CN108807560A - 一种用硫粉辅助制备铜铁硫光电薄膜的方法 - Google Patents

一种用硫粉辅助制备铜铁硫光电薄膜的方法 Download PDF

Info

Publication number
CN108807560A
CN108807560A CN201810704336.4A CN201810704336A CN108807560A CN 108807560 A CN108807560 A CN 108807560A CN 201810704336 A CN201810704336 A CN 201810704336A CN 108807560 A CN108807560 A CN 108807560A
Authority
CN
China
Prior art keywords
film
sulphur
iron
precursor thin
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810704336.4A
Other languages
English (en)
Inventor
刘科高
徐勇
荆明星
姬明
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201810704336.4A priority Critical patent/CN108807560A/zh
Publication of CN108807560A publication Critical patent/CN108807560A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • C03C2217/288Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)

Abstract

一种用硫粉辅助制备铜铁硫光电薄膜的制备方法,属于光电薄膜制备技术领域,本发明通过如下步骤得到,首先清洗玻璃基片,然后将CuCl2.2H2O、FeCl3.6H2O和Na2S2O3.5H2O依次放入溶剂水中,配制澄清透明溶液,用旋涂法在玻璃片上得到前驱体薄膜,自然晾干,放入反应釜内胆的中间层中,同时在涂有前驱体溶液的玻璃片旁边放入硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与联氨直接接触,将装有前驱体薄膜样品的密闭容器进行加热后取出样品进行干燥,可通过增加反应次数和热处理工艺改善薄膜质量,得到铜铁硫光电薄膜。本发明不需要高温高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铁硫光电薄膜较不加硫粉制得的薄膜均匀性和结晶都要好,这种新工艺为制备高性能的铜铁硫光电薄膜提供了一种成本低、可实现工业化的生产方法。

