CN109608219B - 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法 - Google Patents

一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法 Download PDF

Info

Publication number
CN109608219B
CN109608219B CN201811487086.XA CN201811487086A CN109608219B CN 109608219 B CN109608219 B CN 109608219B CN 201811487086 A CN201811487086 A CN 201811487086A CN 109608219 B CN109608219 B CN 109608219B
Authority
CN
China
Prior art keywords
weak acid
acetate
acid corrosion
porous oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811487086.XA
Other languages
English (en)
Other versions
CN109608219A (zh
Inventor
杨为家
王诺媛
刘艳怡
刘俊杰
刘铭全
何鑫
陈梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dingxiang Jiangmen Electronic Technology Co ltd
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201811487086.XA priority Critical patent/CN109608219B/zh
Publication of CN109608219A publication Critical patent/CN109608219A/zh
Application granted granted Critical
Publication of CN109608219B publication Critical patent/CN109608219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H99SUBJECT MATTER NOT OTHERWISE PROVIDED FOR IN THIS SECTION
    • H99ZSUBJECT MATTER NOT OTHERWISE PROVIDED FOR IN THIS SECTION
    • H99Z99/00Subject matter not otherwise provided for in this section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及薄膜技术领域,尤其是一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,本发明以醋酸盐为原料,以氯化锌、聚乙二醇为造孔剂,乙二醇为溶剂,通过高温烧结,以及采用弱酸腐蚀进一步造孔,最终得到耐弱酸腐蚀的多孔氧化物薄膜;本发明制备设备成熟,工艺简单,制备成本低;在烧结过程中,醋酸盐分解成耐弱酸的金属氧化物、水和二氧化碳,ZnCl2与醋酸根或者聚乙二醇一起反应,分解成ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱;本发明制备晶须增强多孔ZnO薄膜,晶须是单晶ZnO纳米柱,具有优异的性能,可广泛应用于气敏探测器和光催化降解等领域。

