconductor integrated circuit
CN100337156C (en) * 2002-12-05 2007-09-12 联咏科技股份有限公司 Rapid convergence method for correct exposure value
CN2609064Y (en) * 2003-02-28 2004-03-31 光宝科技股份有限公司 Name card scanner and transmission module
US7157745B2 (en) * 2004-04-09 2007-01-02 Blonder Greg E Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them
JP4136793B2 (en) * 2003-05-29 2008-08-20 キヤノン株式会社 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
US7483058B1 (en) * 2003-08-04 2009-01-27 Pixim, Inc. Video imaging system including a digital image sensor and a digital signal processor
US7446812B2 (en) * 2004-01-13 2008-11-04 Micron Technology, Inc. Wide dynamic range operations for imaging
US7292232B2 (en) * 2004-04-30 2007-11-06 Microsoft Corporation Data input devices and methods for detecting movement of a tracking surface by a laser speckle pattern
US7084667B2 (en) * 2004-07-13 2006-08-01 International Business Machines Corporation Low leakage monotonic CMOS logic
US7342256B2 (en) * 2004-07-16 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Display device mounted with read function and electric appliance
JP4498270B2 (en) * 2005-11-30 2010-07-07 株式会社バンダイナムコゲームス Program, information storage medium, photo printing apparatus and photo printing method
KR100665853B1 (en) * 2005-12-26 2007-01-09 삼성전자주식회사 Stacked memory cell for use in high-density cmos sram
JP5168837B2 (en) * 2006-07-27 2013-03-27 ソニー株式会社 Image processing apparatus, image processing method, and program
CN200986927Y (en) * 2006-09-15 2007-12-05 林三宝 LED with micro-optical structure
JP4843461B2 (en) * 2006-11-13 2011-12-21 株式会社東芝 Solid-state imaging device
CN100573491C (en) * 2006-12-15 2009-12-23 凌阳科技股份有限公司 Serial transmission controller and serial transmission demoder and serial transmission method thereof
CN100480830C (en) * 2007-01-30 2009-04-22 北京中星微电子有限公司 Method and device for backlighting detecting and stooping of backlighting compensation detecting
CN100498749C (en) * 2007-04-12 2009-06-10 威盛电子股份有限公司 Serial peripheral interface data transmission method and serial peripheral interface data transmission system
JP4470957B2 (en) * 2007-04-26 2010-06-02 ブラザー工業株式会社 Image processing system and image reading apparatus
DE102007024737A1 (en) * 2007-05-25 2008-11-27 Robert Bosch Gmbh Data transfer method between master and slave devices
US7920409B1 (en) * 2007-06-05 2011-04-05 Arizona Board Of Regents For And On Behalf Of Arizona State University SRAM cell with intrinsically high stability and low leakage
TWI334547B (en) * 2007-06-07 2010-12-11 Via Tech Inc System and method for serial peripheral interface data transmission
US20090006911A1 (en) * 2007-06-28 2009-01-01 Mediatek Inc. Data replacement processing method
US8429329B2 (en) * 2007-10-17 2013-04-23 Micron Technology, Inc. Serial interface NAND
US8103936B2 (en) * 2007-10-17 2012-01-24 Micron Technology, Inc. System and method for data read of a synchronous serial interface NAND
US9584710B2 (en) * 2008-02-28 2017-02-28 Avigilon Analytics Corporation Intelligent high resolution video system
US20100118153A1 (en) * 2008-11-12 2010-05-13 Xiaoguang Yu Apparatus and methods for controlling image sensors
US7849229B2 (en) * 2008-11-25 2010-12-07 Spansion Llc SPI addressing beyond 24-bits
US8156274B2 (en) * 2009-02-02 2012-04-10 Standard Microsystems Corporation Direct slave-to-slave data transfer on a master-slave bus
JP2010263305A (en) * 2009-04-30 2010-11-18 Fujifilm Corp Imaging apparatus and method of driving the same
CN102023945B (en) * 2009-09-22 2012-03-28 鸿富锦精密工业(深圳)有限公司 Serial peripheral interface bus-based equipment and data transmission method thereof
CN101950280B (en) * 2009-09-30 2012-11-14 威盛电子股份有限公司 Chip selection method for generating a plurality of serial buses