Description

一种用硫粉辅助制备铜铁硫光电薄膜的方法
技术领域
本发明属于太阳能电池用光电薄膜制备技术领域,尤其涉及一种用硫粉辅助制备铜铁硫光电薄膜的制备方法。
背景技术
铜铁硫作为光电材料,是一种三元Ⅰ–Ⅲ–Ⅵ2族化合物半导体,具有黄铜矿和闪锌矿的晶体结构,同时具有高的光吸收系数、为直接能隙半导体、热稳定性好、无光致衰退效应等优点,又因铜铁硫材料的价格低廉、储量丰富且无毒等优势受到了科学家的广泛关注。
目前铜铁硫薄膜的制备方法有很多,主要有电化学沉积法、溅射法、热蒸发法、热喷涂法等。由于原料在地球上的储量丰富、价格低廉且无毒,因此是一种非常有发展前途的光电薄膜材料,但现有工艺路线复杂、制备成本高,因而需要探索低成本的制备工艺。
如前面所述方法一样,其它方法也有不同的缺陷。与本发明相关的还有如下文献:
[1] Xie H, X Su, et al. Thermoelectric performance of CuFeS2+2x compositesprepared by rapid thermal explosion. NPG ASIA Materials, 2017.
主要研究了利用快速热爆法制备CuFeS2+2x复合材料,研究了TE过程中发生的相变以及微观结构与输运性能之间的关系。
[2] Gaspari R, G Della Valle, et al. Quasi-Static Resonances in theVisible Spectrum from All-Dielectric Intermediate Band SemiconductorNanocrystals. Nano Letters, 2017.
主要研究了黄铜矿CuFeS2作为中间带半导体纳米晶替代等离子材料的技术。
[3] Tsujii N, T Mori. Development of thermoelectric materials basedon iron sulfide minerals. Funtai Oyobi Fummatsu Yakin/Journal of the JapanSociety of Powder and Powder Metallurgy, 2017.
主要研究了n型掺杂CuFeS2材料,发现Zn掺杂CuFeS2的热电性能主要取决于合成方法。
[4] Wang Y, X Li, et al. Ether based electrolyte improves theperformance of CuFeS2 spike-like nanorods as a novel anode for lithiumstorage. Electrochimica Acta, 2015.
主要研究了一种简单的水热法制备CuFeS2尖晶石纳米棒材料,研究表明CuFeS2可以成为用于高倍率锂电池的负极材料。
[5] Zhang Z, D Li, et al. Synthesis and photoelectric properties ofhigh quality CuFeS2 nanocrystals with tunable sizes. Gaodeng Xuexiao HuaxueXuebao/ Chemical Journal of Chinese Universities, 2014.
主要研究了具有可调尺寸的单分散CuFeS2纳米晶体(NCs),进一步揭示了CuFeS2NCs的光响应特性作为光电器件的光学活性元件的适用性。
[6] Aliyev YI, TM Ilyasli, et al. The structural and vibrationalproperties of Ni-doped chalcopyrite CuFeS2. Journal of Ovonic Research, 2018.
主要研究了镍掺杂黄铜矿CuFeS2的结构和振动性质,并分析了掺杂镍CuFe0.99Ni0.01S2对CuFeS2晶体结构的影响。
[7] Rouchdi M, E Salmani, et al. Spray pyrolysis synthesis of CuxFe1- xS2 and their structural, electronic and optical properties: Experimental andfirst-principles study. Materials Science and Engineering B-advancedFunctional Solid-state Materials, 2018.
主要采用化学喷雾热解(CSP)技术合成黄铁矿、FeS2(FS)和黄铜矿铜铁硫化物CuxFe1- xS2(CFS)薄膜,主要研究了Cu浓度对薄膜生长的影响。
[8] Xiong X, X Hua, et al. Oxidation mechanism of chalcopyriterevealed by X-ray photoelectron spectroscopy and first principles studies.Applied Surface Science, 2018.
主要研究了黄铜矿(CuFeS2)表面的氧化机理和第一性原理计算。
发明内容
本发明为了解决现有制备技术的不足,发明了一种与现有制备方法完全不同的铜铁硫薄膜的制备工艺。
本发明采用旋涂-化学共还原法制备铜铁硫薄膜材料,采用玻璃片或硅片为基片,以CuCl2.2H2O、FeCl3.6H2O、Na2S2O3.5H2O为原料,以水为溶剂,依次加入CuCl2.2H2O、FeCl3.6H2O、Na2S2O3.5H2O,使其充分反应。先以旋涂法制备一定厚度的铜铁硫前驱体薄膜,放入反应釜内胆的中间层中,同时在涂有前驱体溶液的玻璃片旁边放入硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与联氨直接接触,以水合联氨为还原剂,在密闭容器内在较低温度下加热,使前驱体薄膜还原并发生合成反应,可通过增加反应次数和反应后热处理改善所制备薄膜质量,得到目标产物。
本发明的具体制备方法包括如下顺序的步骤:
a. 进行基片的清洗,本实验选择玻璃片或硅片作为基片,首先将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min,这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
b. 将CuCl2.2H2O、FeCl3.6H2O和Na2S2O3.5H2O依次放入溶剂中,使溶液中的物质均匀混合。具体地说,将0.1705g的CuCl2.2H2O在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.2702g的FeCl3.6H2O和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解,其中加入的CuCl2.2H2O、FeCl3.6H2O、Na2S2O3.5H2O和溶剂水的量可根据涂膜的多少成比例变化。
c. 制作外部均匀如步骤b所述溶液的基片,并烘干,得到前驱体薄膜样品。可以将上述溶液滴到放置在匀胶机上的基片上,再启动匀胶机以200~3500转/分旋转一定时间,使滴上的溶液涂布均匀后,并对基片进行自然晾干后,再次重复滴上前述溶液和旋涂后再自然晾干,如此重复2~8次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d. 将步骤c所得前驱体薄膜样品置于反应釜内胆的中层,并在薄膜样品的旁边放入0.032g的硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与水合联氨接触;水合联氨放入量为0.5mL。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间2~40小时,然后冷却到室温取出。
e. 取出自然干燥后,重复b、c和d步骤2~6次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f. 将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铁硫光电薄膜。
本发明不需要高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铁硫光电薄膜较不加硫粉制得的薄膜均匀性和结晶都要好,主相为CuFeS2相,可以实现低成本大规模的工业化生产。
附图说明
图1是180℃反应10h制备CuFeS2的XRD图。其中上曲线为加硫粉硫化前的样品,下曲线为加硫粉硫化后的样品。
具体实施方式
实施例1
a. 玻璃基片或硅基片的清洗:如前所述进行清洗基片,大小为20mm×20mm×2mm。
b. 可以先将0.1705g的CuCl2.2H2O在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.2702g的FeCl3.6H2O和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解。
c. 将上述溶液滴到放置在匀胶机上的玻璃基片上,再启动匀胶机,匀胶机以200转/分转动5秒,以3000转/分旋转15秒,使滴上的溶液涂布均匀后,对基片进行烘干后,再次重复滴上前述溶液和旋涂后再烘干,如此重复6次,于是在基片上得到了一定厚度的前驱体薄膜样品。
d. 将步骤c所得前驱体薄膜样品置于反应釜内胆的中层,并在薄膜样品的旁边放入0.032g的硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与水合联氨接触;水合联氨放入量为0.5mL。将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至180℃,保温时间10小时,然后冷却到室温取出。
e. 取出自然干燥后,重复b、c和d步骤4次,以增加所制备薄膜的厚度,减少薄膜缺陷。
f. 将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至300℃,保温10小时,即得到铜铁硫光电薄膜。