Description

一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法
技术领域
本发明涉及薄膜技术领域,尤其是耐弱酸腐蚀的多孔氧化物薄膜的制备方法。
背景技术
ZnO、SnO2、Fe2O3、TiO2等氧化物属于半导体材料,具有优异的物理和化学性能,在电子信息器件、发光器件、光催化降解、催化反应、太阳能电池、锂电池等领域发挥重要作用。因此,氧化物半导体材料是材料领域的一个研究重点和热点。
氧化物薄膜材料,尤其是多孔氧化物薄膜材料是目前研究的一个重要方向。特别是当多孔氧化物薄膜材料的孔径达到纳米级别时,其具有大的比表面积、显著量子效应和局域表面增强效应等突出优势,使得多孔氧化物薄膜材料在气敏传感、催化反应、锂电池等领域得到广泛的应用。
目前,多孔氧化物薄膜的制备方法主要是使用模板法,在多孔AAO模板生长多孔氧化物薄膜。
但是模板法的制备成本通常较为昂贵,而且制备工艺复杂,并且还需要热处理或者溶剂溶解去除模板,这容易破坏薄膜的多孔结构,而且孔径大小、分布有以及面积都受限于模板。
发明内容
针对现有技术的不足,本发明提供一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,本发明制备的薄膜的晶须为单晶ZnO纳米柱,具有优异的性能,适用范围广,可用于气敏探测器和光催化降解等领域。
本发明的技术方案为:一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,以醋酸盐为原料,以氯化锌(ZnCl2)、聚乙二醇(PEG)为造孔剂,乙二醇为溶剂,按照一定的比例配置混合溶液,使用磁力搅拌机在60-80℃下搅拌60-120min,使醋酸盐、ZnCl2和聚乙二醇完全溶解到乙二醇当中,从而得到前驱体溶液;
S2)、前驱薄膜的制备,将清洗干净的衬底放到旋涂仪上并吸附住,使用滴管在衬底上滴加4-10滴前驱体溶液,启动旋涂仪,首先以400-500转/分的速率旋转60-120s,接着以 1200-1600转/分的中速率旋转30-60s,再以3000-4500转/分的高速率旋转60-120s;然后采用电热板在120-150℃下烘干后再次旋涂,反复旋涂15-40次,从而得到前驱体薄膜;
S3)、高温烧结,将步骤S2)中得到的前驱体薄膜转移到箱式炉当中,以每分钟20-30℃的升温速率加热至500-800℃,并保温30-60分钟,然后自然降温到室温;
S4)、弱酸腐蚀进一步造孔,采用草酸、柠檬酸或者浓度不超过0.005mol/L的盐酸、硫酸、硝酸腐蚀高温烧结之后的薄膜,将ZnO纳米柱完全腐蚀,从而进一步增加薄膜的孔洞,从而获得耐弱酸腐蚀的多孔氧化物薄膜。
上述方法中,步骤S1)中,加入醋酸盐的质量份数为0.2-2.0份,加入的氯化锌(ZnCl2) 的质量份数为0.04-0.8份;加入的聚乙二醇(PEG)的质量份数为0.2-0.8份,加入的乙二醇的体积份数为30-120份。
上述方法中,步骤S1)中,醋酸盐为醋酸锡、醋酸钛、醋酸铝、醋酸镍、醋酸铅、醋酸钯中的一种或者两种以上的混合物。
上述方法中,步骤S2)中,在1200-1600转/分、以及3000-4500转/分速率的中高速旋转过程中,滴加5-15滴前驱体溶液。
上述方法中,步骤S2)中,所述的衬底为蓝宝石、硅片、金属、玻璃、石英中的任意一种,其尺寸为2cm×2cm~8cm×8m。
上述方法中,步骤S3)中,烧结后的薄膜的ZnO纳米柱的直径为70-120nm。
上述方法中,步骤4)中耐弱酸腐蚀的多孔氧化物薄膜的孔径为70-120nm。
本发明制备的耐弱酸腐蚀的多孔氧化物薄膜可广泛应用于气敏探测器和光催化降解等领域。
本发明的有益效果为:
1、本发明适用范围广,可以硅片、金属、导电玻璃等多种衬底上制备晶须增强多孔ZnO 薄膜;
2、制备设备成熟,工艺简单,制备成本低,相对现有技术至少降低5%以上;
3、在烧结过程中,醋酸盐分解成耐弱酸的金属氧化物、水和二氧化碳,ZnCl2与醋酸根或者聚乙二醇一起反应,分解成ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱;
4、本发明制备晶须增强多孔ZnO薄膜,晶须是单晶ZnO纳米柱,具有优异的性能,适用范围广,可广泛应用于气敏探测器和光催化降解等领域。
附图说明
图1为实施例1制备的高温烧结后的多孔TiO2薄膜的高倍SEM图;
图2为实施例1制备的耐弱酸腐蚀的多孔TiO2薄膜的高倍SEM图;
图3为实施例1制备的耐弱酸腐蚀的多孔TiO2薄膜的光催化降解亚甲基蓝的吸收图谱;
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,将0.2g的醋酸钛,以及0.04g的氯化锌(ZnCl2)、0.2g的聚乙二醇(PEG),30mL的乙二醇混合,使用磁力搅拌机在80℃下搅拌60min,使醋酸钛、ZnCl2和聚乙二醇完全溶解到乙二醇当中,从而得到前驱体溶液;
S2)、前驱薄膜的制备,将清洗干净的衬底放到旋涂仪上并吸附住,使用滴管在衬底上滴加6滴前驱体溶液,启动旋涂仪,首先以400转/分的速率旋转120s,接着以1200转/分的中速率旋转60s,再以3000转/分的高速率旋转120s;然后采用电热板在150℃下烘干后再次旋涂,反复旋涂20次,从而得到前驱体薄膜;
S3)、高温烧结,将步骤S2)中得到的前驱体薄膜转移到箱式炉当中,以每分钟20℃的升温速率加热至500℃,并保温60分钟,然后自然降温到室温,在快速升温过程中,醋酸钛分解成耐弱酸的金属TiO2、水和二氧化碳,ZnCl2与醋酸根或者聚乙二醇一起反应,分解成ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱;
S4)、弱酸腐蚀进一步造孔,采用草酸腐蚀高温烧结之后的薄膜,将ZnO纳米柱完全腐蚀,从而进一步增加薄膜的孔洞,但TiO2薄膜不会被腐蚀,从而获得耐弱酸腐蚀的多孔氧化物薄膜。
实施例2
一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,将0.4g的醋酸锡,以及0.08g的氯化锌(ZnCl2)、0.2g的聚乙二醇(PEG,分子量2000-6000),30mL的乙二醇混合,使用磁力搅拌机在80℃下搅拌60min,使醋酸锡、ZnCl2和聚乙二醇完全溶解到乙二醇当中,从而得到前驱体溶液;
S2)、前驱薄膜的制备,将清洗干净的衬底放到旋涂仪上并吸附住,使用滴管在衬底上滴加6滴前驱体溶液,启动旋涂仪,首先以500转/分的速率旋转60s,接着以1300转/分的中速率旋转60s,再以3500转/分的高速率旋转120s;然后采用电热板在150℃下烘干后再次旋涂,反复旋涂25次,从而得到前驱体薄膜;
S3)、高温烧结,将步骤S2)中得到的前驱体薄膜转移到箱式炉当中,以每分钟30℃的升温速率加热至600℃,并保温30分钟,然后自然降温到室温,在快速升温过程中,醋酸锡分解成耐弱酸的SnO2、水和二氧化碳,ZnCl2与醋酸根或者聚乙二醇一起反应,分解成ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱;
S4)、弱酸腐蚀进一步造孔,采用草酸腐蚀高温烧结之后的薄膜,将ZnO纳米柱完全腐蚀,从而进一步增加薄膜的孔洞,但SnO2薄膜不会被腐蚀,从而获得耐弱酸腐蚀的多孔氧化物薄膜。
实施例3
耐弱酸腐蚀的多孔氧化物薄膜性能分析
图1是实施例1制备的高温烧结后的多孔TiO2薄膜的高倍SEM图片;从图中可以清楚的观察到薄膜的表面有一些孔洞,且分布有部分凸起的ZnO纳米柱,其直径为70-120nm。
图2是本发明的实施例1制备的耐弱酸腐蚀的多孔TiO2薄膜的高倍SEM图,腐蚀之后,薄膜的孔洞显著增加;图3是实施例1制备的耐弱酸腐蚀的多孔TiO2薄膜的光催化降解亚甲基蓝的吸收图谱,经过耐弱酸腐蚀的多孔TiO2薄膜2h催化降解之后,亚甲基蓝的吸收值由1.70 迅速降低至0.69,由此可以证明,耐弱酸腐蚀的多孔TiO2薄膜具有良好的光催化降解性能。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (6)