US20110078350A1 (en) * 2009-09-30 2011-03-31 Via Technologies, Inc. Method for generating multiple serial bus chip selects using single chip select signal and modulation of clock signal frequency
US8176209B2 (en) * 2009-11-05 2012-05-08 Electronics And Telecommunications Research Institute Data communication system
CN102097050B (en) * 2009-12-11 2016-03-09 康佳集团股份有限公司 A kind of apparatus and method realizing display seamless switching
CN102104641A (en) * 2009-12-18 2011-06-22 深圳富泰宏精密工业有限公司 Mobile phone and method for realizing 360DEG photographing
KR20110076729A (en) * 2009-12-18 2011-07-06 삼성전자주식회사 Multi-step exposed image acquisition method by electronic shutter and apparatus using the same
US8327052B2 (en) * 2009-12-23 2012-12-04 Spansion Llc Variable read latency on a serial memory bus
TWI406135B (en) * 2010-03-09 2013-08-21 Nuvoton Technology Corp Data transmission systems and programmable serial peripheral interface controller
CN102200864B (en) * 2010-03-26 2013-08-14 原相科技股份有限公司 Optical touch device
US8310584B2 (en) * 2010-04-29 2012-11-13 Victory Gain Group Corporation Image sensing device having thin thickness
CN101841624A (en) * 2010-05-17 2010-09-22 北京思比科微电子技术股份有限公司 Image sensor data transmission method
US8325890B2 (en) * 2010-06-06 2012-12-04 Apple Inc. Auto exposure techniques for variable lighting conditions
JP2012008385A (en) * 2010-06-25 2012-01-12 Ricoh Co Ltd Image forming device and image forming method
US8422272B2 (en) * 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8433838B2 (en) * 2010-09-17 2013-04-30 International Business Machines Corporation Remote multiplexing devices on a serial peripheral interface bus
TWI507031B (en) * 2010-10-15 2015-11-01 Altek Corp Image processing method
CN102035530A (en) * 2010-10-15 2011-04-27 北京工业大学 Optimal maintaining pipe domino circuit used for high-performance VLSI (Very Large Scale Integrated Circuit)
US20120097985A1 (en) * 2010-10-21 2012-04-26 Wen-Huang Liu Light Emitting Diode (LED) Package And Method Of Fabrication
KR101705045B1 (en) * 2010-11-09 2017-02-10 삼성전자주식회사 Analog to digital converter, image sensor having the same, and method of converting analog to digital
CN102469248B (en) * 2010-11-12 2016-03-02 华晶科技股份有限公司 Device for filming image and image synthesis method thereof
US9047178B2 (en) * 2010-12-13 2015-06-02 SanDisk Technologies, Inc. Auto-commit memory synchronization
CN102098441B (en) * 2010-12-16 2016-09-07 深圳市经纬科技有限公司 Image data transfer method based on SPI interface and camera installation
CN102117342A (en) * 2011-01-21 2011-07-06 中国科学院上海技术物理研究所 Peripheral component interconnect (PCI) Express bus-based multiband infrared image real-time acquisition system and method
JP5655626B2 (en) * 2011-02-24 2015-01-21 ソニー株式会社 Image processing apparatus, image processing method, and program
CN202049481U (en) * 2011-03-17 2011-11-23 冠捷投资有限公司 Sensing structure with master and slave relation
JP5713752B2 (en) * 2011-03-28 2015-05-07 キヤノン株式会社 Image processing apparatus and control method thereof
US9077917B2 (en) * 2011-06-09 2015-07-07 Apple Inc. Image sensor having HDR capture capability
US8576653B2 (en) * 2011-07-01 2013-11-05 United Microelectronics Corp. Hidden refresh method and operating method for pseudo SRAM
CN107770462B (en) * 2011-12-28 2020-09-22 株式会社尼康 Imaging element and imaging device
TWI450159B (en) * 2012-03-02 2014-08-21 Pixart Imaging Inc Optical touch device, passive touch system and its input detection method
WO2013146039A1 (en) * 2012-03-30 2013-10-03 シャープ株式会社 Semiconductor storage device
US9274997B2 (en) * 2012-05-02 2016-03-01 Smsc Holdings S.A.R.L. Point-to-point serial peripheral interface for data communication between devices configured in a daisy-chain