Claims (5)

1.一种用硫粉辅助制备铜铁硫光电薄膜的方法,包括如下顺序的步骤:
a.玻璃基片或硅基片的清洗;
b.将0.1705g的CuCl2.2H2O在玻璃瓶中加入1mL的水使其充分溶解,再依次往玻璃瓶内加入0.2702g的FeCl3.6H2O和0.2481g的Na2S2O3.5H2O使其充分均匀混合溶解;
c.制作表面均匀涂布步骤b所述溶液的基片,自然晾干,得到前驱体薄膜样品;
d.将步骤c所得前驱体薄膜样品置于反应釜内胆的中层,并在薄膜样品的旁边放入0.032g的硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与水合联氨接触;水合联氨放入量为0.5mL;将上述装有前驱体薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间2~40小时,然后冷却到室温取出;
e.取出自然干燥后,重复上述步骤2~6次,以增加所制备薄膜的厚度;
f.将步骤e所得物,使其常温自然干燥后,增加热处理工艺,在管式加热炉中加热至200~400℃,保温5~15小时,即得到铜铁硫光电薄膜。
2.如权利要求1所述的一种用硫粉辅助制备铜铁硫光电薄膜的方法,其特征在于,步骤a所述清洗,将玻璃片或硅片切至20mm×20mm×2mm大小作为薄膜基片,然后用去离子水清洗2~3次,随后经过稀硫酸煮沸30~40min、水浴加热40~50min、去离子水超声清洗20min,这三个重要清洗步骤后,用双氧水浸泡保存备用即可。
3.如权利要求1所述的一种用硫粉辅助制备铜铁硫光电薄膜的制备方法,其特征在于,步骤b所述溶剂为水溶液,且其中加入的CuCl2.2H2O、FeCl3.6H2O、Na2S2O3.5H2O和溶剂水的量可根据涂膜的多少成比例变化。
4.如权利要求1所述的一种用硫粉辅助制备铜铁硫光电薄膜的制备方法,其特征在于,步骤c所述均匀涂抹的基片,是通过匀胶机旋涂,匀胶机以200~3500转/分旋转,然后对基片进行烘干后,再次如此重复2~8次,得到了一定厚度的前驱体薄膜样品。
5.如权利要求1所述的一种用硫粉辅助制备铜铁硫光电薄膜的制备方法,其特征在于,步骤d所述在薄膜样品的旁边放入0.032g的硫粉,反应釜内胆的下层放入水合联氨溶液,使前驱体薄膜样品不与水合联氨接触;水合联氨放入量为0.5mL。
CN201810704336.4A 2018-07-01 2018-07-01 一种用硫粉辅助制备铜铁硫光电薄膜的方法 Withdrawn CN108807560A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810704336.4A CN108807560A (zh) 2018-07-01 2018-07-01 一种用硫粉辅助制备铜铁硫光电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810704336.4A CN108807560A (zh) 2018-07-01 2018-07-01 一种用硫粉辅助制备铜铁硫光电薄膜的方法