1.一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:包括以下步骤:
S1)、前驱体溶液的制备,以醋酸盐为原料,以氯化锌(ZnCl2)、聚乙二醇(PEG)为造孔剂,乙二醇为溶剂,按照一定的比例配置混合溶液,使用磁力搅拌机在60-80℃下搅拌60-120min,使醋酸盐、ZnCl2和聚乙二醇完全溶解到乙二醇当中,从而得到前驱体溶液;
S2)、前驱薄膜的制备,将清洗干净的衬底放到旋涂仪上并吸附住,使用滴管在衬底上滴加4-10滴前驱体溶液,启动旋涂仪,首先以400-500转/分的速率旋转60-120s,接着以1200-1600转/分的中速率旋转30-60s,再以3000-4500转/分的高速率旋转60-120s;然后采用电热板在120-150℃下烘干后再次旋涂,反复旋涂15-40次,从而得到前驱体薄膜;
S3)、高温烧结,将步骤S2)中得到的前驱体薄膜转移到箱式炉当中,以每分钟20-30℃的升温速率加热至500-800℃,并保温30-60分钟,然后自然降温到室温;
S4)、弱酸腐蚀进一步造孔,采用草酸、柠檬酸或者浓度都不超过0.005mol/L的盐酸、硫酸、硝酸腐蚀高温烧结之后的薄膜,将ZnO纳米柱完全腐蚀,从而进一步增加薄膜的孔洞,从而获得耐弱酸腐蚀的多孔氧化物薄膜。
2.根据权利要求1所述的一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:步骤S1)中,醋酸盐为醋酸锡、醋酸钛、醋酸铝、醋酸镍、醋酸铅、醋酸钯中的一种或者两种以上的混合物。
3.根据权利要求1所述的一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:步骤S2)中,在1200-1600转/分、以及3000-4500转/分速率的中高速旋转过程中,滴加5-15滴前驱体溶液。
4.根据权利要求1所述的一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:步骤S2)中,所述的衬底为蓝宝石、硅片、金属、玻璃、石英中的任意一种,其尺寸为2cm×2cm~8cm×8m。
5.根据权利要求1所述的一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:步骤S3)中,烧结后的薄膜的ZnO纳米柱的直径为70-120nm。
6.根据权利要求1所述的一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法,其特征在于:步骤S 4)中耐弱酸腐蚀的多孔氧化物薄膜的孔径为70-120nm。
CN201811487086.XA 2018-12-06 2018-12-06 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法 Active CN109608219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811487086.XA CN109608219B (zh) 2018-12-06 2018-12-06 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811487086.XA CN109608219B (zh) 2018-12-06 2018-12-06 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN109608219A CN109608219A (zh) 2019-04-12
CN109608219B true CN109608219B (zh) 2022-01-28