US8943250B2 (en) * 2012-08-20 2015-01-27 General Electric Systems and methods for concatenating multiple devices
US9003091B2 (en) * 2012-10-18 2015-04-07 Hewlett-Packard Development Company, L.P. Flow control for a Serial Peripheral Interface bus
TW201418992A (en) * 2012-11-06 2014-05-16 Megawin Technology Co Ltd Data transmission control method and device of serial peripheral interface master device
CN103092806A (en) * 2013-01-18 2013-05-08 青岛海信宽带多媒体技术有限公司 Data transmission method and data transmission system based on serial peripheral interface (SPI) data transmission timing sequences
KR101444063B1 (en) * 2013-03-22 2014-09-26 주식회사 슈프리마 Method and apparatus for fingerprint recognition by using multi exposure
CN104253188A (en) * 2013-06-27 2014-12-31 展晶科技(深圳)有限公司 Manufacturing method of light emitting diode element
CN105324985B (en) * 2013-07-04 2018-11-23 株式会社尼康 Electronic equipment and photographing element
TWI631854B (en) * 2013-08-05 2018-08-01 日商新力股份有限公司 Conversion device, imaging device, electronic device, conversion method
CN103595503B (en) * 2013-10-25 2016-08-17 福建升腾资讯有限公司 A kind of frequency encoding and decoding communication system based on serial port device
CN104714908B (en) * 2013-12-13 2017-12-19 上海华虹集成电路有限责任公司 Support the SPI interface of master slave mode
JP6519095B2 (en) * 2013-12-19 2019-05-29 カシオ計算機株式会社 CONTENT OUTPUT SYSTEM, CONTENT OUTPUT DEVICE, CONTENT OUTPUT METHOD, AND PROGRAM
US9402039B2 (en) * 2014-01-10 2016-07-26 Omnivision Technologies, Inc. Dual conversion gain high dynamic range sensor
CN103838700A (en) * 2014-02-20 2014-06-04 江苏理工学院 Level multiplexing control serial communication device and method
KR102149187B1 (en) * 2014-02-21 2020-08-28 삼성전자주식회사 Electronic device and control method of the same
CN103888693B (en) * 2014-03-31 2017-06-13 广东威创视讯科技股份有限公司 Image transmission
EP2938064B1 (en) * 2014-04-24 2016-10-12 Axis AB Method and apparatus for determining exposure setting
JP6478488B2 (en) * 2014-06-18 2019-03-06 キヤノン株式会社 AD converter and solid-state imaging device
CN105208294A (en) * 2014-06-20 2015-12-30 中兴通讯股份有限公司 Method and device for taking picture
JP6454490B2 (en) * 2014-07-17 2019-01-16 ルネサスエレクトロニクス株式会社 Semiconductor device and ramp signal control method
JP6552336B2 (en) * 2014-08-29 2019-07-31 株式会社半導体エネルギー研究所 Semiconductor device
CN104318205A (en) * 2014-09-29 2015-01-28 上海箩箕技术有限公司 Information detection display device, detection method and display method of information detection display device
WO2016050750A1 (en) * 2014-09-29 2016-04-07 Biosurfit S.A. Positioning mechanism
US10732771B2 (en) * 2014-11-12 2020-08-04 Shenzhen GOODIX Technology Co., Ltd. Fingerprint sensors having in-pixel optical sensors
US10114789B2 (en) * 2015-01-08 2018-10-30 Samsung Electronics Co., Ltd. System on chip for packetizing multiple bytes and data processing system including the same
CN105991935B (en) * 2015-02-15 2019-11-05 比亚迪股份有限公司 Exposure-control device and exposal control method
US20160246396A1 (en) * 2015-02-20 2016-08-25 Qualcomm Incorporated Interactive touchscreen and sensor array
JP2016161653A (en) * 2015-02-27 2016-09-05 富士フイルム株式会社 Photographing device and method
EP3306864B1 (en) * 2015-05-26 2019-09-25 Hitachi Automotive Systems, Ltd. Communication device and communication system
CN204695305U (en) * 2015-06-11 2015-10-07 北京海泰方圆科技有限公司 A kind of SPI communication interface based on joint product and this joint product
CN106663156B (en) 2015-06-30 2020-08-07 华为技术有限公司 Method and terminal for unlocking screen by fingerprint
TWI576653B (en) * 2015-07-31 2017-04-01 廣達電腦股份有限公司 Exposure control system and method thereof
US9819889B2 (en) * 2015-08-07 2017-11-14 Omnivision Technologies, Inc. Method and system to implement a stacked chip high dynamic range image sensor