Publications (1)

Publication Number Publication Date
CN108807560A true CN108807560A (zh) 2018-11-13

Family

ID=64073752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810704336.4A Withdrawn CN108807560A (zh) 2018-07-01 2018-07-01 一种用硫粉辅助制备铜铁硫光电薄膜的方法

Country Status (1)

Country Link
CN (1) CN108807560A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116272424A (zh) * 2023-04-20 2023-06-23 中国长江三峡集团有限公司 一种CuFeS2改性催化陶瓷膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004666A1 (en) * 2013-07-11 2015-01-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Thermal doping by vacancy formation in nanocrystals
CN105405929A (zh) * 2015-12-16 2016-03-16 山东建筑大学 一种用氯化锌制备硫化锌光电薄膜的方法
CN105489673A (zh) * 2015-12-17 2016-04-13 山东建筑大学 一种氯化物体系两步法制备铜铟硫光电薄膜的方法
CN106057969A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由升华硫粉制备铜铟硫光电薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004666A1 (en) * 2013-07-11 2015-01-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Thermal doping by vacancy formation in nanocrystals
CN105405929A (zh) * 2015-12-16 2016-03-16 山东建筑大学 一种用氯化锌制备硫化锌光电薄膜的方法
CN105489673A (zh) * 2015-12-17 2016-04-13 山东建筑大学 一种氯化物体系两步法制备铜铟硫光电薄膜的方法
CN106057969A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由升华硫粉制备铜铟硫光电薄膜的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116272424A (zh) * 2023-04-20 2023-06-23 中国长江三峡集团有限公司 一种CuFeS2改性催化陶瓷膜及其制备方法和应用
CN116272424B (zh) * 2023-04-20 2024-04-26 中国长江三峡集团有限公司 一种CuFeS2改性催化陶瓷膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107887511B (zh) 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
CN101960610A (zh) 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
CN102603201A (zh) 一种硒化亚铜薄膜的制备方法
CN106340587B (zh) 钙钛矿膜的制备方法和钙钛矿太阳能电池
CN106384811A (zh) 一种蓝磷/过渡金属二硫化物异质结阳极材料及制备方法
CN108649124B (zh) 一种高效率无机钙钛矿太阳电池及其制备方法
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
Kotta et al. Room-temperature processed hole-transport layer in flexible inverted perovskite solar cell module
Long et al. Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells
CN109678123A (zh) 铜锌锡硫硒薄膜太阳能电池及其前驱体溶液制备方法
CN110246971A (zh) 基于前氧化空穴传输层的无机钙钛矿太阳能电池及制备方法
Chen et al. Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells
CN109148641A (zh) 铜锌锡硫硒薄膜太阳能电池及其制备方法和背电极的修饰方法
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN108807560A (zh) 一种用硫粉辅助制备铜铁硫光电薄膜的方法
CN108400184A (zh) 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用
CN103390692B (zh) 一种制备铜铟碲薄膜的方法
CN113363394B (zh) 一种钙钛矿电池制备方法
TW201300322A (zh) 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
CN109638168A (zh) 一种使用绿色混合反溶剂制备高效钙钛矿太阳能电池及制备方法
CN108807561A (zh) 一种用氯化物制备铜铁硫光电薄膜的方法
CN108831964A (zh) 一种用硫酸盐制备铜铁硫光电薄膜的方法
CN108878590A (zh) 一种用硝酸盐制备铜铁硫光电薄膜的方法
CN106340545A (zh) Cis及cigs薄膜太阳能电池吸光层的制备及新溶剂在其中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20181113