Family

ID=66006217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811487086.XA Active CN109608219B (zh) 2018-12-06 2018-12-06 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN109608219B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499664B (zh) * 2021-06-28 2023-07-21 中国神华煤制油化工有限公司 脱汞剂及其制备方法和脱除烟气中单质汞的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298194B2 (ja) * 2001-11-05 2009-07-15 独立行政法人科学技術振興機構 自然超格子ホモロガス単結晶薄膜の製造方法。
CN100428429C (zh) * 2005-08-22 2008-10-22 中国科学院长春光学精密机械与物理研究所 用电化学沉积制备锰掺杂的氧化锌纳米柱的方法
CN104538585B (zh) * 2014-12-25 2017-09-12 芜湖市汽车产业技术研究院有限公司 空心多孔微米级硅球、硅基负极材料及锂离子电池制备方法
PL229128B1 (pl) * 2015-05-08 2018-06-29 Inst Fizyki Polskiej Akademii Nauk Struktura ogniwa fotowoltaicznego oraz sposób wykonania struktury ogniwa fotowoltaicznego
CN105110361A (zh) * 2015-07-30 2015-12-02 西北大学 一种金属氯化物纳米薄膜材料的制备方法
CN106882834B (zh) * 2017-04-01 2018-07-13 景德镇陶瓷大学 一种原位制备ZnO纳米棒阵列薄膜的方法及其制得的薄膜
CN108821326B (zh) * 2018-06-27 2020-05-12 五邑大学 一种ZnO纳米材料、及其制备方法

Also Published As

Publication number Publication date
CN109608219A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN106865496A (zh) 铝掺杂纳米氧化锌包覆的镍钴铝酸锂正极材料及其制备方法
CN108910941B (zh) 一种蝴蝶形状的SnO2二维纳米材料及其制备方法与应用
CN111161960A (zh) 在碳布基底上生长的尖晶石型CuCo2O4高性能电极材料合成方法
CN108630911B (zh) 含氧空位缺陷的SnO2-石墨烯纳米复合材料及其应用
CN105513795B (zh) 具有固态电解质功能的水合氧化铝电介质薄膜及其制备
CN106803601B (zh) 一种固态电解质锂镧钛氧化合物薄膜的制备方法
CN114551723B (zh) 基于酸处理氧化锡的钙钛矿电池及其制备
CN108465465A (zh) 一种半导体薄膜及其制备方法
CN109608219B (zh) 一种耐弱酸腐蚀的多孔氧化物薄膜的制备方法
CN101638247B (zh) 由纳米棒组成的二氧化锡纳米空心球的制备及其在锂电池中的应用
CN104891821B (zh) 应用不同浓度的前驱液制备多层BiFeO3薄膜的方法
CN111243939A (zh) 一种基于金属粉末制备半导体氧化物薄膜的方法
CN108390070B (zh) 锡锑氧化物阳极材料涂层及其制备方法、液流电池钛基锡锑氧化物电极
CN110407183A (zh) 一种碲纳米棒,储能器件及其制备方法,制备碲纳米材料的方法
WO2020258960A1 (zh) 一种基于水热法快速生长ZnO纳米多孔薄膜的方法
CN108187652A (zh) 一种可见光光催化剂材料的制备方法
CN102863019B (zh) 尖晶石结构薄膜型钛酸锂负极材料的制备方法
CN109338339B (zh) 一种褶皱状立体多孔ZnO薄膜及其制备方法
CN109137009B (zh) 一种脉冲电沉积制备多孔氢氧化镁的方法
CN113401891A (zh) 二氧化钛/三维石墨烯复合电极材料及其制备方法和应用
CN111632590A (zh) 负载ZnSn(OH)6的玻璃珠光催化剂及其制备方法和应用
CN108807560A (zh) 一种用硫粉辅助制备铜铁硫光电薄膜的方法
Jayarathne et al. Electronic and structural properties of Cu2O polycrystalline thin films grown on adhesive copper tape
CN112993168B (zh) 一种无退火效应的二氧化锡多孔结构钙钛矿光伏电池及其制备方法
TWI403017B (zh) 鋰電池電極材料之製備方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240227

Address after: 529100 floor 3 and 4, side B, building 107, phase I, new fortune environmental protection electroplating base, yamen Town, Xinhui District, Jiangmen City, Guangdong Province

Patentee after: DINGXIANG (JIANGMEN) ELECTRONIC TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 529020, No. 22, Dongcheng village, Pengjiang District, Guangdong, Jiangmen

Patentee before: WUYI University

Country or region before: China

TR01 Transfer of patent right