CN105100631B (en) * 2015-09-08 2019-03-01 Oppo广东移动通信有限公司 A kind of automatic continuous interval takes pictures, the method that images and mobile terminal
US10003761B2 (en) * 2015-09-10 2018-06-19 Canon Kabushiki Kaisha Imaging device having multiple analog-digital conversion circuits that perform multiple ad conversions for a singular one of a pixel signal
US9990316B2 (en) * 2015-09-21 2018-06-05 Qualcomm Incorporated Enhanced serial peripheral interface
CN205038640U (en) * 2015-09-25 2016-02-17 河南思维自动化设备股份有限公司 Solve SPI bus communication delayed SPI equipment
US10157590B1 (en) * 2015-12-15 2018-12-18 Apple Inc. Display with localized brightness adjustment capabilities
CN105578076A (en) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 Imaging method, imaging device and electronic device
CN106303269A (en) * 2015-12-28 2017-01-04 北京智谷睿拓技术服务有限公司 Image acquisition control method and device, image capture device
US9743025B2 (en) * 2015-12-30 2017-08-22 Omnivision Technologies, Inc. Method and system of implementing an uneven timing gap between each image capture in an image sensor
CN106778459B (en) 2015-12-31 2021-02-12 深圳市汇顶科技股份有限公司 Fingerprint identification method and fingerprint identification device
JP6885344B2 (en) * 2016-01-20 2021-06-16 ソニーグループ株式会社 Solid-state image sensor, its driving method, and electronic devices
KR102554495B1 (en) * 2016-01-22 2023-07-12 에스케이하이닉스 주식회사 Nonvolatile memory cell having lateral coupling structure and memory cell array using the nonvolatile memory cell
US9800807B2 (en) * 2016-02-26 2017-10-24 Intel Corporation Image sensor operation for shutter modulation and high dynamic range
US10043051B2 (en) * 2016-03-07 2018-08-07 Microsoft Technology Licensing, Llc Triggered image sensing with a display
JP6747158B2 (en) * 2016-08-09 2020-08-26 ソニー株式会社 Multi-camera system, camera, camera processing method, confirmation device, and confirmation device processing method
CN206470775U (en) * 2016-12-23 2017-09-05 敦捷光电股份有限公司 Biometric recognition device.It
CN110036627B (en) * 2016-12-27 2021-03-05 松下知识产权经营株式会社 Imaging device, camera, and imaging method
CN106897701B (en) * 2017-02-27 2019-08-23 京东方科技集团股份有限公司 Optical finger print identifies mould group and display panel, display device
CN107066859A (en) 2017-03-15 2017-08-18 广东欧珀移动通信有限公司 A kind of unlocked by fingerprint method and device
CN107071153B (en) 2017-03-21 2019-07-02 Oppo广东移动通信有限公司 A kind of fingerprint mould group mode switching method and device
KR102331464B1 (en) * 2017-04-18 2021-11-29 삼성전자주식회사 Method for acquiring biometric information using a biometric information sensing area formed in a display area and electronic device supporting the same
CN107135049B (en) * 2017-04-19 2020-08-14 北京航天自动控制研究所 Reliable asynchronous communication method facing discrete data stream
CN107122742B (en) * 2017-04-27 2019-12-03 上海天马微电子有限公司 A kind of display device and its fingerprint identification method and electronic equipment
CN107194326A (en) 2017-04-28 2017-09-22 广东欧珀移动通信有限公司 Fingerprint collecting method and related product
CN107169447A (en) * 2017-05-12 2017-09-15 贵州中信云联科技有限公司 Hospital self-service system based on recognition of face
EP3462731B1 (en) * 2017-09-29 2021-11-10 Canon Kabushiki Kaisha Imaging device, imaging system, and moving body
US10735459B2 (en) * 2017-11-02 2020-08-04 International Business Machines Corporation Service overload attack protection based on selective packet transmission
KR102460750B1 (en) * 2018-02-13 2022-10-31 삼성전기주식회사 Camera apparatus having ois function and communication method thereof
JP6753985B2 (en) * 2018-08-10 2020-09-09 シャープ株式会社 Analog-to-digital converter and solid-state image sensor

Also Published As

Publication number Publication date
US20200045216A1 (en) 2020-02-06
TWI667919B (en) 2019-08-01
CN109640010B (en) 2021-08-13
TW201916672A (en) 2019-04-16
US10810395B2 (en) 2020-10-20
US10580483B1 (en) 2020-03-03
US20200042762A1 (en) 2020-02-06
CN109634883A (en) 2019-04-16
CN109639988B (en) 2020-08-11
TWI719332B (en) 2021-02-21
US20200028977A1 (en) 2020-01-23
CN109639988A (en) 2019-04-16
US10997386B2 (en) 2021-05-04
TW201915818A (en) 2019-04-16
CN109857281A (en) 2019-06-07
CN109639957B (en) 2020-11-13
US10592448B2 (en) 2020-03-17
CN109637565A (en) 2019-04-16
CN109639957A (en) 2019-04-16
US20200012837A1 (en) 2020-01-09
US20200034319A1 (en) 2020-01-30
CN109634883B (en) 2023-03-21
CN109634063A (en) 2019-04-16
TWI728254B (en) 2021-05-21
TW201916670A (en) 2019-04-16
TWI679539B (en) 2019-12-11
TW201916673A (en) 2019-04-16
TW201915542A (en) 2019-04-16
US20200018986A1 (en) 2020-01-16
TW201916035A (en) 2019-04-16
CN109635794A (en) 2019-04-16
US10609296B1 (en) 2020-03-31
US10990781B2 (en) 2021-04-27
TW201916674A (en) 2019-04-16
TW201915756A (en) 2019-04-16
US20200111825A1 (en) 2020-04-09
US10885296B2 (en) 2021-01-05
TWI667653B (en) 2019-08-01
CN109637565B (en) 2020-10-20
TWI703865B (en) 2020-09-01
US20200112664A1 (en) 2020-04-09
CN109638632A (en) 2019-04-16
CN109640010A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109634063B (en) Exposure method, electronic device and master-slave system
EP3700184B1 (en) Electronic device and method for changing magnification of image using multiple cameras
CN111917997B (en) Foldable electronic device and method for controlling image photographing using a plurality of cameras
US10812768B2 (en) Electronic device for recording image by using multiple cameras and operating method thereof
EP3264744A2 (en) Electronic device and image capturing method thereof
EP3496389B1 (en) Electronic device and method for processing image
CN107615745B (en) Photographing method and terminal
US20220084159A1 (en) Image signal processor, method of operating the image signal processor, and application processor including the image signal processor
KR20200040541A (en) Camera module for stabilizing video, electrical video including the same and video stabilizing method of the electrical device
EP3617990A1 (en) Picture processing method and apparatus, computer readable storage medium, and electronic device
US20230133394A1 (en) Method for processing photographed image and electronic device therefor
CN112087569B (en) Camera and camera starting method and device
CN104601884A (en) Photograph method and terminal
US7814358B2 (en) Electronic apparatus capable of outputting data in predetermined timing regardless of contents of input data
KR20210142383A (en) Electronic device operating image correction
CN217883569U (en) Image processing circuit
US10904536B2 (en) Frame processing method and device
Sun et al. OMAPL138 Based Image Acquisition and Display System Development
JP2024021407A (en) Imaging device and its control method and program
CN117076081A (en) Memory training method, device, storage medium, and program product
CN113744116A (en) Image processing chip and electronic device
CN115460345A (en) Image acquisition method, device, equipment and storage medium
Lundmark Development of a USB camera using a general purpose microcontroller
TR201505174A3 (en) A TARGET DETECTION AND TRACKING UNIT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191023

Address after: Unit 1103, floor 11, building a, No. 18, science Avenue, Huangpu District, Guangzhou City, Guangdong Province

Applicant after: Guangzhou Yinxin Semiconductor Technology Co., Ltd

Address before: Room 19f1904, Puki business centre, 5 Hanoi Road, Tsim Sha Tsui

Applicant before: Printing Technology Co., Ltd.

GR01 Patent grant
GR01 Patent grant